RAINBOW VERTEX-CONNECTION AND FORBIDDEN SUBGRAPHS

Wenjing Li, Xueliang Li ${ }^{1}$
AND
Jingshu Zhang
Center for Combinatorics and LPMC
Nankai University
Tianjin 300071, China
e-mail: liwenjing610@mail.nankai.edu.cn
lxl@nankai.edu.cn
jszhang@mail.nankai.edu.cn

Abstract

A path in a vertex-colored graph is called vertex-rainbow if its internal vertices have pairwise distinct colors. A vertex-colored graph G is rainbow vertex-connected if for any two distinct vertices of G, there is a vertexrainbow path connecting them. For a connected graph G, the rainbow vertexconnection number of G, denoted by $\operatorname{rvc}(G)$, is defined as the minimum number of colors that are required to make G rainbow vertex-connected. In this paper, we find all the families \mathcal{F} of connected graphs with $|\mathcal{F}| \in\{1,2\}$, for which there is a constant $k_{\mathcal{F}}$ such that, for every connected \mathcal{F}-free graph $G, \operatorname{rvc}(G) \leq \operatorname{diam}(G)+k_{\mathcal{F}}$, where $\operatorname{diam}(G)$ is the diameter of G.

Keywords: vertex-rainbow path, rainbow vertex-connection, forbidden subgraphs.
2010 Mathematics Subject Classification: 05C15, 05C35, 05C38, 05C40.

1. Introduction

All graphs considered in this paper are simple, finite, and undirected. We follow the terminology and notation of Bondy and Murty in [2] for those not defined here.

[^0]Let G be a nontrivial connected graph with an edge-coloring $c: E(G) \rightarrow$ $\{0,1, \ldots, t\}, t \in \mathbb{N}$, where adjacent edges may be colored with the same color. A path in G is called a rainbow path if no two edges of the path are colored with the same color. The graph G is called rainbow connected if for any two distinct vertices of G, there is a rainbow path connecting them. For a connected edge-colored graph G, the rainbow connection number of G, denoted by $r c(G)$, is defined as the minimum number of colors that are needed to make G rainbow connected. Observe that if G has n vertices, then $\operatorname{diam}(G) \leq r c(G) \leq n-1$. It is easy to verify that $r c(G)=1$ if and only if G is a complete graph, and $r c(G)=n-1$ if and only if G is a tree. The concept of rainbow connection of graphs was first introduced by Chartrand et al. in [3], and has been well-studied since then. For further details, we refer the reader to a survey paper [10] and a book [11].

Let G be a nontrivial connected graph with a vertex-coloring $c: V(G) \rightarrow$ $\{0,1, \ldots, t\}, t \in \mathbb{N}$, where adjacent vertices may be colored with the same color. A path of G is called vertex-rainbow if any two internal vertices of the path have distinct colors. The vertex-colored graph G is rainbow vertex-connected if any two vertices of G are connected by a vertex-rainbow path. For a connected graph G, the rainbow vertex-connection number of G, denoted by $\operatorname{rvc}(G)$, is the minimum number of colors used in a vertex-coloring of G to make G rainbow vertex-connected. The concept of rainbow vertex-connection of graphs was proposed by Krivelevich and Yuster in [6]. They showed that if G is a connected graph with n vertices and minimum degree δ, then $r v c(G) \leq 11 n / \delta$. In [9], Li and Shi improved this bound. In [4], it was shown that computing the rainbow vertex-connection number of a graph is NP-hard. Recently, Li et al. in [7] proved that it is NP-complete to decide whether a given vertex-colored graph is rainbow vertex-connected even when the graph is bipartite.

For the rainbow vertex-connection number of graphs, the following observations are immediate.

Proposition 1. Let G be a connected graph with n vertices. Then
(i) $\operatorname{diam}(G)-1 \leq \operatorname{rvc}(G) \leq n-2$;
(ii) $\operatorname{rvc}(G)=\operatorname{diam}(G)-1$ if $\operatorname{diam}(G)=1$ or 2 , with the assumption that complete graphs have rainbow vertex-connection number 0 .

Note that the difference $\operatorname{rvc}(G)-\operatorname{diam}(G)$ can be arbitrarily large. In fact, if G is a subdivision of a star $K_{1, n}$, then we have $\operatorname{rvc}(G)-\operatorname{diam}(G)=(n+1)-4=$ $n-3$, since in a rainbow vertex-connected coloring of G, the internal vertices must have distinct colors.

In [8], Li and Liu studied the rainbow vertex-connection number for any 2 -connected graph, and determined the precise value of the rainbow vertexconnection number of the cycle $C_{n}(n \geq 3)$.

Theorem 1 [8]. Let C_{n} be a cycle of order $n(n \geq 3)$. Then

$$
\operatorname{rvc}\left(C_{n}\right)= \begin{cases}0 & \text { if } n=3 ; \\ 1 & \text { if } n=4,5 \\ 3 & \text { if } n=9 ; \\ \left\lceil\frac{n}{2}\right\rceil-1 & \text { if } n=6,7,8,10,11,12,13 \text { or } 15 \\ \left\lceil\frac{n}{2}\right\rceil & \text { if } n \geq 16 \text { or } n=14\end{cases}
$$

Let \mathcal{F} be a family of connected graphs. We say that a graph G is \mathcal{F}-free if G does not contain any induced subgraph isomorphic to a graph from \mathcal{F}. Specifically, for $\mathcal{F}=\{X\}$ we say that G is X-free, and for $\mathcal{F}=\{X, Y\}$ we say that G is (X, Y)-free. The members of \mathcal{F} will be referred to in this context as forbidden induced subgraphs, and for $|\mathcal{F}|=2$ we also say that \mathcal{F} is a forbidden pair.

