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1. Introduction

For graph theory terminology not defined here, we direct the reader to [1]. A
drawing of a graph G = (V,E) is a mapping φ that assigns to each vertex in V

a distinct point in the plane and to each edge uv in E a continuous arc (i.e., a
homeomorphic image of a closed interval) connecting φ(u) and φ(v), not passing
through the image of any other vertex. For simplicity, we impose the following
conditions on a drawing: (a) no three edges have an interior point in common, (b)
if two edges share an interior point p, then they cross at p, and (c) any two edges
of a drawing have only a finite number of crossings (common interior points). The
crossing number, cr(G), of a graph G is the minimum number of edge crossings in
any drawing of G. Let D be a drawing of the graph G, we denote the number of
crossings in D by crD(G). It is easy to see that a drawing with minimum number
of crossings (an optimal drawing) is always a good drawing, meaning that no edge
crosses itself, no two edges cross more than once, and no two edges incident with
the same vertex cross. For more about crossing number, we refer the reader to
[2] and the references therein.

Let nK1 denote the graph on n isolated vertices and let Pn and Cn be the
path and the cycle on n vertices, respectively. The generalized Petersen graph
P (k, 1) for k ≥ 3 is a graph consisting of an inner cycle Ck and an outer cycle Ck

with corresponding vertices in the inner and outer cycles connected with edges.
In other words, P (k, 1) is isomorphic to the Cartesian product of Ck with P2.
The join product of two graphs G1 and G2, denoted by G1 + G2, is obtained
from vertex-disjoint copies of G1 and G2 by adding all edges between V (G1) and
V (G2).

The investigation on the crossing number of a graph is a classical and however
very difficult problem (for example, see [2]). In fact, computing the crossing
number of a graph is NP-complete [3], and the exact values are known only
for very restricted classes of graphs. The join product of two graphs is one of
them. Kulli and Muddebihal [4] gave the characterization of all pairs of graphs
whose join is a planar graph. It thus seems natural to inquire about crossing
numbers of join product of graphs. Very recently, some results concerning crossing
numbers for join products of graphs were obtained. Using Kleitman’s result [5],
the crossing numbers for join of two paths, join of two cycles, and for join of path
and cycle were studied in [6, 7]. Moreover, the exact values for crossing numbers
of G+ nK1 and G+ Pn for all graphs G of order at most four were given in [8].
The crossing numbers of the graphs G + nK1 and G + Pn were also known for
very few graphs G of order five and six, see [9, 10].

The crossing numbers of the Cartesian product of the graph P (3, 1) with Pn

were determined in [11]. In this contribution, we determine the crossing numbers
for the join of the graph P (3, 1) with nK1 in Section 3. This result enables us, in
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Section 4 and 5, to give the crossing numbers of P (3, 1) + Pn and P (3, 1) + Cn.
In the paper, some proofs are based on Kleitman’s result on crossing numbers of
complete bipartite graphs [5]. More precisely, he proved that if m ≤ 6, then

cr(Km,n) = Z(m,n),

where Z(m,n) =
⌊

m
2

⌋ ⌊

m−1

2

⌋ ⌊

n
2

⌋ ⌊

n−1

2

⌋

.

The following formulas, which can be shown easily, are usually used in the
proofs of our results.

(1.1) crD(A ∪B) = crD(A) + crD(B) + crD(A,B),

(1.2) crD(A,B ∪ C) = crD(A,B) + crD(A,C),

where A,B and C are mutually disjoint subsets of E.

2. Some Definitions and Lemmas

The graph P (3, 1) consists of two 3-cycles, denoted by C ′

3
, C ′′

3
, respectively, and of

three independent edges joining the cycles C ′

3
and C ′′

3
. The graph P (3, 1) + nK1

in Figure 1 consists of one copy of the graph P (3, 1) and n vertices z1, z2, . . . , zn,
where every vertex zi is adjacent to every vertex of P (3, 1). Let for i = 1, 2, . . . , n,
E(zi) denote the subgraph induced by six edges incident with the vertex zi. For
convenience, we shall call the edges of C ′

3
and C ′′

3
blue, the edges joining the

cycles C ′

3
and C ′′

3
red, and the edges of E(zi), i = 1, 2, . . . , n, black.

For the simpler labelling, let Hn denote the graph P (3, 1)+nK1 in this paper.
In Figure 1 one can easily see that

(2.1) P (3, 1) + nK1 = Hn = P (3, 1) ∪K6,n = P (3, 1) ∪

(

n
⋃

i=1

E(zi)

)

.

Figure 1. The drawing of the graph P (3, 1) + nK1.

Lemma 1. Let D be an optimal drawing of the graph P (3, 1) + nK1, then the

following properties are satisfied.
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(1) Red edges do not cross each other in D;

(2) Blue edges do not cross each other in D.

