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Abstract

A path in a vertex-colored graph is called vertex-rainbow if its internal
vertices have pairwise distinct colors. A vertex-colored graph G is rainbow

vertex-connected if for any two distinct vertices of G, there is a vertex-
rainbow path connecting them. For a connected graphG, the rainbow vertex-

connection number of G, denoted by rvc(G), is defined as the minimum
number of colors that are required to make G rainbow vertex-connected. In
this paper, we find all the families F of connected graphs with |F| ∈ {1, 2},
for which there is a constant kF such that, for every connected F-free graph
G, rvc(G) ≤ diam(G) + kF , where diam(G) is the diameter of G.

Keywords: vertex-rainbow path, rainbow vertex-connection, forbidden sub-
graphs.
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1. Introduction

All graphs considered in this paper are simple, finite, and undirected. We follow
the terminology and notation of Bondy and Murty in [2] for those not defined
here.

1Corresponding author.
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Let G be a nontrivial connected graph with an edge-coloring c : E(G) →
{0, 1, . . . , t}, t ∈ N, where adjacent edges may be colored with the same color.
A path in G is called a rainbow path if no two edges of the path are colored
with the same color. The graph G is called rainbow connected if for any two
distinct vertices of G, there is a rainbow path connecting them. For a connected
edge-colored graph G, the rainbow connection number of G, denoted by rc(G),
is defined as the minimum number of colors that are needed to make G rainbow
connected. Observe that if G has n vertices, then diam(G) ≤ rc(G) ≤ n − 1.
It is easy to verify that rc(G) = 1 if and only if G is a complete graph, and
rc(G) = n − 1 if and only if G is a tree. The concept of rainbow connection of
graphs was first introduced by Chartrand et al. in [3], and has been well-studied
since then. For further details, we refer the reader to a survey paper [10] and a
book [11].

Let G be a nontrivial connected graph with a vertex-coloring c : V (G) →
{0, 1, . . . , t}, t ∈ N, where adjacent vertices may be colored with the same color.
A path of G is called vertex-rainbow if any two internal vertices of the path
have distinct colors. The vertex-colored graph G is rainbow vertex-connected if
any two vertices of G are connected by a vertex-rainbow path. For a connected
graph G, the rainbow vertex-connection number of G, denoted by rvc(G), is the
minimum number of colors used in a vertex-coloring of G to make G rainbow
vertex-connected. The concept of rainbow vertex-connection of graphs was pro-
posed by Krivelevich and Yuster in [6]. They showed that if G is a connected
graph with n vertices and minimum degree δ, then rvc(G) ≤ 11n/δ. In [9], Li
and Shi improved this bound. In [4], it was shown that computing the rainbow
vertex-connection number of a graph is NP-hard. Recently, Li et al. in [7] proved
that it is NP-complete to decide whether a given vertex-colored graph is rainbow
vertex-connected even when the graph is bipartite.

For the rainbow vertex-connection number of graphs, the following observa-
tions are immediate.

Proposition 1. Let G be a connected graph with n vertices. Then

(i) diam(G)− 1 ≤ rvc(G) ≤ n− 2;

(ii) rvc(G) = diam(G) − 1 if diam(G) = 1 or 2, with the assumption that

complete graphs have rainbow vertex-connection number 0.

Note that the difference rvc(G)−diam(G) can be arbitrarily large. In fact, if
G is a subdivision of a star K1,n, then we have rvc(G)−diam(G) = (n+1)−4 =
n − 3, since in a rainbow vertex-connected coloring of G, the internal vertices
must have distinct colors.

In [8], Li and Liu studied the rainbow vertex-connection number for any
2-connected graph, and determined the precise value of the rainbow vertex-
connection number of the cycle Cn (n ≥ 3).
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Theorem 1 [8]. Let Cn be a cycle of order n (n ≥ 3). Then

rvc(Cn) =







0 if n = 3;
1 if n = 4, 5;
3 if n = 9;
⌈n2 ⌉ − 1 if n = 6, 7, 8, 10, 11, 12, 13 or 15;
⌈n2 ⌉ if n ≥ 16 or n = 14.

