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Abstract

A path in a vertex-colored graph is called vertez-rainbow if its internal
vertices have pairwise distinct colors. A vertex-colored graph G is rainbow
vertex-connected if for any two distinct vertices of G, there is a vertex-
rainbow path connecting them. For a connected graph G, the rainbow vertez-
connection number of G, denoted by rvc(G), is defined as the minimum
number of colors that are required to make G rainbow vertex-connected. In
this paper, we find all the families F of connected graphs with |F| € {1, 2},
for which there is a constant kx such that, for every connected F-free graph
G, rve(G) < diam(G) + kx, where diam(G) is the diameter of G.

Keywords: vertex-rainbow path, rainbow vertex-connection, forbidden sub-
graphs.
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1. INTRODUCTION

All graphs considered in this paper are simple, finite, and undirected. We follow
the terminology and notation of Bondy and Murty in [2] for those not defined
here.
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Let G be a nontrivial connected graph with an edge-coloring ¢ : E(G) —
{0,1,...,t}, t € N, where adjacent edges may be colored with the same color.
A path in G is called a rainbow path if no two edges of the path are colored
with the same color. The graph G is called rainbow connected if for any two
distinct vertices of GG, there is a rainbow path connecting them. For a connected
edge-colored graph G, the rainbow connection number of G, denoted by rc(G),
is defined as the minimum number of colors that are needed to make G rainbow
connected. Observe that if G has n vertices, then diam(G) < re(G) < n — 1.
It is easy to verify that rc¢(G) = 1 if and only if G is a complete graph, and
re(G) = n — 1 if and only if G is a tree. The concept of rainbow connection of
graphs was first introduced by Chartrand et al. in [3], and has been well-studied
since then. For further details, we refer the reader to a survey paper [10] and a
book [11].

Let G be a nontrivial connected graph with a vertex-coloring ¢ : V(G) —
{0,1,...,t}, t € N, where adjacent vertices may be colored with the same color.
A path of G is called wvertex-rainbow if any two internal vertices of the path
have distinct colors. The vertex-colored graph G is rainbow vertex-connected if
any two vertices of G are connected by a vertex-rainbow path. For a connected
graph G, the rainbow vertex-connection number of G, denoted by rvc(G), is the
minimum number of colors used in a vertex-coloring of G to make G rainbow
vertex-connected. The concept of rainbow vertex-connection of graphs was pro-
posed by Krivelevich and Yuster in [6]. They showed that if G is a connected
graph with n vertices and minimum degree 6, then rve(G) < 11n/§. In [9], Li
and Shi improved this bound. In [4], it was shown that computing the rainbow
vertex-connection number of a graph is NP-hard. Recently, Li et al. in [7] proved
that it is NP-complete to decide whether a given vertex-colored graph is rainbow
vertex-connected even when the graph is bipartite.

For the rainbow vertex-connection number of graphs, the following observa-
tions are immediate.

Proposition 1. Let G be a connected graph with n vertices. Then
(i) diam(G) —1 < rve(G) <n —2;
(ii) rve(G) = diam(G) — 1 if diam(G) = 1 or 2, with the assumption that
complete graphs have rainbow vertex-connection number 0.

Note that the difference rve(G) —diam(G) can be arbitrarily large. In fact, if
G is a subdivision of a star K7 ,, then we have rvc(G) —diam(G) = (n+1)—4 =
n — 3, since in a rainbow vertex-connected coloring of GG, the internal vertices
must have distinct colors.

In [8], Li and Liu studied the rainbow vertex-connection number for any
2-connected graph, and determined the precise value of the rainbow vertex-
connection number of the cycle C,, (n > 3).
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Theorem 1 [8]. Let C,, be a cycle of order n (n > 3). Then

0 if n=3;
1 if n=4,5;
roe(Cp) =4 3 if n=09;
21 —1 if n=6,7,8,10,11,12,13 or 15;
5] if n>16 orn = 14.

