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Abstract

A dominating set in a graph G is a set S of vertices such that every ver-
tex in V (G) \ S is adjacent to at least one vertex in S, and the domination
number of G is the minimum cardinality of a dominating set of G. Plac-
ing constraints on a dominating set yields different domination parameters,
including total, connected, restrained, and clique domination numbers. In
this paper, we study relationships among domination parameters of a graph
and its complement.
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1. Introduction

The literature on the subject of domination parameters in graphs has been sur-
veyed through 1997 and detailed in the two books [7, 8]. Our aim in this paper
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is to study graph relationships involving domination parameters in a graph G
and its complement G. We will also study relationships between the domination
number of a graph and its total, restrained, clique and connected domination
numbers.

For notation and graph theory terminology not defined herein, we refer the
reader to [7]. Let G = (V,E) be a graph with vertex set V = V (G) of order n =
|V | and edge set E = E(G) of size m = |E|, and let v be a vertex in V . The open
neighborhood of v is NG(v) = {u ∈ V | uv ∈ E}, and the closed neighborhood of
v is NG[v] = {v} ∪ NG(v). We denote the complement of a graph G by G. For
any vertex v, we call the subgraph of G induced by NG(v) the link of v and will
denote it as L(v). We will denote the subgraph of G induced by NG(v) as L(v).
For a set S ⊆ V , its open neighborhood is the set NG(S) =

⋃

v∈S N(v), and its
closed neighborhood is the set NG[S] = NG(S) ∪ S. The degree of a vertex v in
G is dG(v) = |NG(v)|. If the graph G is clear from the context, we simply write
d(v), N(v), N [v], N(S) and N [S] rather than dG(v), NG(v), NG[v], NG(S) and
NG[S], respectively. A vertex is isolated in G if its degree in G is zero. A graph
is isolate-free if it has no isolated vertex. For any set S ⊂ V (G), we denote the
subgraph induced by S as G[S]. The minimum and maximum degree among the
vertices of G is denoted by δ(G) and ∆(G), respectively. For a subset X ⊆ V , the
degree of a vertex v in X, denoted dX(v), is the number of vertices in X adjacent
to v; that is, dX(v) = |N(v) ∩X|. In particular, dG(v) = dV (v).

For sets A,B ⊆ V , we let G[A,B], or simply [A,B] if the graph is clear from
the context, denote the set of edges in G with one end in A and the other in B.
A nontrivial graph is a graph with at least two vertices. We say that a graph is
F -free if it does not contain F as an induced subgraph. In particular, if F = K1,3,
then we say that the graph is claw-free.

A dominating set in G = (V,E) is a set S of vertices of G such that every
vertex in V \ S is adjacent to at least one vertex in S, that is, N [S] = V . The
domination number of G, denoted by γ(G), is the minimum cardinality of a
dominating set of G. A dominating set of G of cardinality γ(G) is called a γ(G)-
set. For subsets X,Y ⊆ V , the set X dominates the set Y in G if Y ⊆ N [X]. In
particular, if X dominates V , then X is a dominating set of G. A vertex is called
γ(G)-good if it is contained in some γ(G)-set, and γ(G)-bad, otherwise. In other
words, a γ(G)-good vertex is contained in at least one γ(G)-set, while a γ(G)-
bad vertex is not in any γ(G)-set. The minimum degree among the γ(G)-good
(respectively, γ(G)-bad) vertices of G is denoted by δg(G) (respectively, δb(G)).

A total dominating set, abbreviated TD-set, of G is a set S of vertices of
G such that every vertex in V (G) is adjacent to at least one vertex in S. The
total domination number of G, denoted by γt(G), is the minimum cardinality of
a TD-set of G. A TD-set of G of cardinality γt(G) is called a γt(G)-set. Total
domination is now well studied in graph theory. The literature on the subject of
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total domination in graphs has been surveyed and detailed in the recent book [10].
A survey of total domination in graphs can also be found in [9].