In [5], Holub et al. considered the question: For which families \mathcal{F} of connected graphs, a connected \mathcal{F}-free graph G satisfies $r c(G) \leq \operatorname{diam}(G)+k_{\mathcal{F}}$, where $k_{\mathcal{F}}$ is a constant (depending on \mathcal{F})? They gave a complete answer for $|\mathcal{F}| \in\{1,2\}$ in the following two results (where N denotes the net, a graph obtained by attaching a pendant edge to each vertex of a triangle).

Theorem 2 [5]. Let X be a connected graph. Then there is a constant $k_{\mathcal{F}}$ such that every connected X-free graph G satisfies $r c(G) \leq \operatorname{diam}(G)+k_{X}$ if and only if $X=P_{3}$.

Theorem 3 [5]. Let X, Y be connected graphs such that $X, Y \neq P_{3}$. Then there is a constant $k_{X Y}$ such that every connected (X, Y)-free graph G satisfies $r c(G) \leq \operatorname{diam}(G)+k_{X Y}$ if and only if (up to symmetry) either $X=K_{1, r}(r \geq 4)$ and $Y=P_{4}$, or $X=K_{1,3}$ and Y is an induced subgraph of N.

Naturally, we may consider an analogous question concerning the rainbow vertex-connection number of graphs. In this paper, we will consider the following question.

For which families \mathcal{F} of connected graphs, there is a constant $k_{\mathcal{F}}$ such that a connected graph G being \mathcal{F}-free implies $\operatorname{rvc}(G) \leq \operatorname{diam}(G)+k_{\mathcal{F}}$?

We give a complete answer for $|\mathcal{F}|=1$ in Section 3 , and for $|\mathcal{F}|=2$ in Section 4.

2. Preliminaries

In this section, we introduce some further notations and facts that will be needed for the proofs of our main results.

If G is a graph and $A \subset V(G)$, then $G[A]$ denotes the subgraph of G induced by the vertex set A, and $G-A$ the graph $G[V(G) \backslash A]$. An edge is called a
pendant edge if one of its endvertices has degree one. The subdivision of a graph G is the graph obtained from G by adding a vertex of degree 2 to each edge of G. For $x, y \in V(G)$, a path in G from x to y will be referred to as an (x, y)-path, and, whenever necessary, it will be considered as oriented from x to y. For a subpath of a path P with origin u and terminus v (also referred to as a (u, v)-arc of P), we will use the notation $u P v$. If w is a vertex of a path with a fixed orientation, then w^{-}and w^{+}denote the predecessor and successor of w, respectively.

For graphs X and G, we write $X \subset G$ if X is a subgraph of $G, X \stackrel{\text { IND }}{\subset} G$ if X is an induced subgraph of G, and $X \simeq G$ if X is isomorphic to G. For two vertices $x, y \in V(G)$, we use $\operatorname{dist}_{G}(x, y)$ to denote the distance between x and y in G. The diameter of G is defined as the maximum of $\operatorname{dist}_{G}(x, y)$ among all pairs of vertices x, y of G, and will be denoted by $\operatorname{diam}(G)$. A shortest path joining two vertices at distance $\operatorname{diam}(G)$ will be referred to as a diameter path. The distance between a vertex $u \in V(G)$ and a set $S \subset V(G)$ is defined as $\operatorname{dist}_{G}(u, S):=\min _{v \in S} \operatorname{dist}_{G}(u, v)$. A set $D \subset V(G)$ is called dominating if every vertex in $V(G) \backslash D$ has a neighbor in D. In addition, if $G[D]$ is connected, then we call D a connected dominating set. Throughout this paper, \mathbb{N} denotes the set of all positive integers.

For a set $S \subset V(G)$ and $k \in \mathbb{N}$, the k th-neighborhood of S is the set $N_{G}^{k}(S)$ of all vertices of G at distance k from S. In the special case $k=1$, we simply write $N_{G}(S)$ for $N_{G}^{1}(S)$, and if $|S|=1$ with $x \in S$, we write $N_{G}(x)$ for $N_{G}(\{x\})$. For a set $M \subset V(G)$, we denote $N_{M}^{k}(S)=N_{G}^{k}(S) \cap M$ and $N_{M}^{k}(x)=N_{G}^{k}(x) \cap M$, and as above, we simply use $N_{M}(S)$ for $N_{M}^{1}(S)$ and $N_{M}(x)$ for $N_{M}^{1}(x)$. For a subgraph $P \subset G$, we write $N_{P}(x)$ for $N_{V(P)}(x)$. Finally, we will use P_{k} to denote the path on k vertices.

We end up this section with an important result that will be used in our proofs.

Theorem 4 [1]. Let G be a connected P_{5}-free graph. Then G has a dominating clique or a dominating P_{3}.

3. Families with one Forbidden Subgraph

In this section, we characterize all connected graphs X such that every connected X-free graph G satisfies $\operatorname{rvc}(G) \leq \operatorname{diam}(G)+k_{X}$, where k_{X} is a constant.

Theorem 5. Let X be a connected graph. Then there is a constant k_{X} such that every connected X-free graph G satisfies rvc $(G) \leq \operatorname{diam}(G)+k_{X}$ if and only if $X=P_{3}$ or $X=P_{4}$.