Let F be a family of connected graphs. We say that a graph G is F-free
if G does not contain any induced subgraph isomorphic to a graph from F.
Specifically, for F = {X} we say that G is X-free, and for F = {X,Y} we say
that G is (X,Y)-free. The members of F will be referred to in this context as
forbidden induced subgraphs, and for |F| = 2 we also say that F is a forbidden
pair.

In [5], Holub et al. considered the question: For which families F of connected
graphs, a connected F-free graph G satisfies rc¢(G) < diam(G) + kr, where kr is
a constant (depending on F)? They gave a complete answer for |F| € {1,2} in
the following two results (where N denotes the net, a graph obtained by attaching
a pendant edge to each vertex of a triangle).

Theorem 2 [5]. Let X be a connected graph. Then there is a constant kr such
that every connected X -free graph G satisfies re(G) < diam(G) + kx if and only
if X = Ps.

Theorem 3 [5]. Let X,Y be connected graphs such that X,Y # Ps. Then
there is a constant kxy such that every connected (X,Y)-free graph G satisfies
re(G) < diam(G) + kxy if and only if (up to symmetry) either X = K;, (r > 4)
andY = Py, or X = K13 and Y is an induced subgraph of N.

Naturally, we may consider an analogous question concerning the rainbow
vertex-connection number of graphs. In this paper, we will consider the following
question.

For which families F of connected graphs, there is a constant kr such that a
connected graph G being F-free implies rve(G) < diam(G) + kz?

We give a complete answer for |F| = 1 in Section 3, and for |F| = 2 in
Section 4.

2. PRELIMINARIES

In this section, we introduce some further notations and facts that will be needed
for the proofs of our main results.

If G is a graph and A C V(G), then G[A] denotes the subgraph of G induced
by the vertex set A, and G — A the graph G[V(G)\ A]. An edge is called a
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pendant edge if one of its endvertices has degree one. The subdivision of a graph
G is the graph obtained from G by adding a vertex of degree 2 to each edge of G.
For z,y € V(G), a path in G from z to y will be referred to as an (z,y)-path, and,
whenever necessary, it will be considered as oriented from x to y. For a subpath
of a path P with origin u and terminus v (also referred to as a (u,v)-arc of P),
we will use the notation uPv. If w is a vertex of a path with a fixed orientation,
then w~ and w™ denote the predecessor and successor of w, respectively.

For graphs X and G, we write X C G if X is a subgraph of G, X HED G if
X is an induced subgraph of G, and X ~ G if X is isomorphic to G. For two
vertices z,y € V(G), we use distg(x,y) to denote the distance between x and
y in G. The diameter of G is defined as the maximum of distg(x,y) among all
pairs of vertices x,y of G, and will be denoted by diam(G). A shortest path
joining two vertices at distance diam(G) will be referred to as a diameter path.
The distance between a vertexr v € V(G) and a set S C V(G) is defined as
distg(u, S) := minyeg distg(u,v). A set D C V(G) is called dominating if every
vertex in V(G) \ D has a neighbor in D. In addition, if G[D] is connected, then
we call D a connected dominating set. Throughout this paper, N denotes the set
of all positive integers.

For a set S C V(@) and k € N, the kth-neighborhood of S is the set N&(S)
of all vertices of G at distance k from S. In the special case kK = 1, we simply
write Ng(S) for NA(S), and if |S| = 1 with z € S, we write Ng(z) for Ng({z}).
For a set M C V(G), we denote N¥,(S) = NE(S)NM and N§,(z) = NE(z)N M,
and as above, we simply use Ny (S) for N1,(S) and Nys(z) for Ni,(x). For a
subgraph P C G, we write Np(z) for Ny (py(x). Finally, we will use P, to denote
the path on k vertices.

We end up this section with an important result that will be used in our
proofs.

Theorem 4 [1]. Let G be a connected Ps-free graph. Then G has a dominating
clique or a dominating Ps.