Let F be a family of connected graphs. We say that a graph G is F-free

if G does not contain any induced subgraph isomorphic to a graph from F .
Specifically, for F = {X} we say that G is X-free, and for F = {X,Y } we say
that G is (X,Y )-free. The members of F will be referred to in this context as
forbidden induced subgraphs, and for |F| = 2 we also say that F is a forbidden

pair.
In [5], Holub et al. considered the question: For which families F of connected

graphs, a connected F-free graph G satisfies rc(G) ≤ diam(G)+ kF , where kF is
a constant (depending on F)? They gave a complete answer for |F| ∈ {1, 2} in
the following two results (where N denotes the net, a graph obtained by attaching
a pendant edge to each vertex of a triangle).

Theorem 2 [5]. Let X be a connected graph. Then there is a constant kF such

that every connected X-free graph G satisfies rc(G) ≤ diam(G) + kX if and only

if X = P3.

Theorem 3 [5]. Let X,Y be connected graphs such that X,Y 6= P3. Then

there is a constant kXY such that every connected (X,Y )-free graph G satisfies

rc(G) ≤ diam(G)+kXY if and only if (up to symmetry) either X = K1,r (r ≥ 4)
and Y = P4, or X = K1,3 and Y is an induced subgraph of N .

Naturally, we may consider an analogous question concerning the rainbow
vertex-connection number of graphs. In this paper, we will consider the following
question.

For which families F of connected graphs, there is a constant kF such that a

connected graph G being F-free implies rvc(G) ≤ diam(G) + kF?
We give a complete answer for |F| = 1 in Section 3, and for |F| = 2 in

Section 4.

2. Preliminaries

In this section, we introduce some further notations and facts that will be needed
for the proofs of our main results.

If G is a graph and A ⊂ V (G), then G[A] denotes the subgraph of G induced
by the vertex set A, and G − A the graph G[V (G)\ A]. An edge is called a
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pendant edge if one of its endvertices has degree one. The subdivision of a graph
G is the graph obtained from G by adding a vertex of degree 2 to each edge of G.
For x, y ∈ V (G), a path in G from x to y will be referred to as an (x, y)-path, and,
whenever necessary, it will be considered as oriented from x to y. For a subpath
of a path P with origin u and terminus v (also referred to as a (u, v)-arc of P ),
we will use the notation uPv. If w is a vertex of a path with a fixed orientation,
then w− and w+ denote the predecessor and successor of w, respectively.

For graphs X and G, we write X ⊂ G if X is a subgraph of G, X
IND

⊂ G if
X is an induced subgraph of G, and X ≃ G if X is isomorphic to G. For two
vertices x, y ∈ V (G), we use distG(x, y) to denote the distance between x and
y in G. The diameter of G is defined as the maximum of distG(x, y) among all
pairs of vertices x, y of G, and will be denoted by diam(G). A shortest path
joining two vertices at distance diam(G) will be referred to as a diameter path.
The distance between a vertex u ∈ V (G) and a set S ⊂ V (G) is defined as
distG(u, S) := minv∈S distG(u, v). A set D ⊂ V (G) is called dominating if every
vertex in V (G) \D has a neighbor in D. In addition, if G[D] is connected, then
we call D a connected dominating set. Throughout this paper, N denotes the set
of all positive integers.

For a set S ⊂ V (G) and k ∈ N, the kth-neighborhood of S is the set Nk
G(S)

of all vertices of G at distance k from S. In the special case k = 1, we simply
write NG(S) for N

1
G(S), and if |S| = 1 with x ∈ S, we write NG(x) for NG({x}).

For a set M ⊂ V (G), we denote Nk
M (S) = Nk

G(S)∩M and Nk
M (x) = Nk

G(x)∩M ,
and as above, we simply use NM (S) for N1

M (S) and NM (x) for N1
M (x). For a

subgraph P ⊂ G, we write NP (x) for NV (P )(x). Finally, we will use Pk to denote
the path on k vertices.