Proof. We have $\operatorname{diam}(G) \leq 2$, since G is P_{4}-free. Then it follows from Proposition 1 that $\operatorname{rvc}(G)=\operatorname{diam}(G)-1 \leq 1$.

Conversely, let $t \geq k_{X}+5$, and G_{1}^{t} be the subdivision of $K_{1, t}$, and let G_{2}^{t} denote the graph obtained by attaching a pendant edge to each vertex of the complete graph K_{t} (see Figure 1). Since $\operatorname{rvc}\left(G_{1}^{t}\right)=t+1$ but $\operatorname{diam}\left(G_{1}^{t}\right)=4, X$ is an induced subgraph of G_{1}^{t}. Clearly, $\operatorname{rvc}\left(G_{2}^{t}\right)=t$ but $\operatorname{diam}\left(G_{2}^{t}\right)=3$, and G_{2}^{t} is $K_{1,3}$-free and P_{5}-free. Hence, X is an induced subgraph of P_{4}.

The proof is thus complete.

Figure 1. The graphs G_{1}^{t} and G_{2}^{t}.

4. Families with a Pair of Forbidden Subgraphs

For $i, j, k \in \mathbb{N}$, let $S_{i, j, k}$ denote the graph obtained by identifying one endvertex from each of three vertex-disjoint paths of lengths i, j, k, and $N_{i, j, k}$ denote the graph obtained by identifying each vertex of a triangle with an endvertex of one of three vertex-disjoint paths of lengths i, j, k (see Figure 2). In this context, we will also write K_{t}^{h} for the graph G_{2}^{t} introduced in the proof of Theorem 5.

Figure 2. The graphs $S_{i, j, k}, N_{i, j, k}$ and G_{4}^{t}.
The following statement, which is the main result of this section, characterizes all forbidden pairs X, Y for which there is a constant $k_{X Y}$ such that G being (X, Y)-free implies $\operatorname{rvc}(G) \leq \operatorname{diam}(G)+k_{X Y}$. By virtue of Theorem 5, we exclude the case that one of X, Y is an induced subgraph of P_{4}. Recall that the net is the graph $N=N_{1,1,1}$.
Theorem 6. Let $X, Y \neq P_{3}$ or P_{4} be a pair of connected graphs. Then there is a constant $k_{X Y}$ such that every connected (X, Y)-free graph G satisfies $r v c(G) \leq$
$\operatorname{diam}(G)+k_{X Y}$ if and only if (up to symmetry) $X=P_{5}$ and $Y \stackrel{I N D}{\subset} K_{r}^{h}(r \geq 4)$, or $X \stackrel{I N D}{\subset} S_{1,2,2}$ and $Y \stackrel{I N D}{\subset} N$.

The proof of Theorem 6 will be divided into three separate results: we prove the necessity in Proposition 2, and Theorems 7 and 8 will establish the sufficiency of the forbidden pairs given in Theorem 6.
Proposition 2. Let $X, Y \neq P_{3}$ or P_{4} be a pair of connected graphs for which there is a constant $k_{X Y}$ such that every connected (X, Y)-free graph G satisfies $\operatorname{rvc}(G) \leq \operatorname{diam}(G)+k_{X Y}$. Then (up to symmetry) $X=P_{5}$ and $Y \stackrel{I N D}{\subset} K_{r}^{h}(r \geq 4)$, or $X \stackrel{I N D}{\subset} S_{1,2,2}$ and $Y \stackrel{I N D}{\subset} N$.
Proof. Let $t \geq 2 k_{X Y}+5$, and let (see Figure 2)

- $G_{3}^{t}=N_{t-1, t-1, t-1}$;
- G_{4}^{t} be the graph obtained by attaching a pendant edge to each vertex of a cycle C_{t}.
We will also use the graphs G_{1}^{t} and $G_{2}^{t}\left(=K_{t}^{h}\right)$ shown in Figure 1.
For the graphs G_{1}^{t} and G_{2}^{t}, we have $\operatorname{diam}\left(G_{1}^{t}\right)=4$ but $r v c\left(G_{1}^{t}\right)=t+1$, and $\operatorname{diam}\left(G_{2}^{t}\right)=3$ but $\operatorname{rvc}\left(G_{2}^{t}\right)=t$, respectively. For the graph G_{3}^{t}, we observe that $\operatorname{diam}\left(G_{3}^{t}\right)=2 t-1$ while $\operatorname{rvc}\left(G_{3}^{t}\right)=3(t-1)=\frac{3}{2}\left(\operatorname{diam}\left(G_{3}^{t}\right)-1\right)$, since all internal vertices must have mutually distinct colors. Analogously, for the graph G_{4}^{t}, we have $\operatorname{diam}\left(G_{4}^{t}\right)=\left\lfloor\frac{t}{2}\right\rfloor+2$, but $\operatorname{rvc}\left(G_{4}^{t}\right)=t \geq 2\left(\operatorname{diam}\left(G_{4}^{t}\right)-2\right)$. Thus, each of the graphs $G_{1}^{t}, G_{2}^{t}, G_{3}^{t}$ and G_{4}^{t} must contain an induced subgraph isomorphic to one of the graphs X, Y.

Consider the graph G_{1}^{t}. Up to symmetry, we have that X is an induced subgraph of G_{1}^{t} excluding P_{3} and P_{4}. Now we consider the graph G_{2}^{t}. Obviously, G_{2}^{t} is X-free, since G_{2}^{t} is $K_{1,3}$-free. Hence, G_{2}^{t} contains Y, implying $Y \stackrel{\text { IND }}{\subset} K_{r}^{h}$ for some $r \geq 3$ (for $r \leq 2$ we get $Y \stackrel{\text { IND }}{\subset} P_{4}$, which is excluded by the assumptions).