Another way of looking at total domination is that a dominating set S is a
TD-set if the induced subgraph G[S] has no isolated vertices. Placing the con-
straint that G[S] is connected (respectively, a complete graph) yields connected

domination (respectively, clique domination). More formally, a dominating set S
is a connected dominating set, abbreviated CD-set, of a graph G if the induced
subgraph G[S] is connected. Every connected graph has a CD-set, since V is
such a set. The connected domination number of G, denoted by γc(G), is the
minimum cardinality of a CD-set of G, and a CD-set of G of cardinality γc(G)
is called a γc(G)-set. Connected domination in graphs was first introduced by
Sampathkumar et al. [14] and is now very well studied (see, for example, [4] and
the recent papers [13, 15]). The study of connected domination has extensive ap-
plication in the study of routing problems and virtual backbone based routing in
wireless networks [6, 12, 17]. A subset S ⊂ V of vertices in a graph G = (V,E) is
a dominating clique in G if S dominates V in G and G[S] is complete. If a graph
G has a dominating clique, then the minimum cardinality among all dominating
cliques of G is the clique domination number of G, denoted by γcl(G).

A restrained dominating set of a graph G is a set S of vertices in G such that
every vertex in V \ S is adjacent to a vertex in S and to some other vertex in
V \S. Every connected graph has an RD-set, since V is such a set. The restrained
domination number of G, denoted by γr(G), is the minimum cardinality of an
RD-set of G, and an RD-set of G of cardinality γr(G) is called a γr(G)-set.

A proper vertex coloring of a graph G is an assignment of colors (elements of
some set) to the vertices of G, one color to each vertex, so that adjacent vertices
are assigned distinct colors. If k colors are used, then the coloring is referred
to as a k-coloring. In a given coloring of G, a color class of the coloring is a
set consisting of all those vertices assigned the same color. The vertex chromatic

number χ(G) of G is the minimum integer k such that G is k-colorable. A χ(G)-
coloring of G is a coloring of G with χ(G) colors.

Given a graph G, two edges are said to cross in the plane if in a drawing
of the graph in the plane they intersect at a point that is not a vertex. The
graph G is planar if it can be drawn in the plane with no edges crossing. The
crossing number of G, denoted cr(G), is the minimum number of crossing edges
amongst all drawings of G in the plane. Note that if G is planar, then necessarily
cr(G) = 0.

2. Bounds on the Domination Number

In this section, we determine bounds on the domination number. If the graph G
is clear from the context, then we write δ, δ, ∆, ∆, γ and γ rather than δ(G),
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δ(G), ∆(G), ∆(G), γ(G) and γ(G), respectively.

2.1. Dominating the complement of a graph

We begin with results bounding the domination number of the complement of a
graph. If v is an arbitrary vertex in a graph G, then the closed neighborhood,
NG[v], of v is a dominating set of G. In particular, choosing v to be a vertex
of minimum degree in G, we have that γ(G) ≤ δ(G) + 1. Furthermore, a set
formed by taking a vertex from each color class of an arbitrary χ(G)-coloring of
G is a dominating set of G, and so γ(G) ≤ χ(G). We state these well known
observations formally as follows.

Observation 1. Let G be a graph. Then the following hold.

(a) γ(G) ≤ δ(G) + 1.

(b) γ(G) ≤ χ(G).

By Observation 1, γ(G) ≤ ∆(G) + 1. From Brook’s Coloring Theorem [2],
χ(G) ≤ ∆(G) + 1 with equality if and only if G is the complete graph or an
odd cycle. Noting that the domination number of the complement of any odd
cycle Cn, where n ≥ 5, is equal to 2, we observe that if G is a graph, then
γ(G) ≤ ∆(G) + 1 with equality if and only if G is a complete graph. Next we
give an upper bound on γ(G) in terms of γ(G) and δ(G).

Theorem 2. If G is a graph with γ(G) ≥ 2, then γ(G) ≤
⌈

δ(G)
γ(G)−1

⌉

+ 1.