Proof. (1) If there are two red edges which cross each other, as shown in Fig-
ure 2(a), then such a crossing can be removed without introducing additional
crossings into the drawing D, see Figure 2(b). It is not difficult to show that the
modified drawing is still a good drawing of P (3, 1) + nK1, which contradicts our
assumption of the drawing D.

(a) (b)

Figure 2. Removing the crossings between red edges.

(2) As in any good drawing the edges of a 3-cycle are pairwise non-crossing,
it remains to show that the edges of C ′

3
and C ′′

3
do not cross each other. We will

prove it by using reduction to absurdity. One can easily verify that all the possible
subdrawings of C ′

3
∪C ′′

3
are illustrated in Figure 3, if the edges of C ′

3
and C ′′

3
cross

each other in D. And the three red edges can only be the following six cases:
(14)(26)(35), (14)(25)(36), (15)(24)(36), (15)(26)(34), (16)(24)(35), (16)(25)(34).

D1 D2

D5D4

1

3 2

4

6 5

1

23

4

56

1

23

4

56

1

23

4

56

D3

1

23
4

56

Figure 3. The possible subdrawings of C ′

3
∪ C ′′

3
, if crD(C ′

3
, C ′′

3
) 6= 0.

If the three red edges are (14)(26)(35), one can modify the subdrawing Di,
i = 1, 2, . . . , 5, to obtain a new drawing, as is shown in Figure 4(a), Figure 5(a),
Figure 6(a), Figure 7(c) and Figure 8(b), respectively.

If the three red edges are (14)(25)(36), one can modify the subdrawing Di,
i = 1, 2, . . . , 5, to obtain a new drawing, as is shown in Figure 4(b), Figure 5(d),
Figure 6(b), Figure 7(b) and Figure 8(a), respectively.
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If the three red edges are (15)(24)(36), one can modify the subdrawing Di,
i = 1, 2, . . . , 5, to obtain a new drawing, as is shown in Figure 4(a), Figure 5(c),
Figure 6(a), Figure 7(a) and Figure 8(b), respectively.

If the three red edges are (15)(26)(34), one can modify the subdrawing Di,
i = 1, 2, . . . , 5, to obtain a new drawing, as is shown in Figure 4(b), Figure 5(b),
Figure 6(c), Figure 7(b) and Figure 8(c), respectively.

If the three red edges are (16)(24)(35), one can modify the subdrawing Di,
i = 1, 2, . . . , 5, to obtain a new drawing, as is shown in Figure 4(c), Figure 5(b),
Figure 6(b), Figure 7(d) and Figure 8(c), respectively.

If the three red edges are (16)(25)(34), one can modify the subdrawing Di,
i = 1, 2, . . . , 5, to obtain a new drawing, as is shown in Figure 4(d), Figure 5(a),
Figure 6(d), Figure 7(c) and Figure 8(d), respectively.

It is not difficult to show that these subdrawings which are modified as above
ways are still good drawings of P (3, 1), and the crossings are reduced at least one,
which contradicts the optimality of D.

(a) (b)

(c) (d)
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6 5
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6 5
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Figure 4. Removing the crossings between blue edges.
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Figure 5. Removing the crossings between blue edges.
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Figure 6. Removing the crossings between blue edges.
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Figure 7. Removing the crossings between blue edges.
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Figure 8. Removing the crossings between blue edges.
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Remark 2. It is easily seen that the conclusion of Lemma 1 also applies to the
graphs P (3, 1) + Pn and P (3, 1) + Cn.

Lemma 3. Let D be an optimal drawing of the graph P (3, 1) + nK1. Then all

the possible subdrawings of P (3, 1) induced by D are that shown in Figure 9.

Proof. By Lemma 1, it is not difficult to show that the claim follows, and the
details are left to the reader.

D1 D2 D3 D4

Figure 9. The possible subdrawings of P (3, 1) in the optimal drawing P (3, 1) + nK1.

Remark 4. It is easily seen that the conclusion of Lemma 3 also applies to the
graph P (3, 1) + Pn and P (3, 1) + Cn.

Lemma 5. cr(P (3, 1) +K1) = 2.

Proof. A suitable subdrawing of P (3, 1) + K1 induced from the drawing of
P (3, 1) + nK1 in Figure 1 shows that its crossing number is at most 2. To
prove the reverse inequality we assume that there is a drawing of the graph
P (3, 1) +K1 with fewer than two crossings and let D be such a drawing. As the
graph P (3, 1) + K1 contains a subdivision of the complete bipartite graph K3,3

with cr(K3,3) = 1, and therefore the drawing D contains exactly one crossing.
By Lemma 1, the red edges do not cross each other in D, that is to say, one
of blue or black edge must be crossed. There is a contradiction since removing
any blue or black edge of the graph P (3, 1) +K1 results in a graph containing a
subdivision of K3,3.

