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The strong chromatic index of a graph G, denoted by χ′

s(G), is the minimum
number of vertex induced matchings needed to partition the edge set of G. Let
T be a tree without vertices of degree 2 and have at least one vertex of degree
greater than 2. We construct a Halin graph G by drawing T on the plane and
then drawing a cycle C connecting all its leaves in such a way that C forms the
boundary of the unbounded face. We call T the characteristic tree of G. Let
G denote a Halin graph with maximum degree ∆ and characteristic tree T . We
prove that χ′

s(G) 6 2∆ + 1 when ∆ > 4. In addition, we show that if ∆ = 4
and G is not a wheel, then χ′

s(G) 6 χ′

s(T ) + 2. A similar result for ∆ = 3 was
established by Lih and Liu [21].
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1. Introduction

Let G be a simple graph. The distance between two edges e and e′ in G is the
minimum k for which there is a sequence e = e0, e1, . . . , ek = e′ of distinct edges
such that for 1 6 i 6 k, ei−1 and ei share an end vertex. A strong edge-coloring

of a graph is a function that assigns to each edge a color such that any two edges
with distance at most two must receive different colors. A strong k-edge-coloring
is a strong edge-coloring using k colors. The strong chromatic index of a graph
G, denoted by χ′

s(G), is the minimum k such that G admits a strong k-edge-
coloring. The pre-image of each color in a strong edge-coloring is an induced
matching. Thus, the strong chromatic index is also the minimum number of
vertex induced matchings needed to partition the edge set of G.

Denote the maximum degree of a graph G by ∆(G) (or, simply by ∆ when
G is clear in the context). A trivial upper bound is that χ′

s(G) 6 2∆(G)2 −
2∆(G) + 1. Fouquet and Jolivet [13] established a Brooks type upper bound
χ′

s(G) 6 2∆(G)2 − 2∆(G), which is not true only for G = C5 as pointed out by
Shiu and Tam [24]. The following conjecture was posed by Erdős and Nešetřil
[10, 11].

Conjecture 1. For any graph G of maximum degree ∆,

χ′

s(G) 6

{

5

4
∆2 if ∆ is even;

5

4
∆2 − 1

2
∆+ 1

4
if ∆ is odd.

For graphs with maximum degree ∆(G) = 3, Conjecture 1 was verified by An-
dersen [1] and by Horák, Qing and Trotter [18], independently. For ∆(G) = 4,
while Conjecture 1 asserts that χ′

s(G) 6 20, Horák [17] obtained χ′

s(G) 6 23 and
Cranston [8] proved χ′

s(G) 6 22. For general graphs G with maximum degree ∆,
Molloy and Reed [22] showed that χ′

s(G) 6 1.998∆2. Most recently, this bound
has been improved by Bruhn and Joos [4] to 1.93∆2.

Strong edge-coloring for planar graphs has been investigated by many au-
thors. Fouquet and Jolivet [13, 14] first studied strong edge-coloring for cubic
planar graphs. Let G be a planar graph with maximum degree ∆ and girth g.
Faudree et al. [12] proved that χ′

s(G) 6 4∆ + 4. Bensmail et al. [2] established
the bound χ′

s(G) 6 3∆ + 1 for g > 6. Hudák et al. [19] showed χ′

s(G) 6 3∆ if
g > 7, and the bound is sharp for some subcubic (that is, ∆ 6 3) planar graphs.
Furthermore, Hocquard et al. [16] showed that χ′

s(G) 6 9 for subcubic planar
graphs G which do not contain cycles of lengths 4 or 5. DeOrsey et al. [9] re-
cently reduced this bound to χ′

s(G) 6 5 if g > 30. For planar graphs with large
girth, Borodin and Ivanova [3] established a rather tight bound χ′

s(G) 6 2∆− 1
if g > 40⌊∆/2⌋+ 1; Chang et al. [7] further confirmed that the bound also holds
if g > 10∆ + 46. Clearly, the bound χ′

s(G) 6 2∆ − 1 becomes sharp when G
contains two adjacent vertices of maximum degree ∆.
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By definition, a trivial lower bound of χ′

s(G) for a graph G would be σ(G),
where

σ(G) := max{degG(u) + degG(v)− 1 | uv ∈ E(G)}.

If G has no edges, then define σ(G) = 0. It is known and easy to verify that
for a tree T , we have χ′

s(T ) = σ(T ). Wu and Lin [25] proved that if σ(G) 6 4
and G is not isomorphic to the graph of the 5-cycle with a chord connecting two
non-adjacent vertices, then χ′

s(G) 6 6. Recently, Chang and Duh [5] assert that
χ′

s(G) = σ(G) if G is a planar graph with σ(G) = σ > 5, σ > ∆(G)+2, and girth
g > 5σ+16. This result implies that a planar graph with large girth behaves like
a tree locally.