3. FAMILIES WITH ONE FORBIDDEN SUBGRAPH

In this section, we characterize all connected graphs X such that every connected
X-free graph G satisfies rve(G) < diam(G) + kx, where kx is a constant.

Theorem 5. Let X be a connected graph. Then there is a constant kx such that
every connected X -free graph G satisfies rvc(G) < diam(G) + kx if and only if
X = P3 or X = P4.

Proof. We have diam(G) < 2, since G is Py-free. Then it follows from Proposi-
tion 1 that rvc(G) = diam(G) —1 < 1.
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Conversely, let t > kx + 5, and G} be the subdivision of K14, and let Gt
denote the graph obtained by attaching a pendant edge to each vertex of the
complete graph K; (see Figure 1). Since rvc(GY) =t + 1 but diam(GY) = 4, X
is an induced subgraph of G!. Clearly, rvc(Gh) = t but diam(G%) = 3, and G}
is K1 3-free and Ps-free. Hence, X is an induced subgraph of Pj.

The proof is thus complete. [
G 1 G4 1
2 2
t t

Figure 1. The graphs GY and G&.

4. FAMILIES WITH A PAIR OF FORBIDDEN SUBGRAPHS

For i,j,k € N, let S; ;. denote the graph obtained by identifying one end-
vertex from each of three vertex-disjoint paths of lengths 4, j, k, and N; ;. denote
the graph obtained by identifying each vertex of a triangle with an endvertex of
one of three vertex-disjoint paths of lengths i, j, k (see Figure 2). In this context,
we will also write K[ for the graph G introduced in the proof of Theorem 5.

— <
Nij.k

e —a

Sijk

1 vertices i vertices

..... _. ....‘_.
J vertices 7 vertices
...... — e ¢ —e
k vertices k vertices

Figure 2. The graphs S; j x, N; jx and GY.

The following statement, which is the main result of this section, characterizes
all forbidden pairs X,Y for which there is a constant kxy such that G being
(X,Y)-free implies rve(G) < diam(G) + kxy. By virtue of Theorem 5, we
exclude the case that one of X,Y is an induced subgraph of P;. Recall that the
net is the graph N = Ny q 1.

Theorem 6. Let X,Y # Ps or Py be a pair of connected graphs. Then there is
a constant kxy such that every connected (X,Y)-free graph G satisfies rvc(G) <
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diam(G) + kxy if and only if (up to symmetry) X = Ps and Y ' KP (r > 4),
or X'C S5 andY 'C N.

The proof of Theorem 6 will be divided into three separate results: we prove
the necessity in Proposition 2, and Theorems 7 and 8 will establish the sufficiency
of the forbidden pairs given in Theorem 6.

Proposition 2. Let X,Y # P3 or Py be a pair of connected graphs for which
there is a constant kxy such that every connected (X,Y)-free graph G satisfies

rve(G) < diam(G)+kxy. Then (up to symmetry) X = Ps andY ' K (r > 4),
or X %D S122 and Y %D N.

Proof. Let t > 2kxy + 5, and let (see Figure 2)
o GL=Ni_14-1,4-1;
e G be the graph obtained by attaching a pendant edge to each vertex of a
cycle Ct.

We will also use the graphs G} and G%(= K[') shown in Figure 1.

For the graphs G% and G, we have diam(G}) = 4 but rvc(Gi) =t + 1, and
diam(GY) = 3 but rvc(Gh) = t, respectively. For the graph G%, we observe that
diam(GY) = 2t — 1 while rvc(G%) = 3(t — 1) = 3(diam(G%) — 1), since all internal
vertices must have mutually distinct colors. Analogously, for the graph GY, we
have diam(GY) = | 5] + 2, but rve(GY) =t > 2(diam(GY) — 2). Thus, each of
the graphs G%, G}, G4 and G must contain an induced subgraph isomorphic to
one of the graphs X,Y.