Now we consider the graph G_{3}^{t}. There are two possibilities.
(i) $Y \stackrel{\text { IND }}{\subset} G_{3}^{t}$. Then $Y \stackrel{\text { IND }}{\subset} N$. Now we consider the graph $G_{4}^{t} . G_{4}^{t}$ is N-free, so we get $X \stackrel{\text { IND }}{\subset} S_{1,2,2}$.
(ii) $X \stackrel{\text { IND }}{\subset} G_{3}^{t}$. Then $X=P_{5}$. As the case $X=P_{5}$ and $Y=N$ is already covered by case (i), we have that $X=P_{5}$ and $Y \stackrel{\text { IND }}{\subset} K_{r}^{h}, r \geq 4$.
This completes the proof.
It is easy to observe that if $X \stackrel{\text { IND }}{\subset} X^{\prime}$, then every (X, Y)-free graph is also $\left(X^{\prime}, Y\right)$-free. Thus, when proving the sufficiency of Theorem 6 , we will be always interested in maximal pairs of forbidden subgraphs, i.e., pairs X, Y such that, if replacing one of X, Y, say X, with a graph $X^{\prime} \neq X$ such that $X \stackrel{\text { IND }}{\subset} X^{\prime}$, then the statement under consideration is not true for $\left(X^{\prime}, Y\right)$-free graphs.

Theorem 7. Let G be a connected $\left(P_{5}, K_{r}^{h}\right)$-free graph for some $r \geq 4$. Then $r v c(G) \leq \operatorname{diam}(G)+r$.

Proof. From Theorem 4, we have that G has a dominating clique or a dominating P_{3}.

Case 1. G has a dominating P_{3}. We color the vertices of P_{3} with colors $1,2,3$ and color the remaining vertices arbitrarily (e.g., all of them have color 1). One can easily check that this vertex-coloring can make G rainbow vertex-connected. So, in this case, $r v c(G) \leq 3 \leq \operatorname{diam}(G)+r$.

Case 2. G has a dominating clique, denoted by K_{p}. Set $W=V(G) \backslash V\left(K_{p}\right)$, $H=G \backslash E\left(K_{p}\right)$. Let A be an independent set in $G[W]$ and $B \subset V\left(K_{p}\right)$ such that $H[A \cup B]=\ell K_{2}$ (that is, a matching of order ℓ) and ℓ is maximal. Then $\ell<r$, for otherwise, $G[A \cup B]$ contains an induced K_{r}^{h}. Moreover, for $x \in W \backslash A$, $N_{A \cup B}(x) \neq \emptyset$, since ℓ is maximal. Now we define the following vertex-coloring of G. Use colors $1,2, \ldots, \ell$ to color each vertex in B, color the vertices of A with color $\ell+1$, the vertices of $V\left(K_{p}\right) \backslash B$ with color $\ell+2$, and color the remaining vertices arbitrarily (e.g., all of them have color 1). Thus, pairs of vertices in $\left(A \cup V\left(K_{p}\right)\right) \times V(G)$ are rainbow vertex-connected. As for $x_{1}, x_{2} \in W \backslash A$, let $y_{1} \in N_{A \cup B}\left(x_{1}\right), y_{2} \in N_{K_{p}}\left(x_{2}\right)$. Then there is a vertex-rainbow $\left(x_{1}, x_{2}\right)$-path containing y_{1} and y_{2}. $\operatorname{So}, r v c(G) \leq \ell+2 \leq r+1 \leq \operatorname{diam}(G)+r$.

The proof is complete.
Now let G be an $\left(S_{1,2,2}, N\right)$-free graph, let $x, y \in V(G)$, and let $P: x=$ $v_{0}, v_{1}, \ldots, v_{k}=y(k \geq 3)$ be a shortest (x, y)-path in G. Let $z \in V(G) \backslash V(P)$. If $\left|N_{P}(z)\right| \geq 2$ and $\left\{v_{i}, v_{j}\right\} \subset N_{P}(z)$, then $|i-j| \leq 2$ and $\left|N_{P}(z)\right| \leq 3$, since P is a shortest path. Moreover, the following facts are easily observed.

- If $\left|N_{P}(z)\right|=1$, then, since G is $S_{1,2,2}$-free, z is adjacent to x, v_{1}, v_{k-1} or y.
- If $\left|N_{P}(z)\right|=3$, then the vertices of $N_{P}(z)$ must be consecutive on P, since P is a shortest path.
This motivates the following notations:
- $A_{i}:=\left\{z \in V(G) \backslash V(P) \mid N_{P}(z)=\left\{v_{i}\right\}\right\}$ for $i=0,1, k-1, k$;
- $L_{i}:=\left\{z \in V(G) \backslash V(P) \mid N_{P}(z)=\left\{v_{i-1}, v_{i+1}\right\}\right\}$ for $1 \leq i \leq k-1$;
- $M_{i}:=\left\{z \in V(G) \backslash V(P) \mid N_{P}(z)=\left\{v_{i-1}, v_{i}\right\}\right\}$ for $1 \leq i \leq k$;
- $N_{i}:=\left\{z \in V(G) \backslash V(P) \mid N_{P}(z)=\left\{v_{i-1}, v_{i}, v_{i+1}\right\}\right\}$ for $1 \leq i \leq k-1$.