A Halin graph is a plane graph G constructed as follows. Let T be a tree with
at least 4 vertices, called the characteristic tree of G. All vertices of T are either
of degree 1, called leaves, or of degree at least 3. We draw T on the plane. Let C
be a cycle, called the adjoint cycle of G, connecting all leaves of T in such a way
that C forms the boundary of the unbounded face. We usually write G = T ∪C
to reveal the characteristic tree and the adjoint cycle. For n > 3, the wheel Wn

with n + 1 vertices is a particular Halin graph whose characteristic tree is the
complete bipartite graph K1,n (called a star). A graph is said to be cubic if the
degree of every vertex is 3. For h > 1, a cubic Halin graph Neh, called a necklace,
was introduced in [23]. Its characteristic tree T consists of the path v0, v1, . . . , vh,
vh+1 and leaves v′1, v

′

2, . . . , v
′

h such that the unique neighbor of v′i in T is vi for
1 6 i 6 h and vertices v0, v

′

1, . . . , v
′

h, vh+1 are connected in this order to form the
adjoint cycle Ch+2.

Lai, Lih and Tsai [20] proved the following result.

Theorem 2 [20]. If a Halin graph G = T ∪C is different from a certain necklace

Ne2 and any wheel Wn, n 6≡ 0 (mod 3), then χ′

s(G) 6 χ′

s(T ) + 3.

For cubic Halin graphs, Lih and Liu improved the above bound as follows.

Theorem 3 [21]. A cubic Halin graph G different from Ne2 or Ne4 satisfies

χ′

s(G) 6 7.

The exact values of χ′

s(G) for special families of cubic Halin graphs were deter-
mined by Shiu and Tam [24] and by Chang and Liu [6].

For a Halin graph G = T ∪C with maximum degree ∆, since χ′

s(T ) 6 2∆−1,
the bound in Theorem 2 implies that χ′

s(G) 6 2∆+2. We improve this bound and
establish a result similar to Theorem 3 for Halin graphs of maximum degree 4.

Theorem 4. Let G be a Halin graph with maximum degree ∆ > 4. Then χ′

s(G) 6
2∆ + 1.

Theorem 5. Let G = T ∪C be a Halin graph with maximum degree ∆ = 4, and
let G be different from a wheel. Then χ′

s(G) 6 χ′

s(T ) + 2.
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Both bounds in Theorems 4 and 5 are sharp. Consider the graph G in
Figure 1. A strong edge-coloring of G must use at least 7 colors on the edges
incident to u or v. Let these colors be {1, 2, . . . , 7}. Next, since the edges w1

and w2 must use colors different from {1, 2, . . . , 7}, at least 8 colors are needed.
Assume that we only have 8 colors. Then w1 and w2 must be colored by the
same new color, say color 8. This implies that the four edges e1, e2, e3, e4 shown
in Figure 1 only have three admissible colors, from the set {5, 6, 7}, which is a
contradiction as these edges must receive different colors. Hence χ′

s(G) > 9. By
coloring e1, e2, e3, e4 with colors 5, 6, 7, 9 and the last edge with color 4, it
follows that χ′

s(G) = 9. This example shows that both bounds in Theorems 4
and 5 are sharp.

2
u

4
v

6

w2e4

e1 w1

e2

e3

3

1

7

5

Figure 1. An example showing sharp bounds of Theorems 4 and 5.

2. Proof of Theorem 4

A double star is a tree with exactly two non-leaf vertices. Denote by Da,b a double
star, where a, b are the degrees of the two non-leaf vertices and a 6 b. Prior to
the proof of Theorem 4, we quote several known results as follows.

Lemma 6 [20]. Let G = T ∪ C be a Halin graph. If T = Da,b is a double star

with a 6 b, then

χ′

s(G) =











χ′

s(T ) + 4 if a = b = 3;

χ′

s(T ) + 2 if a = 3 and b > 4;

χ′

s(T ) + 1 if a > 4.

If T = K1,k (that is, G is a wheel Wk), then

χ′

s(Wk) =







k + 3 if k ≡ 0 (mod 3);
k + 5 if k = 5;
k + 4 otherwise.
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Lemma 7 [23]. Suppose h > 1. Then

χ′

s(Neh) =















6 if h is odd;
7 if h > 6 and h is even;
8 if h = 4;
9 if h = 2.

Proof of Theorem 4. Let G = T ∪C be a Halin graph with ∆(G) > 4. If T is a
star or a double star, by Lemma 6, the conclusion of Theorem 4 follows. Assume
that T is neither a star nor a double star. We proceed by induction on |C|, the
length of C. The shortest length of C is 6. Three possible graphs along with
their corresponding strong edge-colorings satisfying the desired upper bounds are
shown in Figure 2. So the result follows.
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Figure 2. All Halin graphs with |C| = 6 and ∆(G) = 4.