We end up this section with an important result that will be used in our
proofs.

Theorem 4 [1]. Let G be a connected P5-free graph. Then G has a dominating

clique or a dominating P3.

3. Families with one Forbidden Subgraph

In this section, we characterize all connected graphs X such that every connected
X-free graph G satisfies rvc(G) ≤ diam(G) + kX , where kX is a constant.

Theorem 5. Let X be a connected graph. Then there is a constant kX such that

every connected X-free graph G satisfies rvc(G) ≤ diam(G) + kX if and only if

X = P3 or X = P4.

Proof. We have diam(G) ≤ 2, since G is P4-free. Then it follows from Proposi-
tion 1 that rvc(G) = diam(G)− 1 ≤ 1.
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Conversely, let t ≥ kX + 5, and Gt
1 be the subdivision of K1,t, and let Gt

2

denote the graph obtained by attaching a pendant edge to each vertex of the
complete graph Kt (see Figure 1). Since rvc(Gt

1) = t + 1 but diam(Gt
1) = 4, X

is an induced subgraph of Gt
1. Clearly, rvc(Gt

2) = t but diam(Gt
2) = 3, and Gt

2

is K1,3-free and P5-free. Hence, X is an induced subgraph of P4.
The proof is thus complete.

...
...

Gt
1

Gt
21

2

t

1

2

t

Figure 1. The graphs Gt
1
and Gt

2
.

4. Families with a Pair of Forbidden Subgraphs

For i, j, k ∈ N, let Si,j,k denote the graph obtained by identifying one end-
vertex from each of three vertex-disjoint paths of lengths i, j, k, and Ni,j,k denote
the graph obtained by identifying each vertex of a triangle with an endvertex of
one of three vertex-disjoint paths of lengths i, j, k (see Figure 2). In this context,
we will also write Kh

t for the graph Gt
2 introduced in the proof of Theorem 5.

Si,j,k Ni,j,k Gt
4

︸ ︷︷ ︸

i vertices

︸ ︷︷ ︸

j vertices

︸ ︷︷ ︸

k vertices

︸ ︷︷ ︸

j vertices

︸ ︷︷ ︸

k vertices

︸ ︷︷ ︸

i vertices

Figure 2. The graphs Si,j,k, Ni,j,k and Gt
4
.

The following statement, which is the main result of this section, characterizes
all forbidden pairs X,Y for which there is a constant kXY such that G being
(X,Y )-free implies rvc(G) ≤ diam(G) + kXY . By virtue of Theorem 5, we
exclude the case that one of X,Y is an induced subgraph of P4. Recall that the
net is the graph N = N1,1,1.

Theorem 6. Let X,Y 6= P3 or P4 be a pair of connected graphs. Then there is

a constant kXY such that every connected (X,Y )-free graph G satisfies rvc(G) ≤
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diam(G) + kXY if and only if (up to symmetry) X = P5 and Y
IND

⊂ Kh
r (r ≥ 4),

or X
IND

⊂ S1,2,2 and Y
IND

⊂ N .

The proof of Theorem 6 will be divided into three separate results: we prove
the necessity in Proposition 2, and Theorems 7 and 8 will establish the sufficiency
of the forbidden pairs given in Theorem 6.

Proposition 2. Let X,Y 6= P3 or P4 be a pair of connected graphs for which

there is a constant kXY such that every connected (X,Y )-free graph G satisfies

rvc(G) ≤ diam(G)+kXY . Then (up to symmetry) X = P5 and Y
IND

⊂ Kh
r (r ≥ 4),

or X
IND

⊂ S1,2,2 and Y
IND

⊂ N .

Proof. Let t ≥ 2kXY + 5, and let (see Figure 2)

• Gt
3 = Nt−1,t−1,t−1;

• Gt
4 be the graph obtained by attaching a pendant edge to each vertex of a

cycle Ct.

We will also use the graphs Gt
1 and Gt

2(= Kh
t ) shown in Figure 1.