We further set $S=V(P) \cup N_{G}(P)$ and $R=V(G) \backslash S$.
Lemma 1. Let G be an $\left(S_{1,2,2}, N\right)$-free graph, let $x, y \in V(G)$ be such that $\operatorname{dist}_{G}(x, y) \geq 4$ and let $P: x=v_{0}, v_{1}, \ldots, v_{k}=y$, be a shortest (x, y)-path in G. Then
(i) $N_{G}\left(M_{i}\right) \subset S, i=2, \ldots, k-1$;
(ii) $N_{G}\left(N_{i}\right) \subset S, i=2, \ldots, k-2$;
(iii) $N_{G}\left(L_{i}\right) \subset S, i=1, \ldots, k-1$;
(iv) $N_{P}(R)=\emptyset$;
(v) $N_{S}(R) \subset A_{0} \cup M_{1} \cup N_{1} \cup N_{k-1} \cup M_{k} \cup A_{k}$.

Proof. If $z v \in E(G)$ for some $z \in R$ and $v \in M_{i}, 2 \leq i \leq k-1$, then we have $G\left[\left\{v_{i-2}, v_{i-1}, v_{i}, v_{i+1}, v, z\right\}\right] \simeq N$, a contradiction. Hence, (i) follows. To show (ii), we observe that if $z v \in E(G)$ for some $z \in R$ and $v \in N_{i}, 2 \leq$ $i \leq k-2$, then we have $G\left[\left\{v_{i-2}, v_{i-1}, v_{i+1}, v_{i+2}, v, z\right\}\right] \simeq S_{1,2,2}$, a contradiction. Similarly, for (iii), if $z v \in E(G)$ for some $z \in R$ and $v \in L_{i}, 1 \leq$ $i \leq k-1$, then for $i=1$ we have $G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v, z\right\}\right] \simeq S_{1,2,2}$, for $2 \leq$ $i \leq k-2$ we have $G\left[\left\{z, v, v_{i-1}, v_{i-2}, v_{i+1}, v_{i+2}\right\}\right] \simeq S_{1,2,2}$, and for $i=k-1$, $G\left[\left\{v_{k-1}, v_{k-2}, v_{k-3}, v_{k-4}, v, z\right\}\right] \simeq S_{1,2,2}$, a contradiction. Part (iv) follows immediately from the definition of R, and by (i) through (iii), we have $N_{S}(R) \subset$ $A_{0} \cup A_{1} \cup M_{1} \cup N_{1} \cup N_{k-1} \cup M_{k} \cup A_{k-1} \cup A_{k}$. But if $z v \in E(G)$ for some $z \in R$ and $v \in A_{1}$, then $G\left[\left\{v_{0}, v_{1}, v_{2}, v_{3}, v, z\right\}\right] \simeq S_{1,2,2}$, a contradiction. Similarly, we have $N_{A_{k-1}}(R)=\emptyset$, implying (v).

The proof is complete.
Theorem 8. Let G be a connected $\left(S_{1,2,2}, N\right)$-free graph. Then rvc $(G) \leq \operatorname{diam}(G)$ +11 .
Proof. Let G be a connected $\left(S_{1,2,2}, N\right)$-free graph. If $\operatorname{diam}(G) \leq 2$, then $\operatorname{rvc}(G)$ $=\operatorname{diam}(G)-1$. Thus, for the rest of the proof we suppose that $\operatorname{diam}(G)=d \geq 3$. Let $v_{0}, v_{d} \in V(G)$ be such that $\operatorname{dist}_{G}\left(v_{0}, v_{d}\right)=d$, let $P: v_{0} v_{1} v_{2} \cdots v_{d}$ be a diameter path in G, and let $A_{i}, L_{i}, M_{i}, N_{i}, S, R$ be defined as above.

We distinguish three cases according to the value of d.
Case 1. $d=3$. First, we partition $V(G)$ into four parts $P, N_{G}(P), N_{G}^{2}(P)$ and $N_{G}^{3}(P)$ according to the distance from P. Then, for the vertices in $N_{G}(P)$, we can partition them into three parts $X_{1}=A_{0} \cup M_{1} \cup L_{1} \cup N_{1}, X_{2}=A_{3} \cup M_{3} \cup L_{2} \cup N_{2}$ and $X_{3}=A_{1} \cup M_{2} \cup A_{2}$. We must point out that $X_{1} \cap X_{2}=\emptyset$ and $N_{R}\left(X_{3}\right)=\emptyset$, whose proof is similar to that of Lemma 1. Then we denote Y_{i} the set of vertices in $N_{G}^{2}(P)$ such that for each $v \in Y_{i}, N_{N(P)}(v) \subset X_{i}, i=1,2$, and $Y_{3}=N_{G}^{2}(P) \backslash\left(Y_{1} \cup\right.$ Y_{2}). With a similar reason as above, $N_{N_{G}^{3}(P)}\left(Y_{3}\right)=\emptyset$. So, analogously we can partition $N_{G}^{3}(P)$ into three parts Z_{1}, Z_{2} and Z_{3}. It should be noticed that $Z_{1}=\emptyset$; otherwise there exists a vertex $z \in Z_{1}$ such that $\operatorname{dist}_{G}\left(z, v_{3}\right) \geq 4$, a contradiction. Symmetrically, we have $Z_{2}=\emptyset$.