Lemma 6. cr(P (3, 1) + 2K1) = 4.

Proof. A suitable subdrawing of P (3, 1) + 2K1 induced from the drawing of
P (3, 1) + nK1 in Figure 1 shows that its crossing number is at most 4. Assume
now that there is a drawing D of the graph P (3, 1) + 2K1 with fewer than four
crossings. By Lemma 1, the red edges do not cross each other in any optimal
drawing of P (3, 1)+ 2K1, and hence, crD(P (3, 1)+ 2K1) = 3 since removing any
blue or black edge of the graph P (3, 1) + 2K1 results in a graph containing a
subdivision of K3,4 with cr(K3,4) = 2.
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We claim that at least one of the three crossings in D does not appear on
black edges, since deleting any three black edges from the graph P (3, 1) + 2K1

results in a graph containing K3,3 as a subgraph. Thus, crD(P (3, 1)) ≥ 1 and by
Lemma 3, the subdrawing of P (3, 1) must be drawn as one of D1, D2 and D4 in
Figure 9. It is not difficult to find that the blue edges cross the red edges at least
once, and the black edges must be crossed at least once. However, one can easily
verify that the deleting of any two edges which one is blue and other one is black
from the graph P (3, 1) + 2K1 results in a graph containing K3,4 as a subgraph,
a contradiction.

Lemma 7. Let D be a good drawing of the graph P (3, 1)+nK1 in which for some

i ∈ {1, 2, . . . , n}, and for all j = 1, 2, . . . , n, j 6= i, crD(P (3, 1)∪E(zi), E(zj)) ≥ 5.
If crD(P (3, 1)∪E(zi), E(zj)) > 5 for k different subgraphs E(zj), then crD(P (3, 1)
+ nK1) ≥ Z(6, n) + 2n+ k.

Proof. Without loss of generality, assume that the edges of P (3, 1) ∪ E(z1)
are crossed in D at least five times by the edges of every subgraph E(zj),
j = 2, 3, . . . , n, and that k of the subgraphs E(zj) cross the edges of P (3, 1)∪E(z1)
more than five times. As Hn = K6,n−1 ∪ P (3, 1) ∪ E(z1) and P (3, 1) ∪ E(z1) =
P (3, 1) +K1, by (1.1) (1.2) and Lemma 5, we have

crD(Hn) = crD





n
⋃

j=2

E(zj)



+ crD(P (3, 1) ∪ E(z1))

+
n
∑

j=2

crD (E(zj), P (3, 1) ∪ E(z1))

≥ Z(6, n− 1) + 2 + 5(n− 1) + k ≥ Z(6, n) + 2n+ k,

as desired.

The proofs of the main results in Section 5 are based on the next lemma
which was proved in [6].

Lemma 8. Let D be a good drawing of mK1 + Cn, m ≥ 2, n ≥ 3, in which no

edge of Cn is crossed, and Cn does not separate the other vertices of the graph.

Then, for all zi, zj ∈ V (mK1), zi 6= zj, two subgraphs E(zi) and E(zj) cross each
other in D at least

⌊

n
2

⌋ ⌊

n−1

2

⌋

times.

3. The Crossing Numbers of P (3, 1) + nK1

Theorem 9. cr(P (3, 1) + nK1) = Z(6, n) + 2n.
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Proof. The drawing in Figure 1 shows that cr(P (3, 1)+nK1) ≤ Z(6, n)+2n and
that the theorem is true if the equality holds. We prove the reverse inequality by
induction on n. By Lemmas 5 and 6, the theorem is true for n = 1, 2. Suppose
now that for n ≥ 3

(3.1) cr(Hn−2) ≥ Z(6, n− 2) + 2(n− 2),

and consider such an optimal drawing D of Hn that

(3.2) crD(Hn) ≤ Z(6, n) + 2n− 1.

The following claim is critical.

Claim 10. crD(E(zi), E(zj)) ≥ 1 for all i, j = 1, 2, . . . , n, i 6= j.

Proof. Assume that there are at least two different subgraphs E(zi) and E(zj)
that do not cross each other in D. Without loss of generality, let crD(E(z1),
E(z2)) = 0. Let xi, x

′

i, yi, i = 1, 2, 3 denote the number of crossings between the
nine edges of P (3, 1) and E(z1) ∪ E(z2), respectively (see Figure 10). It is clear
that crD(P (3, 1), E(z1) ∪ E(z2)) =

∑

3

i=1
(xi + x′i + yi).

It is not a difficult task to show that there is at least one crossing between
the edges of each 3-cycle and E(z1) ∪ E(z2). Thus, it follows that

x1 + x2 + x3 ≥ 1,

x′1 + x′2 + x′3 ≥ 1.