For the graphs Gt
1 and Gt

2, we have diam(Gt
1) = 4 but rvc(Gt

1) = t+ 1, and
diam(Gt

2) = 3 but rvc(Gt
2) = t, respectively. For the graph Gt

3, we observe that
diam(Gt

3) = 2t−1 while rvc(Gt
3) = 3(t−1) = 3

2(diam(Gt
3)−1), since all internal

vertices must have mutually distinct colors. Analogously, for the graph Gt
4, we

have diam(Gt
4) =

⌊
t
2

⌋
+ 2, but rvc(Gt

4) = t ≥ 2(diam(Gt
4) − 2). Thus, each of

the graphs Gt
1, G

t
2, G

t
3 and Gt

4 must contain an induced subgraph isomorphic to
one of the graphs X,Y .

Consider the graph Gt
1. Up to symmetry, we have that X is an induced

subgraph of Gt
1 excluding P3 and P4. Now we consider the graph Gt

2. Obviously,

Gt
2 is X-free, since Gt

2 is K1,3-free. Hence, G
t
2 contains Y , implying Y

IND

⊂ Kh
r for

some r ≥ 3 (for r ≤ 2 we get Y
IND

⊂ P4, which is excluded by the assumptions).
Now we consider the graph Gt

3. There are two possibilities.

(i) Y
IND

⊂ Gt
3. Then Y

IND

⊂ N . Now we consider the graph Gt
4. Gt

4 is N -free, so

we get X
IND

⊂ S1,2,2.

(ii) X
IND

⊂ Gt
3. Then X = P5. As the case X = P5 and Y = N is already covered

by case (i), we have that X = P5 and Y
IND

⊂ Kh
r , r ≥ 4.

This completes the proof.

It is easy to observe that if X
IND

⊂ X ′, then every (X,Y )-free graph is also
(X ′, Y )-free. Thus, when proving the sufficiency of Theorem 6, we will be always
interested in maximal pairs of forbidden subgraphs, i.e., pairs X,Y such that, if

replacing one of X,Y , say X, with a graph X ′ 6= X such that X
IND

⊂ X ′, then the
statement under consideration is not true for (X ′, Y )-free graphs.
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Theorem 7. Let G be a connected (P5,K
h
r )-free graph for some r ≥ 4. Then

rvc(G) ≤ diam(G) + r.

Proof. From Theorem 4, we have that G has a dominating clique or a dominat-
ing P3.

Case 1. G has a dominating P3. We color the vertices of P3 with colors 1, 2, 3
and color the remaining vertices arbitrarily (e.g., all of them have color 1). One
can easily check that this vertex-coloring can make G rainbow vertex-connected.
So, in this case, rvc(G) ≤ 3 ≤ diam(G) + r.

Case 2. G has a dominating clique, denoted by Kp. Set W = V (G)\V (Kp),
H = G\E(Kp). Let A be an independent set in G[W ] and B ⊂ V (Kp) such
that H[A ∪ B] = ℓK2 (that is, a matching of order ℓ) and ℓ is maximal. Then
ℓ < r, for otherwise, G[A∪B] contains an induced Kh

r . Moreover, for x ∈ W\A,
NA∪B(x) 6= ∅, since ℓ is maximal. Now we define the following vertex-coloring of
G. Use colors 1, 2, . . . , ℓ to color each vertex in B, color the vertices of A with
color ℓ + 1, the vertices of V (Kp)\B with color ℓ + 2, and color the remaining
vertices arbitrarily (e.g., all of them have color 1). Thus, pairs of vertices in
(A ∪ V (Kp)) × V (G) are rainbow vertex-connected. As for x1, x2 ∈ W\A, let
y1 ∈ NA∪B(x1), y2 ∈ NKp

(x2). Then there is a vertex-rainbow (x1, x2)-path
containing y1 and y2. So, rvc(G) ≤ ℓ+ 2 ≤ r + 1 ≤ diam(G) + r.

The proof is complete.