Assume |C| > 7. Let P = u0, u1, . . . , ul be a longest path in T with length l.
As T is neither a star nor a double star, so l > 4. Without loss of generality, we
assume degG(ul−1) > degG(u1).

Denote u1 = v, u2 = u, u3 = w, and label the k > 2 leaf neighbors of v as
v1, v2, . . . , vk. Since P is a longest path in T , it is easy to see that v1, v2, . . . , vk
must be on the adjoint cycle C. Let x1, x2, y1, y2 be vertices on C, where x1 is
adjacent to v1 and x2; y1 is adjacent to vk and y2. Let x3 and y3 be vertices not
on C, where x1x3 and y1y3 are edges in T (see Figure 3).

Since G is a Halin graph and u is a vertex of degree at least 3, there exists a
path P ′ in T from u to x1 or from u to y1 with P ∩ P ′ = {u}. Without loss of
generality, we shall assume that P ′ is from u to y1. By our assumption that P
is a longest path, it must be that |P ′| 6 2. Thus, either u = y3 or u is adjacent
to y3.

In the following, we denote by G′ = T ′ ∪ C ′ the Halin graph obtained by
adding some new edges to an induced subgraph of G such that |C ′| < |C| and
∆(G′) 6 ∆(G). If ∆(G′) > 4, then χ′

s(G
′) 6 2∆(G)+1 holds because T ′ is a star

or double star (see the beginning of the proof) or by the inductive hypothesis
as |C ′| < |C|. If ∆(G′) = 3, then χ′

s(G
′) 6 9 6 2∆(G) + 1 by Theorem 2,
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Lemma 6, and because ∆(G) > 4. In the following case analysis these steps will
be repeatedly used, while may not be mentioned explicitly all the time.

v1

v u w

y2y1

vk

v3

v2

x1 x2

x3

y3

P

Figure 3. The neighborhood around one end of the longest path P .

We call G′ a reduction of G. Depending on various situations, different types
of G′ are created. In the corresponding figures, the dashed lines represent new
edges added in G′, and dark vertices represent the vertices that are temporarily
deleted from G.

Let ψ be a strong edge-coloring of G′ using the minimum number of colors.
A strong edge-coloring φ of G is obtained as follows. We color the edges that are
in both G and G′ by the same colors used in ψ, i.e., let φ(e) = ψ(e) for every
e ∈ E(G) ∩ E(G′). For edges in e ∈ E(G) \ E(G′), we develop different coloring
schemes for different cases, and in each case, we give a strong edge-coloring φ for
G with at most 2∆(G) + 1 colors.

Case A. degG(v) = 3. There are three possibilities to consider.

Case A.1. u = y3. Obtain the reduction G′ of G by adding two new edges
vx1 and vy1 to the induced subgraph of G on the vertex set V (G) \ {v1, v2}, as
indicated in Figure 4. Clearly, ∆(G′) = ∆(G) > 4 and |C ′| < |C|.

Without loss of generality, assume that ψ(vx1) = 1 and ψ(vy1) = 2. Let
φ(v1x1) = 1 and φ(v2y1) = 2 (see Figure 4). We find admissible colors w1, w2,
and w3, one by one. The colors that can not be assigned to vv1 are from {1, 2,
t1, t2} and the labels used by edges incident to u. Therefore, there are at most
∆(G) + 4 forbidden colors for vv1. Since ∆(G) > 4, there exists an admissible
color for vv1. Color vv1 by such an admissible color w1.

Next we color vv2 which has the forbidden colors in {1, 2, w1, s} and the
labels used for edges incident to u. Similarly, we can find an admissible color for
vv2. Finally, the forbidden colors for v1v2 are in {1, 2, w1, w2, r1, r2, s, t1, t2}. If
s ∈ {t1, t2}, then there is an admissible color for v1v2. Otherwise, we re-color vv1
by s, creating an admissible color for v1v2.
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v
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sy1
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1
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Figure 4. Case A.1.

Case A.2. u is adjacent to y3, and ∆(G) > 5. Obtain the reduction G′ in the
same way as in Case A.1, as indicated in Figure 5. Clearly, ∆(G′) = ∆(G) > 4
and |C ′| < |C|.

v
r

u w

y2s1

y1

2

v2

w3

v1

1

x1
t1 x2

x3t2

w1

w2

y3
s2

1

2

Figure 5. Case A.2.

Without loss of generality, assume that ψ(vx1) = 1 and ψ(vy1) = 2. Let
φ(v1x1) = 1 and φ(v2y1) = 2 (see Figure 5). We find admissible colors w1, w2,
and w3, one by one. By the same argument as in Case A.1, one can easily show
that there exists an admissible color w1. Color vv1 by such an admissible color.