Consider the graph GY. Up to symmetry, we have that X is an induced
subgraph of GY excluding P3 and P;. Now we consider the graph G%. Obviously,
G is X-free, since G} is K 3-free. Hence, G contains Y, implying YV’ INCD Kf} for

some 1 > 3 (for r < 2 we get YV HéD Py, which is excluded by the assumptions).
Now we consider the graph G%. There are two possibilities.

IND IND
(i) Y C GL. ThenY C N. Now we consider the graph G. G is N-free, so
we get X INCD S12,2.
(i) X & GY. Then X = P5. As the case X = P; and Y = N is already covered
by case (i), we have that X = P; and Y ' Kl or>4.
This completes the proof. [

IND
It is easy to observe that if X C X', then every (X,Y)-free graph is also
(X', Y)-free. Thus, when proving the sufficiency of Theorem 6, we will be always
interested in mazimal pairs of forbidden subgraphs, i.e., pairs X,Y such that, if
IND
replacing one of X,Y, say X, with a graph X’ # X such that X C X', then the
statement under consideration is not true for (X', Y')-free graphs.
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Theorem 7. Let G be a connected (Ps, K")-free graph for some r > 4. Then
rve(G) < diam(G) +r.

Proof. From Theorem 4, we have that G has a dominating clique or a dominat-
ing Ps.

Case 1. G has a dominating Ps. We color the vertices of P3 with colors 1,2, 3
and color the remaining vertices arbitrarily (e.g., all of them have color 1). One
can easily check that this vertex-coloring can make G rainbow vertex-connected.
So, in this case, rvc(G) < 3 < diam(G) +r.

Case 2. G has a dominating clique, denoted by K. Set W = V(G)\V (K}),
H = G\E(K,). Let A be an independent set in G[W] and B C V(K,) such
that H[A U B] = (K5 (that is, a matching of order ¢) and ¢ is maximal. Then
¢ < r, for otherwise, G[A U B] contains an induced K. Moreover, for z € W\A,
Naup(x) # 0, since £ is maximal. Now we define the following vertex-coloring of
G. Use colors 1,2,...,¢ to color each vertex in B, color the vertices of A with
color ¢ + 1, the vertices of V(K,)\B with color ¢ + 2, and color the remaining
vertices arbitrarily (e.g., all of them have color 1). Thus, pairs of vertices in
(AU V(K,)) x V(G) are rainbow vertex-connected. As for z1,zo € W\A, let
y1 € Naup(71), y2 € Ng,(22). Then there is a vertex-rainbow (x1,x2)-path
containing y; and ya2. So, rve(G) <L+ 2 <r+1 < diam(G) +r.

The proof is complete. ]

Now let G be an (S} 22, N)-free graph, let z,y € V(G), and let P : x =
V0, V1, ...,V =y (k> 3) be a shortest (z,y)-path in G. Let z € V(G)\V(P). If
|INp(2)| > 2 and {v;,v;} C Np(z), then |i — j| <2 and |[Np(z)| < 3, since P is a
shortest path. Moreover, the following facts are easily observed.
e If [Np(2)| =1, then, since G is Sy 22-free, z is adjacent to x, vy, vk_1 or y.
e If [Np(2)| = 3, then the vertices of Np(z) must be consecutive on P, since
P is a shortest path.

This motivates the following notations:

o A, :={2e€V(G)\V(P)|Np(z) ={v;}} fori=0,1,k — 1, k;

o Li:={ze V(G)\V(P)|Np(z) = {vi—1,vi41}} for 1 <i <k —1;

o M;:={ze€V(G)\V(P)|Np(z) ={vi—1,v;}} for 1 <i < k;

o N;:={z€ V(G)\V(P)|Np(z) ={vi—1,vi,vit1}} for 1 <i <k —1.
We further set S = V(P)U Ng(P) and R =V (G)\S.

Lemma 1. Let G be an (S12.2,N)-free graph, let x,y € V(G) be such that
distg(z,y) > 4 and let P : x = vy, v1,..., 0 =y, be a shortest (x,y)-path in G.
Then

(i) Ng(M;)C S, i=2,....k—1;
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2z

(R)CA()UMlLJNlUNk,lUMkUAk.