Now let G be an (S1,2,2, N)-free graph, let x, y ∈ V (G), and let P : x =
v0, v1, . . . , vk = y (k ≥ 3) be a shortest (x, y)-path in G. Let z ∈ V (G)\V (P ). If
|NP (z)| ≥ 2 and {vi, vj} ⊂ NP (z), then |i− j| ≤ 2 and |NP (z)| ≤ 3, since P is a
shortest path. Moreover, the following facts are easily observed.

• If |NP (z)| = 1, then, since G is S1,2,2-free, z is adjacent to x, v1, vk−1 or y.

• If |NP (z)| = 3, then the vertices of NP (z) must be consecutive on P , since
P is a shortest path.

This motivates the following notations:

• Ai := {z ∈ V (G)\V (P )|NP (z) = {vi}} for i = 0, 1, k − 1, k;

• Li := {z ∈ V (G)\V (P )|NP (z) = {vi−1, vi+1}} for 1 ≤ i ≤ k − 1;

• Mi := {z ∈ V (G)\V (P )|NP (z) = {vi−1, vi}} for 1 ≤ i ≤ k;

• Ni := {z ∈ V (G)\V (P )|NP (z) = {vi−1, vi, vi+1}} for 1 ≤ i ≤ k − 1.

We further set S = V (P ) ∪NG(P ) and R = V (G)\S.

Lemma 1. Let G be an (S1,2,2, N)-free graph, let x, y ∈ V (G) be such that

distG(x, y) ≥ 4 and let P : x = v0, v1, . . . , vk = y, be a shortest (x, y)-path in G.

Then

(i) NG(Mi) ⊂ S, i = 2, . . . , k − 1;
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(ii) NG(Ni) ⊂ S, i = 2, . . . , k − 2;

(iii) NG(Li) ⊂ S, i = 1, . . . , k − 1;

(iv) NP (R) = ∅;

(v) NS(R) ⊂ A0 ∪M1 ∪N1 ∪Nk−1 ∪Mk ∪Ak.

Proof. If zv ∈ E(G) for some z ∈ R and v ∈ Mi, 2 ≤ i ≤ k − 1, then we
have G[{vi−2, vi−1, vi, vi+1, v, z}] ≃ N , a contradiction. Hence, (i) follows. To
show (ii), we observe that if zv ∈ E(G) for some z ∈ R and v ∈ Ni, 2 ≤
i ≤ k − 2, then we have G[{vi−2, vi−1, vi+1, vi+2, v, z}] ≃ S1,2,2, a contradic-
tion. Similarly, for (iii), if zv ∈ E(G) for some z ∈ R and v ∈ Li, 1 ≤
i ≤ k − 1, then for i = 1 we have G[{v1, v2, v3, v4, v, z}] ≃ S1,2,2, for 2 ≤
i ≤ k − 2 we have G[{z, v, vi−1, vi−2, vi+1, vi+2}] ≃ S1,2,2, and for i = k − 1,
G[{vk−1, vk−2, vk−3, vk−4, v, z}] ≃ S1,2,2, a contradiction. Part (iv) follows im-
mediately from the definition of R, and by (i) through (iii), we have NS(R) ⊂
A0 ∪A1 ∪M1 ∪N1 ∪Nk−1 ∪Mk ∪Ak−1 ∪Ak. But if zv ∈ E(G) for some z ∈ R
and v ∈ A1, then G[{v0, v1, v2, v3, v, z}] ≃ S1,2,2, a contradiction. Similarly, we
have NAk−1

(R) = ∅, implying (v).
The proof is complete.

Theorem 8. Let G be a connected (S1,2,2, N)-free graph. Then rvc(G) ≤ diam(G)
+ 11.

Proof. Let G be a connected (S1,2,2, N)-free graph. If diam(G) ≤ 2, then rvc(G)
= diam(G)−1. Thus, for the rest of the proof we suppose that diam(G) = d ≥ 3.
Let v0, vd ∈ V (G) be such that distG(v0, vd) = d, let P : v0v1v2 · · · vd be a dia-
meter path in G, and let Ai, Li,Mi, Ni, S,R be defined as above.

We distinguish three cases according to the value of d.