By implication,

(3.3)

3
∑

i=1

(

xi + x′i
)

= 2 + α,

where α ≥ 0.
On the other hand, it is not a difficult task to show that there are at least two

crossings between the edges of each 4-cycle and E(z1) ∪ E(z2). Thus, it follows
that

x1 + x′1 + y1 + y2 ≥ 2,

x2 + x′2 + y2 + y3 ≥ 2,

x3 + x′3 + y1 + y3 ≥ 2.

By implication,

(3.4)
3
∑

i=1

(

xi + x′i
)

+ 2
3
∑

i=1

yi = 6 + β,

where β ≥ 0.
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Therefore, by combining (3.3) and (3.4), we have

3
∑

i=1

(

xi + x′i + yi
)

= 4 +
1

2
(α+ β) ≥ 4,

which implies that crD(P (3, 1), E(z1) ∪ E(z2)) ≥ 4.

For 3 ≤ i ≤ n, E(z1) ∪ E(z2) ∪ E(zi) is isomorphic to K3,6. Hence, by (1.1),
(1.2) and the assumptions we have crD(E(z1) ∪ E(z2), E(zi)) ≥ cr(K3,6) = 6.

Then, by (1.1), (1.2) and (3.1) we have

crD(Hn) = crD(Hn−2) + crD(E(z1) ∪ E(z2)) + crD(P (3, 1), E(z1) ∪ E(z2))

+
n
∑

i=3

crD(E(zi), E(z1) ∪ E(z2))

≥ Z(6, n− 2) + 2(n− 2) + 4 + 6(n− 2) = Z(6, n) + 2n,

which contradicts with (3.2). This proves the claim.

Now we continue with the proof of the theorem. From (1.1) and (1.2) it
follows that

(3.5) crD(Hn) = crD(P (3, 1)) + crD

(

n
⋃

i=1

E(zi)

)

+
n
∑

i=1

crD(P (3, 1), E(zi)).

Since
⋃n

i=1
E(zi) is isomorphic to K6,n, we have crD (

⋃n
i=1

E(zi)) ≥ Z(6, n).
Hence, by (3.2) and (3.5) we get

(3.6) crD(P (3, 1)) +

n
∑

i=1

crD(P (3, 1), E(zi)) ≤ 2n− 1.

Therefore crD(P (3, 1), E(zi)) ≤ 1 for some 1 ≤ i ≤ n. Without loss of generality,
we assume that crD(P (3, 1), E(z1)) ≤ 1 and let F = P (3, 1) ∪ E(z1). There
are two cases to be considered: Case 1. crD(P (3, 1), E(z1)) = 0 and Case 2.
crD(P (3, 1), E(z1)) = 1.

Case 1. crD(P (3, 1), E(z1)) = 0. From crD(P (3, 1), E(z1)) = 0 we can con-
clude that the subdrawing of P (3, 1) induced by D has a region with all vertices
of P (3, 1) on its boundary. From Lemma 3, the subdrawing of P (3, 1) must be
D1 in Figure 9, and F must be drawn as in Figure 11.

If zi for 2 ≤ i ≤ n lies in any region being not marked with ⋆, we can check
that

crD(F,E(zi)) ≥ 5.
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x1x2

x3

y1

x
′

1x
′

2

x
′

3

y2
y3

Figure 10. Marking the numbers of
crossings for the graph P (3, 1).

Figure 11. The subdrawings of F in the
drawing of P (3, 1) + nK1.

If zi for 2 ≤ i ≤ n lies in any region marked with ⋆, we have

crD(P (3, 1), E(zi)) ≥ 4,

since there are four vertices of P (3, 1) which are not on the boundary of the
region marked with ⋆ and the boundary of this region is formed by the edges of
P (3, 1). By Claim 10, it follows that

(3.7) crD(F,E(zi)) = crD(P (3, 1), E(zi)) + crD(E(z1), E(zi)) ≥ 4 + 1 = 5.

Therefore, we know that crD(F,E(zi)) ≥ 5 for all i = 2, . . . , n. From Figure
11, it is known that crD(F ) = 2. Hence, by Lemma 7 we have crD(Hn) ≥
Z(6, n) + 2n, this contradicts our assumption about the drawing D.

Case 2. crD(P (3, 1), E(z1)) = 1. For this case, there exists a region in the
subdrawing of P (3, 1) induced by D such that its boundary contains at least 5
vertices of P (3, 1). By Lemma 3, the subdrawing of P (3, 1) must be drawn as
one of D1 and D2 in Figure 9. For D1, z1 must be placed in the unique region
with all vertices of P (3, 1) on its boundary. However, one can easily verify that,
in this case, the edges of E(z1) cross the edges of P (3, 1) at least two times or
0 times. Hence, the subdrawing of P (3, 1) induced by D must be D2, and the
graph F must be drawn as D′

2
or D′′

2
in Figure 12. From now on, we make the

following assumption on the subindex i, 2 ≤ i ≤ n, in the rest of this Section.