Proof. 1f zv € E(G) for some z € Rand v € M;, 2 < i < k — 1, then we
have G[{vi—2,vi—1,v;, viy1,v,2}] =~ N, a contradiction. Hence, (i) follows. To
show (ii), we observe that if zv € E(G) for some z € R and v € N;, 2 <
i < k — 2, then we have G[{vi—2,vi—1,Vit1,Vi+2,v,2}] =~ Si292, a contradic-
tion. Similarly, for (iii), if zv € E(G) for some z € R and v € L;; 1 <
i < k — 1, then for i = 1 we have G[{vi,v2,v3,04,v,2}] =~ Sia9, for 2 <
i < k — 2 we have G[{z,v,vi—1,vi—2,Vit1,Vit2}| =~ S122, and for i = k — 1,
Gl{vk—1,vk—2,Vk—3, Vk—4,v,2}] =~ S122, a contradiction. Part (iv) follows im-
mediately from the definition of R, and by (i) through (iii), we have Ng(R) C
AgUA UMy UNyUNg_ 1 UM UAg_1UAg. Butif zv € E(G) for some z € R
and v € Ay, then G[{vg,v1,v2,v3,v,2}] =~ S22, a contradiction. Similarly, we
have N4, ,(R) =0, implying (v).

The proof is complete. [

Theorem 8. Let G be a connected (S1,2,2, N)-free graph. Then rve(G) < diam(G)
+11.

Proof. Let G be a connected (51,22, N)-free graph. If diam(G) < 2, then rvc(G)
= diam(G)—1. Thus, for the rest of the proof we suppose that diam(G) = d > 3.
Let vg,vg € V(G) be such that distg(vg,vq) = d, let P : vovivg - --vg be a dia-
meter path in G, and let A;, L;, M;, N;, S, R be defined as above.

We distinguish three cases according to the value of d.

Case 1. d = 3. First, we partition V(G) into four parts P, Ng(P), N4(P) and
NZ(P) according to the distance from P. Then, for the vertices in Ng(P), we can
partition them into three parts X1 = AgU M UL UN7, Xo = A3UM;3U Lo U Ny
and X3 = A1 U My U As. We must point out that X; N Xy = () and Ngr(X3) =0,
whose proof is similar to that of Lemma 1. Then we denote Y; the set of vertices in
NZ(P) such that for each v € Vi, Ny(p)(v) C Xj,i = 1,2, and Y3 = N&(P)\(Y1U
Y2). With a similar reason as above, NNg(p) (Y3) = 0. So, analogously we can
partition Ng(P) into three parts Z1, Zo and Z3. It should be noticed that Z; = 0;
otherwise there exists a vertex z € Z; such that distg(z,v3) > 4, a contradiction.
Symmetrically, we have Zy = ().

Now, we define a vertex-coloring of G that uses at most 14 colors. Color
the vertices of P with colors 0, 1,2, 3 and color the vertices in Ag, M1, L1, N1, No,
Lo, M3, A3, Y7 and Yo with colors 4,5, ...,13, respectively. Then color the re-
maining vertices arbitrarily (e.g., all of them have color 0). We can show that
this vertex-coloring can make G rainbow vertex-connected. We only need to
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verify that for a pair of vertices z,y € (Y7 x Y1) U (Y2 X Y3), there exists
a vertex-rainbow path connecting them. Without loss of generality, we sup-
pose (z,y) € Y1 x Y1. If distg(z,y) < 2, then there is nothing left to do.
Next we consider the case distq(z,y) > 3. Let 2/ be an arbitrary neighbor
of z in Xy, and ¢/ an arbitrary neighbor of y in X;. We claim that 2’ and
1y cannot have the same color. Otherwise, we suppose that z’ and 3/ are col-
ored with the same color, i.e., they are in the same vertex-class of X1, and let
i =max{j | v; € Np(2')NNp(y')}. Then we have G[{v;,vit1,2",y,z,y}] ~ S122
if 'y’ ¢ E(G), or Gl{vi,vit1,2",y,z,y}] ~ N if 2/y/ € E(G), respectively. So,
the colors of 2/ and ¢’ must be different. Then the (z,y)-path P; : xz'vey'y is
vertex-rainbow. Hence, we have rve(G) < diam(G) + 11.