Now, we define a vertex-coloring of G that uses at most 14 colors. Color the vertices of P with colors $0,1,2,3$ and color the vertices in $A_{0}, M_{1}, L_{1}, N_{1}, N_{2}$, $L_{2}, M_{3}, A_{3}, Y_{1}$ and Y_{2} with colors $4,5, \ldots, 13$, respectively. Then color the remaining vertices arbitrarily (e.g., all of them have color 0). We can show that this vertex-coloring can make G rainbow vertex-connected. We only need to
verify that for a pair of vertices $x, y \in\left(Y_{1} \times Y_{1}\right) \cup\left(Y_{2} \times Y_{2}\right)$, there exists a vertex-rainbow path connecting them. Without loss of generality, we suppose $(x, y) \in Y_{1} \times Y_{1}$. If $\operatorname{dist}_{G}(x, y) \leq 2$, then there is nothing left to do. Next we consider the case $\operatorname{dist}_{G}(x, y) \geq 3$. Let x^{\prime} be an arbitrary neighbor of x in X_{1}, and y^{\prime} an arbitrary neighbor of y in X_{1}. We claim that x^{\prime} and y^{\prime} cannot have the same color. Otherwise, we suppose that x^{\prime} and y^{\prime} are colored with the same color, i.e., they are in the same vertex-class of X_{1}, and let $i=\max \left\{j \mid v_{j} \in N_{P}\left(x^{\prime}\right) \cap N_{P}\left(y^{\prime}\right)\right\}$. Then we have $G\left[\left\{v_{i}, v_{i+1}, x^{\prime}, y^{\prime}, x, y\right\}\right] \simeq S_{1,2,2}$ if $x^{\prime} y^{\prime} \notin E(G)$, or $G\left[\left\{v_{i}, v_{i+1}, x^{\prime}, y^{\prime}, x, y\right\}\right] \simeq N$ if $x^{\prime} y^{\prime} \in E(G)$, respectively. So, the colors of x^{\prime} and y^{\prime} must be different. Then the (x, y)-path $P_{1}: x x^{\prime} v_{0} y^{\prime} y$ is vertex-rainbow. Hence, we have $\operatorname{rvc}(G) \leq \operatorname{diam}(G)+11$.

Case 2. $d=4$. Similarly, with the partition and the vertex-coloring of Case 1, we can get that $\operatorname{rvc}(G) \leq 15=\operatorname{diam}(G)+11$.

Case 3. $d \geq 5$. Set $B_{c}=\left(\bigcup_{i=2}^{d-2} N_{i}\right) \cup\left(\bigcup_{i=2}^{d-1} M_{i}\right) \cup\left(\bigcup_{i=1}^{d-1} L_{i}\right) \cup A_{1} \cup A_{d-1} \cup$ $\left\{v_{1}, v_{2}, \ldots, v_{d-1}\right\}, X=A_{0} \cup M_{1} \cup N_{1} \cup N_{d-1} \cup M_{d} \cup A_{d}, X_{1}=A_{0} \cup M_{1} \cup N_{1}$, and $X_{2}=N_{d-1} \cup M_{d} \cup A_{d}$. By virtue of Lemma 1, we have $N_{G}\left(B_{c}\right) \subset S$.

Subcase 3.1. B_{c} is a cut-set of G. We claim that $S \cup N_{G}(S)=V(G)$. Suppose, to the contrary, that $z \in R$ is at distance 2 from S. Then, by Lemma 1 and the assumption of Case 1 , as well as the symmetry, we can assume that $N_{S}^{2}(z) \subset X_{1}$. Let Q be a shortest $\left(z, v_{d}\right)$-path, let w be the first vertex of Q in B_{c} (it exists by the assumption of Subcase 3.1), and let w^{-}be the predecessor of w on Q. By Lemma $1, \operatorname{dist}\left(w^{-}, P\right)=1$, implying $w^{-} \in X_{1}$. Then $\operatorname{dist}_{G}\left(w^{-}, v_{d}\right) \geq d-1$; otherwise, the path $v_{0} w^{-} Q v_{d}$ is a $\left(v_{0}, v_{d}\right)$-path shorter than P. Since $\operatorname{dist}_{G}\left(z, w^{-}\right) \geq 2$, we have $\operatorname{dist}_{G}\left(z, v_{d}\right) \geq d+1$, contradicting $\operatorname{diam}(G)=d$. Hence, we have $S \cup N_{G}(S)=V(G)$. Moreover, with a similar argument to that of Case 1, we have that for $x, y \in R$ with distance at least 3 , their neighbors x^{\prime} and y^{\prime} cannot be in the same vertex-class of X.

Now we define a vertex-coloring of G that uses at most $d+7$ colors. Color the vertices of P with colors $0,1, \ldots, d$ and color the vertices in $A_{0}, M_{1}, N_{1}, N_{d-1}$, M_{d} and A_{d} with colors $d+1, d+2, \ldots, d+6$, respectively. Then color the remaining vertices arbitrarily (e.g., all of them have color 0). We can show that this vertex-coloring can make G rainbow vertex-connected. For any pair of vertices in $S \times(S \cup R)$, we can easily find a vertex-rainbow path connecting them. For a pair $(x, y) \in R \times R$, if $\operatorname{dist}_{G}(x, y) \leq 2$, then there is nothing left to do. Next we consider $\operatorname{dist}_{G}(x, y) \geq 3$. From above, we know that their neighbors x^{\prime} and y^{\prime} in X are colored differently. So, the (x, y)-path containing x^{\prime} and y^{\prime} is vertex-rainbow. Consequently, we have $\operatorname{rvc}(G) \leq \operatorname{diam}(G)+7$.