We first consider D′

2
. If zi lies in any region which is not marked with ⋆,

one can prove that

crD(F,E(zi)) ≥ 6.

If zi lies in any region marked with ⋆, we have

crD(P (3, 1), E(zi)) ≥ 3,
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D
′

2 D
′′

2

Figure 12. The possible subdrawings of F in the drawing of P (3, 1) + nK1.

since there are at least three vertices of P (3, 1) which are not on the boundary
of the region marked with ⋆ and the boundary of this region is formed by the
edges of P (3, 1). By Claim 10, it follows that

(3.8) crD(F,E(zi)) = crD(P (3, 1), E(zi)) + crD(E(z1), E(zi)) ≥ 3 + 1 = 4.

Let l1 be the number of vertices zi which lies in the region marked with ⋆.
Hence,

(3.9)
n
∑

i=1

crD(P (3, 1), E(zi)) ≥ 3l1 + (n− l1),

since crD(P (3, 1), E(zi)) ≥ 1 for 1 ≤ i ≤ n. Thus, from (3.6) and crD(P (3, 1)) =
1, it follows that l1 ≤

⌊

n−2

2

⌋

. The similar calculating as in the proof of Lemma 7
gives the following formula.

crD(Hn) = crD

(

n
⋃

i=2

E(zi)

)

+ crD(F ) +
n
∑

i=2

crD(E(zi), F )

≥ Z(6, n− 1) + 2 + 4l1 + 6(n− 1− l1) = Z(6, n− 1) + 6n− 2l1 − 4

≥ Z(6, n− 1) + 6n− 2

⌊

n− 2

2

⌋

− 4 ≥ Z(6, n) + 2n.

This contradiction completes the proof for D′

2
.

Finally, we consider D′′

2
. If zi lies in any region which is not marked with ⋆

and N, one can check that
crD(F,E(zi)) ≥ 6.

If zi lies in any region marked with ⋆, then similarly to the proof of the
claim of (3.8), one can prove that

crD(P (3, 1), E(zi)) ≥ 3, and crD(F,E(zi)) ≥ 4.

If zi lies in any region marked with N, one can show that

crD(F,E(zi)) ≥ 5.
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Moreover, it is easy to see that if crD(F,E(zi)) = 5, then the edges of E(zi) cross
the edges of P (3, 1) exactly once or three times.

Let k1 be the number of vertices zi which lies in the region marked with ⋆

and in the region marked with N for which the edges of E(zi) cross the edges of
P (3, 1) exactly three times. Let k2 be the number of vertices zi which lies in the
region marked with N for which crD(F,E(zi)) = 5 and the edges of E(zi) cross
the edges of P (3, 1) exactly once. Our next analysis depends on whether k2 = 0
or not.

If k2 = 0, then the similar calculating as in the proof of the case for D′

2

results in a contradiction again, and the details are omited.
If k2 ≥ 1, then without loss of generality, assume that z2 lies in the region

marked with N for which crD(F,E(z2)) = 5 and the edges of E(z2) cross the edges
of P (3, 1) exactly once. For the case, the unique subdrawing of P (3, 1)∪E(z1)∪
E(z2) is shown in Figure 13. For simpler labelling, letW = P (3, 1)∪E(z1)∪E(z2).
If zi lies in any region which is not marked with ⋆ and N, one can verify that

crD(W,E(zi)) ≥ 11.

If zi lies in any region marked with ⋆, then the similar discussion as in the
proof of (3.8) gives that

crD(P (3, 1), E(zi)) ≥ 3, and crD(W,E(zi)) ≥ 5.

If zi lies in any region marked with N, one can show that

crD(W,E(zi)) ≥ 9.

Moreover, it is easy to check that if crD(W,E(zi)) = 9, then the edges of E(zi)
cross the edges of P (3, 1) at least three times, otherwise crD(W,E(zi)) ≥ 11.

Let h1 be the number of vertices zi which lies in the region marked with ⋆.
Let h2 be the number of vertices zi which lies in the region marked with N

and crD(W,E(zi)) = 9. Note also that crD(P (3, 1), E(zi)) = 1, i = 1, 2 and
crD(P (3, 1)) = 1; similarly to the proof of (3.9), we obtain that h1+h2 ≤

⌊

n−2

2

⌋

.