Case 2. d = 4. Similarly, with the partition and the vertex-coloring of Case 1,
we can get that rve(G) < 15 = diam(G) + 11.

Case 3. d > 5. Set B, = (Uf:_g Nz) U <U;l:_21 Mz) U (Uj:_ll Lz> UATUAz 1 U
{vl,vg,...,vd_l}, X =AyUM{UN{UNz_1UMzUAy, X1 = AgUM;UN7, and
X9 = Nyg_1UMyU Ay. By virtue of Lemma 1, we have Ng(B.) C S.

Subcase 3.1. B is a cut-set of G. We claim that SUNg(S) = V(G). Suppose,
to the contrary, that z € R is at distance 2 from S. Then, by Lemma 1 and the
assumption of Case 1, as well as the symmetry, we can assume that N2(z) C X;.
Let @ be a shortest (z, vg)-path, let w be the first vertex of @ in B, (it exists by the
assumption of Subcase 3.1), and let w™ be the predecessor of w on Q). By Lemma
1, dist(w™, P) = 1, implying w~ € X;. Then distg(w™,vq) > d — 1; otherwise,
the path vow™Qug is a (vg,vg)-path shorter than P. Since distg(z,w™) > 2,
we have distg(z,vy) > d + 1, contradicting diam(G) = d. Hence, we have
S U Ng(S) = V(G). Moreover, with a similar argument to that of Case 1, we
have that for z,y € R with distance at least 3, their neighbors 2’ and 3’ cannot
be in the same vertex-class of X.

Now we define a vertex-coloring of G that uses at most d + 7 colors. Color
the vertices of P with colors 0,1, ..., d and color the vertices in Ay, M7y, N1, Ng_1,
M, and Ag with colors d + 1,d + 2,...,d + 6, respectively. Then color the
remaining vertices arbitrarily (e.g., all of them have color 0). We can show
that this vertex-coloring can make G rainbow vertex-connected. For any pair of
vertices in S X (SUR), we can easily find a vertex-rainbow path connecting them.
For a pair (z,y) € R x R, if distg(x,y) < 2, then there is nothing left to do.
Next we consider distg(x,y) > 3. From above, we know that their neighbors
and y' in X are colored differently. So, the (z,y)-path containing z’ and ¥y’ is
vertex-rainbow. Consequently, we have rve(G) < diam(G) + 7.

Subcase 3.2. B is not a cut-set of G. Set H = G — B.. Let P’ : vgugyqy---
Vdt+6—1V4+¢ = vo be a shortest (vg,vp)-path in H. Since P is a diameter path,
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£>d>5.If vgyq is adjacent to vg_s, then G[{vg, Vg1, V-2, Vi—3, Vd+2, Va+3}] =~
S1,2,2, a contradiction. So, vg41 € AgU M. Similarly, we have vgip—1 € AgUMj.

Set P : vg_10qvgs1 if vg_1v4s1 € E(G), or P : vg_1vgy1 if vg_1vq41 € B(G),
respectively. Similarly, set P? : vgyy_1vov1 if vgyr_1v1 € E(G), or P : vgyp_qv;
if vgro_1v1 € E(G), respectively. Finally, set C : vi Pvg_i Pgy1 P'vgye_1POv1.
Then C'is a cycle of length at least 2d — 2.

Claim 1. The cycle C' is chordless.