Next we color vv2 which has the forbidden colors in {1, 2, w1, s1, s2} and the
labels used for edges incident to u. Since ∆(G) > 5, we can find an admissible
color w2. Finally, the forbidden colors for v1v2 are in {1, 2, w1, w2, r, s1, s2, t1, t2}.
Thus, there exists an admissible color w3.

Case A.3. u is adjacent to y3, and ∆(G) = 4. Then degG(y3) is either
3 or 4. Obtain the reduction G′ from G with partial labels to some vertices
as indicated in Figure 6(a) and 6(b), respectively. Clearly, ∆(G′) 6 ∆(G) and
|C ′| < |C|. Assume that degG(y3) = 3. Then ∆(G′) = ∆(G) = 4. We find
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admissible colors w1, w2, and w3, one after another. For v1v2, the forbidden
colors are in {1, 2, 3, r1, t1, t2}. Hence there is an admissible color w1 for v1v2.
Next, the forbidden colors for y1y2 are in {1, 2, 3, w1, r2, s1, s2}. We can color
y1y2 by an admissible color w2. Finally, the forbidden colors for v2y1 are in
{1, 2, 3, w1, w2, r1, r2}. Again, there exists an admissible color w3 for v2y1.

v
r1

u w

y3

2

y2

w2y1

w3

v2

w1

v1

1

x1
t1 x2

t2 x3

2

3 r2

1

3 z1
s1 z2

s2 z3

1

2

3

(a) deg
G
(y3) = 3.

v
4

u w

z2
s1z13

z
w3

y2
4

y1

w4

v2

w2

v1

1

x1
t1 x2

t2 x3

2

3
ry3

w1

1 2 s2 z3

1

2

3

(b) deg
G
(y3) = 4.

Figure 6. Case A.3.

Assume degG(y3) = 4. Note, even if ∆(G′) = 3 or T ′ is a star (or double
star), we can still find a strong edge coloring for G′ by up to 9 colors. The
forbidden colors for y1y3 are in {1, 2, 3} and labels used on edges incident to u.
Thus there are at most ∆(G)+3 forbidden colors. We color y1y3 by an admissible
color w1. Next, the forbidden colors for v1v2 are {1, 2, 3, 4, w1, t1, t2}. Because
2∆(G)+1 > 9, we can find an admissible color w2 for v1v2. The forbidden colors
for y2z are in {1, 2, 3, 4, w1, r, s1, s2}. Again, there is an admissible color w3 for
y2z. Finally, the forbidden colors for v2y1 are from {1, 2, 3, 4, w1, w2, w3, r}. So
there is an admissible color w4 for v2y1.

Case B. degG(v) > 4. We consider two cases separately.

Case B.1. ∆(G) = 4. Then degG(v) = 4. There are two subcases.

Subcase B.1.1. degG(u) = 3. Obtain the reduction G′ of G by adding two
new edges vx1 and vy1 to the induced subgraph of G on the vertex set V (G) \
{v1, v2, v3} as depicted in Figure 7.

Since we assumed earlier that degG(ul−1) > degG(u1) = degG(v) = 4, we
have ∆(G′) = ∆(G) = 4, and |C ′| < |C| holds. We fix colors on some edges as
shown in Figure 7. Note that in Figure 7(a) we assign φ(y1y2) = φ(vv2) = 3
but in Figure 7(b) we assign φ(y1y3) = φ(vv2) = 3 and φ(y1y2) = s. We find
admissible colors w1, w2, w3, and w4.
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(a) u = y3.
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(b) u ∼ y3.

Figure 7. Subcase B.1.1.

For the subcase depicted in Figure 7(a), the forbidden colors for vv1 are in
{1, 2, 3, t1, t2} and the three colors used in the neighborhood of u. Thus, there
are at most 8 forbidden colors, implying there is an admissible color w1 for vv1.
Next, the forbidden colors for vv3 are in {1, 2, 3, w1} and the three colors used in
the neighborhood of u. There is an admissible color w2 for vv3. The forbidden
colors for v1v2 are in {1, 2, 3, w1, w2, r1, t1, t2}, so there is an admissible color w3

for v1v2. Finally, the forbidden colors for v2v3 are in {1, 2, 3, w1, w2, w3, r1, r2}.
Therefore, there is an admissible color w4 for v2v3.

For the subcase depicted in Figure 7(b), the arguments are the same as in
Figure 7(a) except for vv3, which has forbidden colors from {1, 2, 3, w1, r2} and
the three colors used in the neighborhood of u. So there is an admissible color
w2 for vv3.

Subcase B.1.2. degG(u) = 4. We distinguish several cases. In each case
∆(G′) 6 ∆(G) and |C ′| < |C| hold.