Subcase 3.2. B_{c} is not a cut-set of G. Set $H=G-B_{c}$. Let $P^{\prime}: v_{d} v_{d+1} \cdots$ $v_{d+\ell-1} v_{d+\ell}=v_{0}$ be a shortest $\left(v_{d}, v_{0}\right)$-path in H. Since P is a diameter path,
$\ell \geq d \geq 5$. If v_{d+1} is adjacent to v_{d-2}, then $G\left[\left\{v_{d}, v_{d+1}, v_{d-2}, v_{d-3}, v_{d+2}, v_{d+3}\right\}\right] \simeq$ $S_{1,2,2}$, a contradiction. So, $v_{d+1} \in A_{d} \cup M_{d}$. Similarly, we have $v_{d+\ell-1} \in A_{0} \cup M_{1}$.

Set $P^{d}: v_{d-1} v_{d} v_{d+1}$ if $v_{d-1} v_{d+1} \notin E(G)$, or $P^{d}: v_{d-1} v_{d+1}$ if $v_{d-1} v_{d+1} \in E(G)$, respectively. Similarly, set $P^{0}: v_{d+\ell-1} v_{0} v_{1}$ if $v_{d+\ell-1} v_{1} \notin E(G)$, or $P^{d}: v_{d+\ell-1} v_{1}$ if $v_{d+\ell-1} v_{1} \in E(G)$, respectively. Finally, set $C: v_{1} P v_{d-1} P^{d} v_{d+1} P^{\prime} v_{d+\ell-1} P^{0} v_{1}$. Then C is a cycle of length at least $2 d-2$.

Claim 1. The cycle C is chordless.
Proof. This proof can be found in [5]. But for the sake of completeness, we provide the proof here. Suppose, to the contrary, that $v_{i} v_{j} \in E(G)$ is a chord in C. Since both P and P^{\prime} are chordless, we can choose the notation such that $1 \leq i \leq d-1$ and $d+1 \leq j \leq d+\ell-1$. Since $v_{j} \in V\left(P^{\prime}\right)$, we have $v_{j} \notin B_{c}$ by the definition of P^{\prime}, implying $i=d-1$ and $v_{j} \in M_{d}$, or, symmetrically, $i=1$ and $v_{j} \in M_{1}$. This implies that in the first case $v_{j}=v_{d+1}$; in the second case $v_{j}=v_{d+\ell-1}$; and in both cases $v_{i} v_{j} \in E(C)$ by the definition of C. Thus, C is chordless.

Claim 2. $\ell \leq d+2$.
Proof. Assume that $\ell \geq d+3$, and let Q be a shortest $\left(v_{0}, v_{d+2}\right)$-path in G. Then $|E(Q)| \leq d$ (since $\operatorname{diam}(G)=d$). Since $\ell \geq d+3$ and P^{\prime} is shortest in $H=G-B_{c}$, we have $\operatorname{dist}_{H}\left(v_{0}, v_{d+2}\right) \geq d+1$. So, Q must contain a vertex from B_{c}. Let w be the last vertex of Q in B_{c}, and let w^{-}and w^{+}be its predecessor and successor on Q, respectively (they exist since $v_{d+2} \notin B_{c}$ by the definition of P^{\prime}). By Lemma $1, w^{+}$ is at distance at most 1 from P. Since clearly $w^{+} \notin\left\{v_{0}, v_{d}\right\}$, either $w^{+} v_{0} \in E(G)$ or $w^{+} v_{d} \in E(G)$. If $w^{+} v_{0} \in E(G)$, then $v_{0} w^{+} Q v_{d+2}$ is a (v_{0}, v_{d+2})-path shorter than Q, a contradiction. Thus, $w^{+} v_{d} \in E(G)$. Now, $w^{+} \neq v_{d+2}$ since P^{\prime} is chordless, implying $\operatorname{dist}_{G}\left(v_{0}, w^{+}\right) \leq d-1$. On the other hand, $\operatorname{dist}_{G}\left(v_{0}, w^{+}\right) \geq$ $d-1$; otherwise, $v_{0} Q w^{+} v_{d}$ is a $\left(v_{0}, v_{d}\right)$-path of length at most $d-1$, contradicting the fact that P is a diameter path. Hence, $\operatorname{dist}_{G}\left(v_{0}, w^{+}\right)=d-1$, implying that $\operatorname{dist}_{G}\left(v_{0}, w\right)=d-2$ and $w^{+} v_{d+2} \in E(Q)$. Since $v_{d+2}, v_{d+3} \in R$, we have $G\left[\left\{v_{d+3}, v_{d+2}, v_{d}, w^{+}, w, w^{-}\right\}\right] \simeq S_{1,2,2}$, a contradiction. Hence, $\ell \leq d+2$.

Claim 3. $C \cup N_{G}(C)=V(G)$, and every vertex in $V(G) \backslash V(C)$ has at least 2 neighbors in C.
Proof. Suppose that a vertex $x \in V(G) \backslash V(C)$ at distance 1 from C has exactly one neighbor in C, and set $N_{C}(x)=\{y\}$. Let $z_{1}, z_{2} \in N_{C}^{2}(x)$, and let $z_{1}^{\prime}, z_{2}^{\prime} \in$ $N_{C}^{3}(x)$. Then we have $G\left[\left\{x, y, z_{1}, z_{2}, z_{1}^{\prime}, z_{2}^{\prime}\right\}\right] \simeq S_{1,2,2}$, a contradiction.