Case 1. d = 3. First, we partition V (G) into four parts P,NG(P ), N2
G(P ) and

N3
G(P ) according to the distance from P . Then, for the vertices in NG(P ), we can

partition them into three parts X1 = A0∪M1∪L1∪N1, X2 = A3∪M3∪L2∪N2

and X3 = A1 ∪M2 ∪A2. We must point out that X1 ∩X2 = ∅ and NR(X3) = ∅,
whose proof is similar to that of Lemma 1. Then we denote Yi the set of vertices in
N2

G(P ) such that for each v ∈ Yi, NN(P )(v) ⊂ Xi, i = 1, 2, and Y3 = N2
G(P )\(Y1∪

Y2). With a similar reason as above, NN3

G
(P )(Y3) = ∅. So, analogously we can

partition N3
G(P ) into three parts Z1, Z2 and Z3. It should be noticed that Z1 = ∅;

otherwise there exists a vertex z ∈ Z1 such that distG(z, v3) ≥ 4, a contradiction.
Symmetrically, we have Z2 = ∅.

Now, we define a vertex-coloring of G that uses at most 14 colors. Color
the vertices of P with colors 0, 1, 2, 3 and color the vertices in A0,M1, L1, N1, N2,
L2,M3, A3, Y1 and Y2 with colors 4, 5, . . . , 13, respectively. Then color the re-
maining vertices arbitrarily (e.g., all of them have color 0). We can show that
this vertex-coloring can make G rainbow vertex-connected. We only need to
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verify that for a pair of vertices x, y ∈ (Y1 × Y1) ∪ (Y2 × Y2), there exists
a vertex-rainbow path connecting them. Without loss of generality, we sup-
pose (x, y) ∈ Y1 × Y1. If distG(x, y) ≤ 2, then there is nothing left to do.
Next we consider the case distG(x, y) ≥ 3. Let x′ be an arbitrary neighbor
of x in X1, and y′ an arbitrary neighbor of y in X1. We claim that x′ and
y′ cannot have the same color. Otherwise, we suppose that x′ and y′ are col-
ored with the same color, i.e., they are in the same vertex-class of X1, and let
i = max{j | vj ∈ NP (x

′)∩NP (y
′)}. Then we have G[{vi, vi+1, x

′, y′, x, y}] ≃ S1,2,2

if x′y′ /∈ E(G), or G[{vi, vi+1, x
′, y′, x, y}] ≃ N if x′y′ ∈ E(G), respectively. So,

the colors of x′ and y′ must be different. Then the (x, y)-path P1 : xx′v0y
′y is

vertex-rainbow. Hence, we have rvc(G) ≤ diam(G) + 11.

Case 2. d = 4. Similarly, with the partition and the vertex-coloring of Case 1,
we can get that rvc(G) ≤ 15 = diam(G) + 11.

Case 3. d ≥ 5. Set Bc =
(
⋃d−2

i=2 Ni

)

∪
(
⋃d−1

i=2 Mi

)

∪
(
⋃d−1

i=1 Li

)

∪A1 ∪Ad−1 ∪

{v1, v2, . . . , vd−1}, X = A0 ∪M1 ∪N1 ∪Nd−1 ∪Md ∪Ad, X1 = A0 ∪M1 ∪N1, and
X2 = Nd−1 ∪Md ∪Ad. By virtue of Lemma 1, we have NG(Bc) ⊂ S.

Subcase 3.1. Bc is a cut-set of G. We claim that S∪NG(S) = V (G). Suppose,
to the contrary, that z ∈ R is at distance 2 from S. Then, by Lemma 1 and the
assumption of Case 1, as well as the symmetry, we can assume that N2

S(z) ⊂ X1.
LetQ be a shortest (z, vd)-path, let w be the first vertex ofQ in Bc (it exists by the
assumption of Subcase 3.1), and let w− be the predecessor of w on Q. By Lemma
1, dist(w−, P ) = 1, implying w− ∈ X1. Then distG(w

−, vd) ≥ d − 1; otherwise,
the path v0w

−Qvd is a (v0, vd)-path shorter than P . Since distG(z, w
−) ≥ 2,

we have distG(z, vd) ≥ d + 1, contradicting diam(G) = d. Hence, we have
S ∪ NG(S) = V (G). Moreover, with a similar argument to that of Case 1, we
have that for x, y ∈ R with distance at least 3, their neighbors x′ and y′ cannot
be in the same vertex-class of X.