(1) u = y3, u is adjacent to neither x1 nor x3, and |{ψ(uw), ψ(uz)}∩{ψ(x1x2),
ψ(x1x3)}| 6 1, where z is the fourth neighbor of u, as shown in Figure 8(a). With-
out loss of generality, assume that ψ(uz) 6∈ {ψ(x1x2), ψ(x1x3)}. Let φ(v1v2) =
ψ(uz) = 3 and φ(v2v3) = ψ(uw) = 4, as indicated in Figure 8(a). Note, t1, t2 6= 3.
The forbidden colors for vv1 are in {1, 2, 3, 4, 5, 6, t1, t2}. So there is an admis-
sible color for w1. Next, the forbidden colors for w2 are in {1, 2, 3, 4, 5, 6, w1, s}.
Again, there is an admissible color for w2. The forbidden colors for w3 are in
{1, 2, 3, 4, 5, 6, w1, w2}, so there is an admissible color for w3.

(2) u = y3, u is adjacent to neither x1 nor x3, and {ψ(uw), ψ(uz)} =
{ψ(x1x2), ψ(x1x3)}, where z is the fourth neighbor of u. Without loss of gen-
erality, we assume that ψ(x1x2) = ψ(uw) = 5 and ψ(x1x3) = ψ(uz) = 7. Let
ψ(uv) = 3, φ(v1v2) = ψ(uy1) = 4, φ(v2v3) = 5, and φ(vv2) = ψ(y1y2) = 6, as
indicated in Figure 8(b). Clearly, the remaining edges vv1 and vv3 can be colored
by any two colors not in the set {1, 2, 3, . . . , 7}.
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Figure 8. Subcase B.1.2.
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(3) u = y3 and u = x3 (that is, u is adjacent to both y1 and x1). Let
φ(v1v2) = ψ(uy1) = 3, φ(v2v3) = ψ(uw) = 4 and φ(vv2) = ψ(y1y2) = 5 as
indicated in Figure 8(c). We find admissible colors w1 and w2. The forbidden
colors for vv1 are in {1, 2, 3, 4, 5, 6, 7, t1}. Hence, there is an admissible color w1

for vv1. Then the forbidden colors for vv3 are in {1, 2, 3, 4, 5, 6, 7, w1}. Thus,
there is an admissible color w2 for vv3.

(4) u is adjacent to y3, u = x3, and degG(y3) = 3. (Symmetrically, u is
adjacent to x3, u = y3, and degG(x3) = 3.) Take P = y1, y3, u, w, u4, . . . , ul as
a longest path, and such a graph was discussed in Subcase A.3 (see Figure 6(b),
where the positions of y3 and v are switched).

(5) u is adjacent to y3, u = x3, and degG(y3) = 4. Let z be the fourth neigh-
bor of y3. (Symmetrically, u is adjacent to x3, u = y3, and degG(x3) = 4.) The
reduction G′ and partial labels are shown in Figure 8(d). The forbidden colors for
vv2 are in {1, 2, 3, 4, 5, 6, 7}. Hence, there is an admissible color w1 for vv2. The
forbidden colors for y2z are in {1, 2, 3, 4, 5, 7, s1, s2}. Thus, there is an admissi-
ble color w2 for y2z. The forbidden colors for y1y3 are from {1, 2, 3, 4, 5, 6, 7, w2},
leaving an admissible color w3 for y1y3.

(6) u is adjacent to both x3 and y3, and degG(x3) = 3 or degG(y3) = 3. Say
degG(x3) = 3 (the other case is symmetric). Then take P = x1, x3, u, w, u4, . . . , ul
as a longest path, and such case has been discussed in Case A (see Figure 6).

(7) u is adjacent to both x3 and y3, and degG(x3) = degG(y3) = 4. The
reduction G′ and partial labels are indicated in Figure 8(e). Since degG(ul−1) >
degG(v) = 4, we have ∆(G′) = ∆(G). The forbidden colors for y2z1 are from
{1, 2, 3, 5, 6, 7, s1, s2}. Hence, there is an admissible color w1 for y2z1. The for-
bidden colors for y2y3 are in {1, 2, 3, 4, 5, 6, 7, w1}. Thus, there is an admissible
color w2 for y2y3. The forbidden colors for vv2 are from {1, 2, 3, 4, 5, 6, 7}. So
there is an admissible color w3 for vv2.

(8) u is adjacent to y3, but not x1 nor x3. Then umust have another neighbor,
say z, besides y3, that is a leaf or distance one away from the adjoining cycle C.
The position of z will be similar to the one in Figure 8(b) (where z might be on
the cycle). We then consider the longest path P ∗ = y1, y3, u, . . . , ul, which falls
in one of the cases discussed earlier.