Secondly, suppose, to the contrary, that $z \in V(G)$ is at distance 2 from C, and y is a neighbor of z at distance 1 from C. Then $\operatorname{dist}_{G}(z, P) \geq 2$; otherwise, $y=v_{0}$ or $y=v_{d}$, without loss of generality, we assume $y=v_{0}$. Then v_{1} must be adjacent to $v_{d+\ell-1}$, and thus, $G\left[\left\{z, y, v_{1}, v_{2}, v_{d+\ell-1}, v_{d+\ell-2}\right\}\right] \simeq N$, a contradiction. Hence, $z \in R$. If $y \in R$, then y is not adjacent to any of v_{1}, v_{2}
and v_{3}. If $y \notin R$, then we have $y \in X$. Without loss of generality, we assume $y \in X_{2}$. Then y is not adjacent to any of v_{1}, v_{2} and v_{3}. Moreover, from above we know that y has at least 2 neighbors in C. Let $x_{1}, x_{2} \in N_{C}(y)$ be the vertices closest to v_{1} and v_{3}, respectively. Let x_{1}^{\prime} and x_{2}^{\prime} be their neighbors that are closer to v_{1} and v_{3} in C, respectively. Then $G\left[\left\{y, z, x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right\}\right] \simeq S_{1,2,2}$ if $x_{1} x_{2} \notin E(G)$, or $G\left[\left\{y, z, x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right\}\right] \simeq N$ if $x_{1} x_{2} \in E(G)$, respectively. Thus, C is a dominating set of G.

By Claims 1 and 2, we know that C is a chordless cycle of length at most $d+\ell \leq 2 d+2$. Now, we define a vertex-coloring of G that uses at most $d+1$ colors. Relabel C : $x_{1} x_{2} \cdots x_{k} x_{k+1}\left(=x_{1}\right), 8 \leq 2 d-2 \leq k \leq 2 d+2$. Then we assign color i to the vertex x_{i} if $1 \leq i \leq\left\lceil\frac{k}{2}\right\rceil$ and assign color $i-\left\lceil\frac{k}{2}\right\rceil$ to x_{i} if $\left\lceil\frac{k}{2}\right\rceil<i \leq k$. We color the remaining vertices arbitrarily. We can show that this vertex-coloring can make G rainbow vertex-connected.

From Theorem 1 and Claim 3, we know that under this vertex-coloring, pairs in $C \times V(G)$ are rainbow vertex-connected. For each vertex $z \in N_{G}(C)$, we may strengthen the result of Claim 3 that z has at least two neighbors colored differently in C. Otherwise, we suppose that z_{1} and z_{2} are the only two neighbors of z having the same color in C. From the vertex-coloring, we know that $\operatorname{dist}_{C}\left(z_{1}, z_{2}\right)=\left\lfloor\frac{k}{2}\right\rfloor \geq 4$. Then we can easily find an induced $S_{1,2,2}$, a contradiction. So, for a pair $(x, y) \in N_{G}(C) \times N_{G}(C)$, we can find a vertex $x^{\prime} \in N_{C}(x)$ and a vertex $y^{\prime} \in N_{C}(y)$ such that x^{\prime} and y^{\prime} are colored differently. Since there exists a vertex-rainbow path P connecting x^{\prime} and y^{\prime} and the internal vertices of P are colored differently from x^{\prime} and y^{\prime}, the path $x x^{\prime} P y^{\prime} y$ is vertex-rainbow and connects x and y. Hence, $\operatorname{rvc}(G) \leq d+1$.

The proof of Theorem 8 is complete.
Combining Proposition 2 with Theorems 7 and 8, we have proved Theorem 6.

Acknowledgements

The authors are very grateful to the referees for valuable comments and suggestions, which helped to improve the presentation of the paper. This work was supported by NSFC Nos. 11371205 and 11531011, and PCSIRT.

References

[1] G. Bacsó and Zs. Tuza, Dominating cliques in $P_{5}-$ free graphs, Period. Math. Hungar. 21 (1990) 303-308. doi:10.1007/BF02352694
[2] J.A. Bondy and U.S.R. Murty, Graph Theory (GTM 244, Springer-Verlag, London, 2008).
[3] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[4] L. Chen, X. Li and Y. Shi, The complexity of determining the rainbow vertexconnection of a graph, Theoret. Comput. Sci. 412 (2011) 4531-4535.
doi:10.1016/j.tcs.2011.04.032
[5] P. Holub, Z. Ryjáček, I. Schiermeyer and P. Vrána, Rainbow connection and foridden subgraphs, Discrete Math. 338 (2015) 1706-1713.
doi:10.1016/j.disc.2014.08.008
[6] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191. doi:10.1002/jgt. 20418
[7] S. Li, X. Li and Y. Shi, Note on the complexity of decidining the rainbow (vertex-) connectedness for bipartite graphs, Appl. Math. Comput. 258 (2015) 155-161. doi:10.1016/j.amc.2015.02.015
[8] X. Li and S. Liu, Tight upper bound of the rainbow vertex-connection number for 2-connected graphs, Discrete Appl. Math. 173 (2014) 62-69. doi:10.1016/j.dam.2014.04.002
[9] X. Li and Y. Shi, On the rainbow vertex-connection, Discuss. Math. Graph Theory 33 (2013) 307-313. doi:10.7151/dmgt. 1664
[10] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1-38. doi:10.1007/s00373-012-1243-2
[11] X. Li and Y. Sun, Rainbow Connections of Graphs (SpringerBriefs in Math., Springer-Verlag, New York, 2012).

[^0]: ${ }^{1}$ Corresponding author.