Thus, using similar arguments as in the proof of Lemma 7 and noting that crD(W )
= 7, we can also get the following formula

crD(Hn) = crD

(

n
⋃

i=3

E(zi)

)

+ crD(W ) +
n
∑

i=3

crD(E(zi),W )

≥ Z(6, n− 2) + 7 + 5h1 + 9h2 + 11(n− 2− h1 − h2)

= Z(6, n− 2) + 11n− 6h1 − 2h2 − 15

≥ Z(6, n− 2) + 11n− 6

⌊

n− 2

2

⌋

− 15 > Z(6, n) + 2n.

This contradiction completes the proof.
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Figure 13. The subdrawings of W in the drawing of P (3, 1) + nK1.

4. The Crossing Numbers of P (3, 1) + Pn

The graph P (3, 1)+Pn contains P (3, 1)+nK1 as a subgraph. For the subgraphs
of the graph P (3, 1) + Pn which are also subgraphs of the graph P (3, 1) + nK1,
we will use the same notation as before. Let P ∗

n denote the path on n vertices of
P (3, 1) + Pn not belonging to the subgraph P (3, 1). One can easily see that

(4.1) P (3, 1) + Pn = P (3, 1) ∪K6,n ∪ P ∗

n = P (3, 1) ∪

(

n
⋃

i=1

E(zi)

)

∪ P ∗

n .

The graph P (3, 1) + P1 is isomorphic to P (3, 1) +K1 and cr(P (3, 1) +K1) = 2.
For n ≥ 2 we have the next result.

Theorem 11. cr(P (3, 1) + Pn) = Z(6, n) + 2n+ 1, for n ≥ 2.

Proof. Figure 1 shows the drawing of the graph P (3, 1)+nK1 with Z(6, n)+2n
crossings. One can easily see that in this drawing it is possible to add n−1 edges
which form the path P ∗

n on the vertices of nK1 in such a way that only one edge
of P ∗

n is crossed by an edge of P (3, 1). Hence, cr(P (3, 1)+Pn) ≤ Z(6, n)+2n+1.
To prove the reverse inequality we assume that there is an optimal drawing of the
graph P (3, 1) + Pn with fewer than Z(6, n) + 2n+ 1 crossings and let D be such
a drawing. Since the graph P (3, 1) + Pn contains P (3, 1) + nK1 as a subgraph,
by Theorem 9, cr(P (3, 1)+Pn) = Z(6, n)+2n and therefore, no edge of the path
P ∗

n is crossed in D, which implies that all vertices zi, i = 1, 2, . . . , n, are placed
in the same region of the subdrawing of P (3, 1) induced by D.

The similar argument as in the proof of (3.6) gives that

(4.2) crD(P (3, 1)) +

n
∑

i=1

crD(P (3, 1), E(zi)) ≤ 2n.

Therefore crD(P (3, 1), E(zi)) ≤ 2 for some 1 ≤ i ≤ n. Without loss of generality,
we assume that crD(P (3, 1), E(z1)) ≤ 2 and let F = P (3, 1) ∪ E(z1). By the
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similar discussion as in the proof of Theorem 9, the following three cases are
considered.

Case 1. crD(P (3, 1), E(z1)) = 0. One can easily verify that, in this case, in
the subdrawing of P (3, 1) induced by D there are all six vertices of P (3, 1) on the
boundary of one, say unbounded, region and, in D, all vertices zi, i = 1, 2, . . . , n,
are placed in this region. From Remark 4, such unique subdrawing of P (3, 1)
must be D1 in Figure 9, and F is drawn as in Figure 11.

If zi for 2 ≤ i ≤ n lies in the unbounded region of P (3, 1), we can check that

crD(F,E(zi)) ≥ 6.

From Figure 11, it is known that crD(F ) = 2, which, together with Lemma
7, contradicts the assumption.

Case 2. crD(P (3, 1), E(z1)) = 1. By the similar analysis as in Case 2 of
Section 3, we can know that the subdrawing of P (3, 1) induced by D must be D2

in Figure 9, and the graph F must be drawn as one of D′

2
and D′′

2
in Figure 12.

Moreover, all vertices zi, i = 2, 3, . . . , n, are placed in the same region of D2 as
the vertex z1.

For D′

2
, it is not difficult to verify that

crD(F,E(zi)) ≥ 6,

for 2 ≤ i ≤ n, if zi lies in the same region of D2 as the vertex z1. Note also that
crD(F ) = 2, and the same contradiction can be obtained as in the above case.

For D′′

2
, One can easily verify that

crD(F,E(zi)) ≥ 5,

for 2 ≤ i ≤ n, if zi lies in the same region of D2 as the vertex z1. Note that
crD(F ) = 2, and it follows from Lemma 7 that crD(P (3, 1)+Pn) ≥ Z(6, n− 1)+
2 + 5(n− 1) > Z(6, n) + 2n for even n, a contradiction.