Case B.2. ∆(G) > 5. Obtain the reduction G′ by adding two new edges vx1
and vy1 to the induced subgraph of G on the vertex set V (G) \ {v1, v2, . . . , vk},
k > 3, as shown in Figure 9. Since degG(ul−1) > degG(v), we have ∆(G) = ∆(G′),
and |C ′| < |C| holds. Without loss of generality, let φ(v1x1) = ψ(vx1) = 1 and
φ(vky1) = ψ(vy1) = 2.

For u = y3 (or u is adjacent to y3, respectively), let φ(vv2) = ψ(y1y2) = 3
(φ(vv2) = ψ(y1y3) = 3, respectively) as indicated in Figure 9(a) (Figure 9(b),
respectively). If degG(v) = 4, then the coloring scheme is the same as the ones
used in Subcase B.1.1.
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Thus we assume degG(v) > 5. We proceed to color the remaining edges, vv1,
vv3, . . . , vvk and vjvj+1, for j = 1, 2, . . . , k − 1.

v u w

y23y1

2
vk

v3

v2

v1
1

x1 t1
x2

t2
x3

3

s

1

2

(a) u = y3.

v u w

y3

y2
sy1

2
vk

v3

v2

v1
1

x1 t1
x2

t2
x3

3

3

1

2

(b) u ∼ y3.

Figure 9. Case B.2.

For u = y3 (see Figure 9(a)), the forbidden colors for vv1 are {1, 2, 3, t1, t2}
and colors used in the neighborhood of u. So there are at most ∆(G)+5 6 2∆(G)
forbidden colors. Hence, there exists an admissible color for vv1. Next we color
vvk, which has forbidden colors {1, 2, 3, φ(vv1)} and the labels used for edges
incident to u. Again, there is an admissible color for vvk. For i = 3, 4, . . . , k − 1,
we color vvi one after another. By direct calculation, the number of forbidden
colors for vvi is at most degG(u)+ degG(v). Hence, we can color all vvi by
admissible colors.

Next we color v1v2, which has forbidden colors {1, t1, t2} and colors used in
the neighborhood of v. Hence there is an admissible color for v1v2. Next we sequ-
entially color vjvj+1 for j = 2, 3, . . . , k−2. Using the assumption that ∆(G) > 5,
one can easily verify that there exists an admissible color at each step. Finally,
the forbidden colors for vk−1vk are {2, s, φ(vk−2vk−1), φ(vk−3vk−2)} and the labels
used in the neighborhood of v. Thus we can find an admissible color for vk−1vk.

For the case that u is adjacent to y3, the argument is the same except for
the edge vvk, which has forbidden colors from {1, 2, 3, s, φ(vv1)} and the labels
used by the edges incident to u. As ∆(G) > 5, we can find an admissible color
for vvk. This completes the proof of Theorem 4.

3. Proof of Theorem 5

Let G = T ∪ C be a Halin graph with ∆(G) = 4, and let G be different from
a wheel. By Theorem 4, if χ′

s(T ) = 7, then χ′

s(G) 6 χ′

s(T ) + 2. So Theorem 5
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holds. Thus we assume χ′

s(T ) = 6. That is, every vertex of degree 4 is adjacent
to vertices of degree 3 only. Similarly to the previous section, we proceed by
induction on |C|, the length of C. If |C| = 4, then G = W4 which contradicts
the assumption. If |C| = 5, then T = D3,4 is a double star. The result follows
by Lemma 6. If |C| = 6, the only three possible graphs are in Figure 2(a), 2(b),
and 2(c). So the result follows.

Similarly to the proof of Theorem 4, we consider a reduction G′ = T ′ ∪C ′ of
G with characteristic tree T ′ and adjoint cycle C ′. If ∆(G′) = 4 and G′ is not a
wheel, then χ′

s(G
′) 6 χ′

s(T
′)+2 6 χ′

s(T )+2 follows by the induction hypothesis,
since |C ′| < |C|. If G′ = W4 or if G′ is a cubic Halin graph different from Ne2,
then χ′

s(G
′) 6 8 = χ′

s(T ) + 2 by Theorem 3, Lemma 6, and Lemma 7. Finally,
the case when G′ = Ne2 is considered at the end of the proof.

Assume |C| > 7. Let P = u0, u1, . . . , ul be a longest path in T , where l is
the length of P . The result holds if T is a double star by Lemma 6 (note that
b > 4). Thus, we assume l > 4. Without loss of generality, we also assume that
degG(u1) 6 degG(ul−1).

Case A. There exists a longest path P with both non-leaf ends of degree 4.
That is, degG(u1) = degG(ul−1) = 4. Then degG(u2) = 3. Consider the following
two cases.

Case A.1. In T , u2 has exactly one neighbor that is a leaf.

u0

1

u1

w1

u2

3

u3x2

x1

2

3 v0
w5

v1

w2

v2

1

y1

4

y2x3

w4

w3

2

5

y3

2

1

Figure 10. Case A.1.