Proof. This proof can be found in [5]. But for the sake of completeness, we
provide the proof here. Suppose, to the contrary, that v;v; € E(G) is a chord
in C. Since both P and P’ are chordless, we can choose the notation such that
1<i<d—1landd+1<j<d+/{—1. Since vj € V(P'), we have v; ¢ B, by
the definition of P’, implying ¢ = d — 1 and v; € My, or, symmetrically, i = 1
and v; € M. This implies that in the first case v; = v441; in the second case
vj = vg4s—1; and in both cases v;v; € E(C) by the definition of C. Thus, C is
chordless. 0

Claim 2. ¢/ < d+ 2.

Proof. Assume that ¢ > d+3, and let @ be a shortest (vo, v4+2)-path in G. Then
|E(Q)| < d (since diam(G) = d). Since £ > d+3 and P’ is shortest in H = G— B,
we have dist g (vo, vg12) > d+1. So, Q must contain a vertex from B.. Let w be the
last vertex of @ in B, and let w™ and w™ be its predecessor and successor on Q,
respectively (they exist since vy, ¢ B. by the definition of P'). By Lemma 1, w™
is at distance at most 1 from P. Since clearly w™ ¢ {vg, v}, either wtvy € E(G)
or whyy € E(G). If whryy € E(G), then vgwQugis is a (v, vgre)-path shorter
than @, a contradiction. Thus, wtvy € E(G). Now, wt # wvg.o since P’ is
chordless, implying distg(vg,w™) < d — 1. On the other hand, distg(vg, w™) >
d—1; otherwise, vgQuwt vy is a (vg, vq)-path of length at most d — 1, contradicting
the fact that P is a diameter path. Hence, distg(vo,w™) = d — 1, implying
that distg(vo,w) = d — 2 and whvgre € E(Q). Since vgi2,v4+3 € R, we have
G[{vd+3, Vat2, va, wh,w,w™ }] =~ Sy 9.9, a contradiction. Hence, £ < d + 2. 0

Claim 3. C U Ng(C) = V(G), and every vertex in V(G)\V(C) has at least 2
neighbors in C.

Proof. Suppose that a vertex z € V(G)\V(C) at distance 1 from C has exactly
one neighbor in C, and set No(z) = {y}. Let 21,20 € NZ(z), and let 2,2} €
Ng(z). Then we have G[{x,y, 21, 29, 2, 24 }] = S1,22, a contradiction.

Secondly, suppose, to the contrary, that z € V(G) is at distance 2 from C,
and y is a neighbor of z at distance 1 from C. Then distg(z, P) > 2; otherwise,
Yy = vg or y = vy, without loss of generality, we assume y = vy. Then v
must be adjacent to vgi¢—1, and thus, G[{z,y,v1,v2, V44¢-1,Vi+e—2}] =~ N, a
contradiction. Hence, z € R. If y € R, then y is not adjacent to any of vy, v
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and vs. If y ¢ R, then we have y € X. Without loss of generality, we assume
y € Xo. Then y is not adjacent to any of vi,ve and vs. Moreover, from above
we know that y has at least 2 neighbors in C. Let z1, 22 € N¢(y) be the vertices
closest to v; and v, respectively. Let z} and zf, be their neighbors that are
closer to v; and vs in C, respectively. Then G[{y, z,z1, 22,2}, 25} ~ S22 if
z1xe ¢ E(G), or G{y, z, 21, 2,2, 25} ~ N if 129 € E(G), respectively. Thus,
C is a dominating set of G. 0

By Claims 1 and 2, we know that C is a chordless cycle of length at most
d+ /¢ < 2d+ 2. Now, we define a vertex-coloring of GG that uses at most d 4+ 1
colors. Relabel C' : z1x9 - zprpi1(= 21), 8 < 2d — 2 < k < 2d + 2. Then we
assign color i to the vertex x; if 1 < i < [%1 and assign color 7 — [%1 to x; if
[%W < i < k. We color the remaining vertices arbitrarily. We can show that this
vertex-coloring can make G rainbow vertex-connected.