For odd n, it follows that crD(F,E(zi)) = 5 for 2 ≤ i ≤ n, from Lemma 7.
In addition, it is easy to see that if crD(F,E(zi)) = 5, then the edges of E(zi)
cross the edges of P (3, 1) exactly once or three times. Moreover, if crD(E(zi),
P (3, 1)) = 1, then crD(E(zi), E(z1)) = 4, and if crD(E(zi), P (3, 1)) = 3, then
crD(E(zi), E(z1)) = 2, for 2 ≤ i ≤ n. Let α1 be the number of vertices zi, 2 ≤ i ≤
n, with crD(E(zi), P (3, 1)) = 1 and crD(E(zi), E(z1)) = 4. Let α2 be the number
of vertices zi, 2 ≤ i ≤ n, with crD(E(zi), P (3, 1)) = 3 and crD(E(zi), E(z1)) = 2.

Using the fact that crD(E(z1), P (3, 1)) = 1 and crD(P (3, 1)) = 1, together
with (4.2) we have

α1 + 3α2 + 2 ≤ 2n,
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which implies that α1 6= 0. Assume, without loss of generality, that crD(E(z2),
P (3, 1)) = 1 and crD(E(z2), E(z1)) = 4. For this case, the unique subdrawing
of P (3, 1) ∪ E(z1) ∪ E(z2) is shown in Figure 13. To simplify the notation, let
W = P (3, 1) ∪ E(z1) ∪ E(z2).

For 3 ≤ i ≤ n, if zi lies in the unique region of D2 with five vertices of P (3, 1)
on its boundary as the vertices z1 and z2, one can easily verify that

crD(W,E(zi)) ≥ 9.

Note that crD(W ) = 7, it follows that

crD(P (3, 1) + Pn) = crD

(

n
⋃

i=3

E(zi)

)

+ crD(W ) +
n
∑

i=3

crD (E(zi),W )

≥ Z(6, n− 2) + 7 + 9(n− 2) > Z(6, n) + 2n,

a contradiction again.

Case 3. crD(P (3, 1), E(z1)) = 2. For this case, by (4.2), crD(P (3, 1), E(zi)) =
2 for all i = 2, 3, . . . , n and crD(P (3, 1)) = 0. Up to the isomorphism, there is
unique possible subdrawings of P (3, 1) induced by D as D3 shown in Figure 9.
Consider the symmetry of the drawing of D3, suppose that all vertices zi, 1 ≤
i ≤ n, are placed in some one of three regions with four vertices of P (3, 1) on its
boundary. The edges of E(zi) divide this region as shown in Figure 14(a) or (b).
One can easily verify that crD(E(zj), E(zi)) ≥ 3, for all i, j = 1, 2, . . . , n, j 6= i, if
the vertex zj is placed in the same region of D3 as the vertex zi. Thus, in D there
are at least 3

(

n
2

)

+2n > Z(6, n)+2n crossings, which contradicts the assumption.
This completes the proof.

(a) (b)

zi zi

Figure 14. The possible placements of E(zi) inside the region with four vertices of P (3, 1)
on its boundary.

5. The Crossing Numbers of P (3, 1) + Cn

The graph P (3, 1)+Cn contains both P (3, 1)+nK1 and P (3, 1)+Pn as a subgraph.
Let C∗

n denote the subgraph of P (3, 1)+Cn induced on the vertices not belonging
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to the subgraph P (3, 1). For i = 1, 2, . . . , 6, let ai denote the six vertices of
P (3, 1), and E(ai) denote the subgraph induced by n edges of K6,n incident with
the vertex ai, respectively. One can easily see that

(5.1) P (3, 1) + Cn = P (3, 1) ∪K6,n ∪ C∗

n = P (3, 1) ∪

(

n
⋃

i=1

E(zi)

)

∪ C∗

n.

On the other hand, the graph P (3, 1) + Cn contains the graph 6K1 + C∗

n as a
subgraph and

(5.2) P (3, 1) + Cn = P (3, 1) ∪

(

6
⋃

i=1

E(ai)

)

∪ C∗

n.

Theorem 12. cr(P (3, 1) + Cn) = Z(6, n) + 2n+ 3, for n ≥ 3.

Proof. In the drawing in Figure 1 it is possible to add n edges in such a way that
they, together with the vertices of nK1, form the cycle C∗

n and that the edges
of C∗

n are crossed only three times. Hence, cr(P (3, 1) + Cn) ≤ Z(6, n) + 2n + 3.
To prove the reverse inequality, assume that there is an optimal drawing of the
graph P (3, 1) + Cn with at most Z(6, n) + 2n+ 2 crossings and let D be such a
drawing. Since the graph P (3, 1) + Cn contains P (3, 1) + Pn as a subgraph, by
Theorem 11, crD(P (3, 1) + Cn) = Z(6, n) + 2n + 1 or Z(6, n) + 2n + 2, and by
Theorem 9, in D there are at most two crossings on the edges of C∗

n, otherwise
deleting the edges from C∗

n results in an drawing of the graph P (3, 1)+nK1 fewer
than Z(6, n) + 2n crossings.