The reduction G′ along with proposed colors for some edges are depicted in
Figure 10. We now find admissible colors w1, w2, w3, w4, and w5. First we can
find an admissible color w1 for u1u2 that is different from 1, 2 and the colors used
in the neighborhood of u3. Next, we can find an admissible color w2 for v1v2
that is not in {1, 2, 3, 4, 5, w1}. Finally, we find three pairwise distinct admissible
colors w3, w4, w5, which are not in {1, 2, 3, w1, w2}.
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Case A.2. In T , none of the neighbors of u2 is a leaf.

Without loss of generality, we assume that the colors assigned by ψ to the
edges incident to u3 are 3, 4, 5, and 6 (if u3 has degree 3, then we only use colors 3,
4, and 5, and ignore the respective edge labeled by 6 in Figure 11). Consider two
possibilities. For the graph depicted in each Figure 11(a) and 11(b) we obtain the
reduction G′ and complete the labeling φ by using only eight colors, respectively.

u0
1 u1 7

u2
8

2

3

u3
4

5 6

x2

x1
2

3
8 6 7

3

1

y1

y2

5
4

4 5

y3x3

2 1

(a)

u0

1

u1

7

u2
3

u3
5

x2

x1

2

3 v0
8 v1

6

v2

3

v3

1

y1

y2
x3

5

8 v4

4

y3

2

4

64

2

1

(b)

Figure 11. Case A.2.

Case B. Every longest path P has degG(u1) = 3. That is, at least one non-
leaf end has degree 3.

Case B.1. degG(u2) = 3.

u0

1

u1

w1

u2

3

u3

x2

x1

2

3 v1

w2

v2

1

y1

4

y2x3

w3

2

5

y3
t1

t2 t3

2 1

Figure 12. Subcase B.1.1.

Subcase B.1.1. In T , u2 has exactly one neighbor that is a leaf. The reduction
G′ along with proposed colors for some edges are depicted in Figure 12. Note if
u3 has degree 3, we simply ignore the edge labeled by t3 in Figure 12. We color
u1u2 by a color w1 not from {1, 2, 3, t1, t2, t3}. Next, color v1v2 by a color w2
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not from {1, 2, 3, 4, 5, w1}. Finally, color u1v1 by an admissible color w3 not in
{1, 2, 3, w1, w2}.

Subcase B.1.2. In T , none of the neighbors of u2 is a leaf. Then u2 has two
neighbors, denoted as u1 and v4, that are distance one away from the adjoining
cycle C. First consider the case that v4 has degree 4. Then by our assumption of
Case B, the degree of the other non-leaf end of the path P must have degree 3.
We consider the reverse order of P , denoted as P ∗, as our longest path. That is,
P ∗ = ul, ul−1, ul−2, . . . , u1, u0, where degG(ul−1) = 3. If P ∗ falls again in Subcase
B.1.2, degG(ul−2) = 3 and none of the neighbors of ul−2 is a leaf, then by the
assumption of Case B, every non-leaf neighbor of vl−2 that is distance two away
from the adjoining cycle C must be degree 3 (for otherwise, there is a longest
path with both non-leaf ends of degree 4, which was discussed in Case A).

Therefore, we only need to consider the case that degG(v4) = 3, which is
shown in Figure 13, where the reduction G′ and partial labels are indicated.

u0

w6

u1

1

u2

3

u3x2
t1

x1

2

3
v1

w4

v2

w2

v3

1

y1

4

y2

t2

x3

w5

2
v4

w3

5

y3

w1

2

1

Figure 13. The second possibility of Subcase B.1.2.

We shall find colors for the remaining edges. First, color v3v4 and v1v2 by
two admissible colors w1 and w2 different from {1, 2, 3, 4, 5}. Next, color v2v4 and
v1v2 by two admissible colors w3 and w4 not from {1, 2, 3, w1, w2}, and assign u1v1
the color w5 = w1. Finally, color u0u1 by an admissible color w6 different from
{1, 2, 3, w4, w5, t1, t2}. Since we have 8 colors, this can be accomplished.

Case B.2. degG(u2) = 4. Then degG(u3) = 3.

Subcase B.2.1. In T , u2 has exactly two neighbors that are leaves. Consider
possible situations depicted in Figure 14. Figure 14(a) shows the situation that
the two leaves are adjacent on C. We color v2v3 by a color w1 not from the set
{1, 2, 3, 4, 5, s1, s2}. Next, color u2v2 and u1u2 by two colors w2 and w3 not in
{1, 2, 3, 4, 5, w1}.
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Figure 14. Five possibilities of Subcase B.2.1.
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Now assume that the two leaves are not adjacent on C. The length of a
longest path from u3 to the adjoint cycle C on one side of v1 is at most three, as
P is a longest path. Suppose the length is one. Then there is only one possibility
which is shown in Figure 14(b). Color u2v4 by a color w1 not in {1, 2, 3, 4, 5, t1, t2}.
Color u2v2 by a color w2 not in {1, 2, 3, 4, 5, 6, w1}. Finally, color u1u2 by a color
w3 not in {1, 2, 3, 4, 5, w1, w2}.