Now we define a vertex-coloring of G that uses at most d + 7 colors. Color
the vertices of P with colors 0, 1, . . . , d and color the vertices in A0,M1, N1, Nd−1,
Md and Ad with colors d + 1, d + 2, . . . , d + 6, respectively. Then color the
remaining vertices arbitrarily (e.g., all of them have color 0). We can show
that this vertex-coloring can make G rainbow vertex-connected. For any pair of
vertices in S×(S∪R), we can easily find a vertex-rainbow path connecting them.
For a pair (x, y) ∈ R × R, if distG(x, y) ≤ 2, then there is nothing left to do.
Next we consider distG(x, y) ≥ 3. From above, we know that their neighbors x′

and y′ in X are colored differently. So, the (x, y)-path containing x′ and y′ is
vertex-rainbow. Consequently, we have rvc(G) ≤ diam(G) + 7.

Subcase 3.2. Bc is not a cut-set of G. Set H = G − Bc. Let P ′ : vdvd+1 · · ·
vd+ℓ−1vd+ℓ = v0 be a shortest (vd, v0)-path in H. Since P is a diameter path,
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ℓ ≥ d ≥ 5. If vd+1 is adjacent to vd−2, then G[{vd, vd+1, vd−2, vd−3, vd+2, vd+3}] ≃
S1,2,2, a contradiction. So, vd+1 ∈ Ad∪Md. Similarly, we have vd+ℓ−1 ∈ A0∪M1.

Set P d : vd−1vdvd+1 if vd−1vd+1 /∈ E(G), or P d : vd−1vd+1 if vd−1vd+1 ∈ E(G),
respectively. Similarly, set P 0 : vd+ℓ−1v0v1 if vd+ℓ−1v1 /∈ E(G), or P d : vd+ℓ−1v1
if vd+ℓ−1v1 ∈ E(G), respectively. Finally, set C : v1Pvd−1P

dvd+1P
′vd+ℓ−1P

0v1.
Then C is a cycle of length at least 2d− 2.

Claim 1. The cycle C is chordless.

Proof. This proof can be found in [5]. But for the sake of completeness, we
provide the proof here. Suppose, to the contrary, that vivj ∈ E(G) is a chord
in C. Since both P and P ′ are chordless, we can choose the notation such that
1 ≤ i ≤ d − 1 and d + 1 ≤ j ≤ d + ℓ − 1. Since vj ∈ V (P ′), we have vj /∈ Bc by
the definition of P ′, implying i = d − 1 and vj ∈ Md, or, symmetrically, i = 1
and vj ∈ M1. This implies that in the first case vj = vd+1; in the second case
vj = vd+ℓ−1; and in both cases vivj ∈ E(C) by the definition of C. Thus, C is
chordless.

Claim 2. ℓ ≤ d+ 2.

Proof. Assume that ℓ ≥ d+3, and let Q be a shortest (v0, vd+2)-path in G. Then
|E(Q)| ≤ d (since diam(G) = d). Since ℓ ≥ d+3 and P ′ is shortest inH = G−Bc,
we have distH(v0, vd+2) ≥ d+1. So, Qmust contain a vertex fromBc. Let w be the
last vertex of Q in Bc, and let w− and w+ be its predecessor and successor on Q,
respectively (they exist since vd+2 /∈ Bc by the definition of P ′). By Lemma 1, w+

is at distance at most 1 from P . Since clearly w+ /∈ {v0, vd}, either w
+v0 ∈ E(G)

or w+vd ∈ E(G). If w+v0 ∈ E(G), then v0w
+Qvd+2 is a (v0, vd+2)-path shorter

than Q, a contradiction. Thus, w+vd ∈ E(G). Now, w+ 6= vd+2 since P ′ is
chordless, implying distG(v0, w

+) ≤ d − 1. On the other hand, distG(v0, w
+) ≥

d−1; otherwise, v0Qw+vd is a (v0, vd)-path of length at most d−1, contradicting
the fact that P is a diameter path. Hence, distG(v0, w

+) = d − 1, implying
that distG(v0, w) = d − 2 and w+vd+2 ∈ E(Q). Since vd+2, vd+3 ∈ R, we have
G[{vd+3, vd+2, vd, w

+, w, w−}] ≃ S1,2,2, a contradiction. Hence, ℓ ≤ d+ 2.