We claim that the edges of C∗

n do not cross each other, otherwise one can
modify the drawing in a sufficiently small neighborhood of the crossing point
resulting in a new good drawing of P (3, 1) + Cn as shown in Figure 15, and
the crossings are reduced at least one. As P (3, 1) is a 3-connected graph, all
vertices of P (3, 1) are placed in the same region in the view of the subdrawing
of C∗

n induced by D, otherwise in D there are at least three crossings on the
edges of C∗

n. The edges of C∗

n are not crossed by the edges of P (3, 1), otherwise
crD(C

∗

n, P (3, 1)) ≥ 2 and crD(E(ai), C
∗

n) = 0 for all i = 1, 2, . . . , 6, and then, it
follows from Lemma 8 that inD there are at least

(

6

2

) ⌊

n
2

⌋ ⌊

n−1

2

⌋

> Z(6, n)+2n+2
crossings. This implies that all vertices zi, i = 1, 2, . . . , n, are placed in the same
region in the view of the subdrawing of P (3, 1) induced by D.

We conclude that the edges of C∗

n are crossed at least once in D, otherwise it
follows from Lemma 8 that inD there are at least

(

6

2

) ⌊

n
2

⌋ ⌊

n−1

2

⌋

> Z(6, n)+2n+2
crossings, a contradiction.
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Figure 15. Removing the self-crossings on the edges C∗

n.

Claim 13.

crD(P (3, 1)) +
6
∑

i=1

crD(P (3, 1), E(ai)) = crD(P (3, 1)) +
n
∑

i=1

crD(P (3, 1), E(zi))

≥ n+ 1.

Proof. From Remark 4, we know that all the possible subdrawings of P (3, 1)
induced by D are that shown in Figure 9. For D3 and D4, it is easily see that
every region has at most four vertices of P (3, 1) on its boundary, which implies
that crD(P (3, 1), E(zi)) ≥ 2, for all i = 1, 2, . . . , n, and the claim follows. For
D2, one can easily see that every region has at most five vertices of P (3, 1) on its
boundary, which implies that crD(P (3, 1), E(zi)) ≥ 1, for all i = 1, 2, . . . , n. Note
that crD(P (3, 1)) = 1, the claim holds. For D1, there is a region, say unbounded,
with all vertices of P (3, 1) on its boundary, and other regions, say bounded, have
at most two vertices of P (3, 1) on its boundary. If all vertices zi, i = 1, 2, . . . , n,
are placed in some bounded region, then the claim holds. Suppose now that all
vertices zi, i = 1, 2, . . . , n, are placed in this unbounded region, and there is at
least one subgraph E(zi) which does not cross P (3, 1) in D. Note that the edges
of C∗

n are crossed at least once. By the similar analysis as in Case 1 of Section 4,
a contradiction appears. This completes the proof of claim.

Suppose now that in D the edges of C∗

n are crossed exactly once. Without
loss of generality, let crD(E(a1), C

∗

n) = 1. The simple modification of Lemma 8
for this case implies that crD(E(a1), E(ai)) ≥

⌊

n−1

2

⌋ ⌊

n−2

2

⌋

for i = 2, 3, . . . , 6.
And, for i, j = 2, 3, . . . , 6, i 6= j, crD(E(ai), E(aj)) ≥

⌊

n
2

⌋ ⌊

n−1

2

⌋

by Lemma 8.
Thus, by (5.2) and Claim 13, we have

crD(P (3, 1) + Cn) = crD(P (3, 1)) +
6
∑

i=1

crD(P (3, 1), E(ai)) + crD

(

6
⋃

i=1

E(ai)

)

+ crD

(

P (3, 1) ∪
6
⋃

i=1

E(ai), C
∗

n

)

≥ n+ 1 +

(

5

2

)

⌊n

2

⌋

⌊

n− 1

2

⌋

+ 5

⌊

n− 1

2

⌋⌊

n− 2

2

⌋

+ 1 > Z(6, n) + 2n+ 2,

a contradiction.
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Finally, assume that in D the edges of C∗

n are crossed exactly two times.
From (1.1), (1.2) and (5.1), it follows that

(5.3) crD(P (3, 1)) +
n
∑

i=1

crD(P (3, 1), E(zi)) ≤ 2n.

For the case, the similar discussion as in the proof of Theorem 11 gives a
contradiction again, and the details are omitted. This completes the proof.
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[8] M. Klešč and S. Schrötter, The crossing numbers of join products of paths with

graphs of order four , Discuss. Math. Graph Theory 31 (2011) 321–331.
doi:10.7151/dmgt.1548
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