If there is a path of length two from u3 to the adjoint cycle C, then there
are two possibilities as shown in Figure 14(c) and Figure 14(d). Assume that the
colors used in the neighborhood of u4 are from the set {3, 4, 5, 8}. We directly
color the remaining edges as depicted on those two figures.

Assume that there is a path of length three from u3 to the adjoint cycle C
which intersects P only at u3. Let u3, v2, v1, v0 be such a path from u3 to C.
Then there is another longest path in T , P ′ = ul, ul−1, . . . , u3, v2, v1, v0. Assume
degG(v1) = 4. By our assumption that every longest path has at least one non-
leaf end of degree 3, it must be that degG(ul−1) = 3. We then consider P ∗,
the reverse ordering of P , namely, P ∗ = ul, ul−1, . . . , u1, u0. Observe that the
same situation will not occur to P ∗, since if degG(ul−2) = 4, degG(ul−3) = 3,
there is a path of length three from ul−3 to C (denoted as ul−3, v

′

2, v
′

1, v
′

0), and
degG(v

′

1) = 4, then we obtain a longest path v′0, v
′

1, v
′

2, ul−3, . . . , u0 with both
non-leaf ends of degree 4, which has been discussed in Case A.

Thus, assume degG(v1) = 3. By symmetry of considering P and P ′, the only
possibility is drawn in Figure 14(e), in which an extended strong edge-coloring is
shown using 8 colors.
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Figure 15. Two possibilities of Subcase B.2.2.

Subcase B.2.2. In T , u2 has exactly one neighbor that is a leaf. There are two
possible situations as shown in Figure 15. In Figure 15(a), a strong edge-coloring
is given on the extended edges of G′. In Figure 15(b), we color the edges by the
following sequence: Color the two edges labeled as w1 by an admissible color not
from {1, 2, 3, t1, t2}. Color the two edges labeled as w2 by an admissible color not
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from {1, 2, 3, w1, s1, s2}. Color the edge labeled as w3 by an admissible color not
from {1, 2, 3, 4, 5, w1, w2}. Finally, color the remaining two edges labeled as w4

and w5 by two different admissible colors not from {1, 2, 3, w1, w2, w3}.

Subcase B.2.3. In T , none of the neighbors of u2 is a leaf. The reduction G′

and the completion of φ using eight colors are demonstrated in Figure 16. This
completes all cases.

u0 1

u1 6

u2
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u4x2

x1
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3

4 6 5

3

1

y1

y2

5 4

5

w y3x3

2 1

2 1

Figure 16. Subcase B.2.3.

We now discuss the situation that the reduction graph G′ is Ne2. Notice that
this does not occur in Case A. For Subcase B.1.1, if G′ = Ne2, then G is a cubic
graph, contradicting our assumption that χ′

s(T ) = 6. Similarly, for the second
possibility in Subcase B.1.2, G′ is not Ne2.

These leave a total of fourteen possible situations from the first possibility
(Figure 11(b)) of Subcase B.1.2, as well as Subcases B.2.1, B.2.2 and B.2.3,
when the reduction graph G′ is Ne2. These fourteen situations are depicted in
Figure 17, where a strong edge coloring using at most eight colors is given in each
situation. This completes the proof of Theorem 5.

For a Halin graph G = T ∪C with maximum degree at most 4 and G is not a
wheel, Ne2, nor Ne4, it has been shown that χ′

s(G) 6 χ′

s(T ) + 2, and the bound
is sharp (cf. [21] and Theorem 5). We propose

Conjecture 8. If G = T ∪C is a Halin graph other than a wheel, Ne2, or Ne4,

then χ′

s(G) 6 χ′

s(T ) + 2.

If the answer to Conjecture 8 is affirmative, then the bound is sharp for
infinitely many graphs besides the ones mentioned in Lemmas 6 and 7. Let a, b, c
be positive integers, b > 4. A tree T is a triple star, denoted by T = Sa,b,c, if it
has exactly three non-leaf vertices which have degrees a, b, and c (in this order on
a longest path), respectively. We draw T on the plane by fixing a longest path of
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Figure 17. Fourteen special graphs.
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length four horizontally, u0−u− v−w−w0 (where u,v, w are non-leaf vertices),
and draw at least one pendant edge of v towards each of the up and down sides
of the path. For instance, Figure 1 shows T = S3,4,4. Let k > 4 be a positive
integer. Similar to the argument for Figure 1, one can show that if T = S3,k,3,
then χ′

s(G) = χ′

s(T ) + 2.
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