Claim 3. C ∪ NG(C) = V (G), and every vertex in V (G)\V (C) has at least 2
neighbors in C.

Proof. Suppose that a vertex x ∈ V (G)\V (C) at distance 1 from C has exactly
one neighbor in C, and set NC(x) = {y}. Let z1, z2 ∈ N2

C(x), and let z′1, z
′
2 ∈

N3
C(x). Then we have G[{x, y, z1, z2, z

′
1, z

′
2}] ≃ S1,2,2, a contradiction.

Secondly, suppose, to the contrary, that z ∈ V (G) is at distance 2 from C,
and y is a neighbor of z at distance 1 from C. Then distG(z, P ) ≥ 2; otherwise,
y = v0 or y = vd, without loss of generality, we assume y = v0. Then v1
must be adjacent to vd+ℓ−1, and thus, G[{z, y, v1, v2, vd+ℓ−1, vd+ℓ−2}] ≃ N , a
contradiction. Hence, z ∈ R. If y ∈ R, then y is not adjacent to any of v1, v2
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and v3. If y /∈ R, then we have y ∈ X. Without loss of generality, we assume
y ∈ X2. Then y is not adjacent to any of v1, v2 and v3. Moreover, from above
we know that y has at least 2 neighbors in C. Let x1, x2 ∈ NC(y) be the vertices
closest to v1 and v3, respectively. Let x′1 and x′2 be their neighbors that are
closer to v1 and v3 in C, respectively. Then G[{y, z, x1, x2, x

′
1, x

′
2}] ≃ S1,2,2 if

x1x2 /∈ E(G), or G[{y, z, x1, x2, x
′
1, x

′
2}] ≃ N if x1x2 ∈ E(G), respectively. Thus,

C is a dominating set of G.

By Claims 1 and 2, we know that C is a chordless cycle of length at most
d + ℓ ≤ 2d + 2. Now, we define a vertex-coloring of G that uses at most d + 1
colors. Relabel C : x1x2 · · ·xkxk+1(= x1), 8 ≤ 2d − 2 ≤ k ≤ 2d + 2. Then we
assign color i to the vertex xi if 1 ≤ i ≤ ⌈k2⌉ and assign color i − ⌈k2⌉ to xi if

⌈k2⌉ < i ≤ k. We color the remaining vertices arbitrarily. We can show that this
vertex-coloring can make G rainbow vertex-connected.

From Theorem 1 and Claim 3, we know that under this vertex-coloring,
pairs in C ×V (G) are rainbow vertex-connected. For each vertex z ∈ NG(C), we
may strengthen the result of Claim 3 that z has at least two neighbors colored
differently in C. Otherwise, we suppose that z1 and z2 are the only two neigh-
bors of z having the same color in C. From the vertex-coloring, we know that
distC(z1, z2) = ⌊k2⌋ ≥ 4. Then we can easily find an induced S1,2,2, a contradic-
tion. So, for a pair (x, y) ∈ NG(C) × NG(C), we can find a vertex x′ ∈ NC(x)
and a vertex y′ ∈ NC(y) such that x′ and y′ are colored differently. Since there
exists a vertex-rainbow path P connecting x′ and y′ and the internal vertices of
P are colored differently from x′ and y′, the path xx′Py′y is vertex-rainbow and
connects x and y. Hence, rvc(G) ≤ d+ 1.

The proof of Theorem 8 is complete.

Combining Proposition 2 with Theorems 7 and 8, we have proved Theorem 6.
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