From Theorem 1 and Claim 3, we know that under this vertex-coloring,
pairs in C' x V(G) are rainbow vertex-connected. For each vertex z € Ng(C'), we
may strengthen the result of Claim 3 that z has at least two neighbors colored
differently in C. Otherwise, we suppose that z; and zo are the only two neigh-
bors of z having the same color in C. From the vertex-coloring, we know that
disto(z1,29) = L%j > 4. Then we can easily find an induced S22, a contradic-
tion. So, for a pair (z,y) € Ng(C) x Ng(C), we can find a vertex ' € Ne(x)
and a vertex y' € N (y) such that 2’ and 4’ are colored differently. Since there
exists a vertex-rainbow path P connecting 2’ and 3’ and the internal vertices of
P are colored differently from z’ and 3/, the path zz'Py'y is vertex-rainbow and
connects x and y. Hence, rvc(G) < d+ 1.

The proof of Theorem 8 is complete. [
Combining Proposition 2 with Theorems 7 and 8, we have proved Theorem 6.

Acknowledgements

The authors are very grateful to the referees for valuable comments and sugges-
tions, which helped to improve the presentation of the paper. This work was
supported by NSFC Nos. 11371205 and 11531011, and PCSIRT.

REFERENCES

[1] G. Bacsé and Zs. Tuza, Dominating cliques in Ps-free graphs, Period. Math. Hungar.
21 (1990) 303-308.
doi:10.1007/BF02352694

[2] J.A. Bondy and U.S.R. Murty, Graph Theory (GTM 244, Springer-Verlag, London,
2008).

[3] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in
graphs, Math. Bohem. 133 (2008) 85-98.


http://dx.doi.org/10.1007/BF02352694

154 W. L1, X. L1 AND J. ZHANC

[4] L. Chen, X. Li and Y. Shi, The complezxity of determining the rainbow wvertex-
connection of a graph, Theoret. Comput. Sci. 412 (2011) 4531-4535.
doi:10.1016/j.tcs.2011.04.032

[5] P. Holub, Z. Ryjacek, I. Schiermeyer and P. Vréna, Rainbow connection and foridden
subgraphs, Discrete Math. 338 (2015) 1706-1713.
doi:10.1016/j.disc.2014.08.008

[6] M. Krivelevich and R. Yuster, The rainbow connection of a graph is (at most) re-
ciprocal to its minimum degree, J. Graph Theory 63 (2010) 185-191.
doi:10.1002/jgt.20418

[7] S. Li, X. Li and Y. Shi, Note on the complezity of decidining the rainbow (vertez-)
connectedness for bipartite graphs, Appl. Math. Comput. 258 (2015) 155-161.
doi:10.1016/j.amc.2015.02.015

[8] X. Li and S. Liu, Tight upper bound of the rainbow vertez-connection number for
2-connected graphs, Discrete Appl. Math. 173 (2014) 62-69.
doi:10.1016/j.dam.2014.04.002

[9] X. Li and Y. Shi, On the rainbow vertex-connection, Discuss. Math. Graph Theory
33 (2013) 307-313.
doi:10.7151/dmgt.1664

[10] X.Li, Y. Shiand Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin.
29 (2013) 1-38.
doi:10.1007/s00373-012-1243-2

[11] X. Li and Y. Sun, Rainbow Connections of Graphs (SpringerBriefs in Math.,
Springer-Verlag, New York, 2012).

Received 25 February 2016
Revised 21 October 2016
Accepted 21 October 2016


http://dx.doi.org/10.1016/j.tcs.2011.04.032
http://dx.doi.org/10.1016/j.disc.2014.08.008
http://dx.doi.org/10.1002/jgt.20418
http://dx.doi.org/10.1016/j.amc.2015.02.015
http://dx.doi.org/10.1016/j.dam.2014.04.002
http://dx.doi.org/10.7151/dmgt.1664
http://dx.doi.org/10.1007/s00373-012-1243-2
http://www.tcpdf.org