Proof. Let v be a vertex of G having degree δ. Let A = NG(v), and so |A| = δ.
Let k = ⌈δ/(γ − 1)⌉ and partition the set A into k sets A1, . . . , Ak each of
cardinality at most γ − 1. Thus, A =

⋃k
i=1Ai and 1 ≤ |Ai| ≤ γ − 1 for each i,

1 ≤ i ≤ k. In particular, we note that no set Ai dominates V in G. For each set
Ai, 1 ≤ i ≤ k, select one vertex ai ∈ V \Ai that is not dominated by Ai in G, and
let A′ =

⋃k
i=1{ai}. Then, |A′| ≤ k and A′ dominates A in G. Therefore, the set

A′∪{v} is a dominating set of G, and so γ ≤ |A′|+1 ≤ k+1 = 1+⌈δ/(γ−1)⌉.

As an immediate consequence of Theorem 2, we have the following corollaries.

Corollary 1. If G is a graph with γ(G) > γ(G) ≥ 2, then δ(G) ≥ γ(G).

The next result shows that if G is a graph satisfying γ(G) ≥ γ(G)− 1, then
the bound of Observation 1(a) can be improved.

Corollary 2. If G is a graph satisfying γ(G) ≥ γ(G)−1, then γ(G) < 2+
√

δ(G).

Proof. Let G be a graph satisfying γ ≥ γ − 1. If γ = 1, then γ ≤ 2, and the
result follows. Accordingly, we may assume that γ ≥ 2. By Theorem 2, γ ≤
⌈δ/(γ − 1)⌉+1. This simplifies to (γ − 2)(γ − 1) < δ. By assumption, γ ≥ γ − 1.
Hence, (γ − 2)(γ − 2) < δ, and the result follows.
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From Corollary 2, we have the following Nordhaus-Gaddum type result for
graphs G with γ(G) = γ(G).

Corollary 3. If G is a graph with γ(G) = γ(G), then γ(G)+γ(G) < 4+
√

δ(G)+
√

δ(G).

2.2. Graphs G with γ(G) < γ(G)

For a subset S ⊂ V in a graph G = (V,E), let XS(G) be the set of all vertices x
in V \S such that x dominates S in G; that is, XS(G) = {x ∈ V \S | S ⊆ N(x)}.
We observe that if XS(G) = ∅, then S is a dominating set of G. We state this
formally as follows.

Observation 3. If G is a graph and S ⊂ V satisfies |S| < γ(G), then XS(G) 6= ∅.

The following result establishes properties about the set XS(G).

Theorem 4. Let G be a graph with γ(G) = γ(G) + k, where k ≥ 2, and let S
be a γ(G)-set. It follows that |XS | ≥ k. Moreover, any subset X ′ ⊆ XS of size

|XS | − k + 2 is a dominating set of G.

Proof. By the definition of XS , the set S dominates V \ (S ∪ XS) in G. This
gives that S ∪XS is a dominating set of G, and so γ(G) + |XS | = |S| + |XS | ≥
γ(G) = γ(G) + k which implies |XS | ≥ k.

Let u be an arbitrary vertex in V \ S, and let U = NG(u) ∩ XS . Since S
dominates V \ (S∪XS) in G, and u dominates XS \U in G, the set S∪U ∪{u} is
a dominating set of G. Then, γ(G) + k = γ(G) ≤ γ(G) + |U |+ 1. Consequently,
k − 1 ≤ |U | = |NG(u) ∩ (XS \X ′)| + |NG(u) ∩X ′| ≤ k − 2 + |NG(u) ∩X ′| and
so NG(u) ∩X ′ 6= ∅. Hence, X ′ dominates V \ S in G. Since every vertex of X ′

dominates S in G, the set X ′ is a dominating set of G.

Let G be a graph with γ(G) ≤ γ(G) − 2. Further, let S be a γ(G)-set, and
let X = XS(G). By definition of the set X, we note that the edges, G[X,S], in
G between X and S induce a complete bipartite graph K|X|,|S|. By Theorem 4,
γ ≤ |X|. Thus, we have the following corollary of Theorem 4.

Corollary 4. If G is a graph with γ(G) ≤ γ(G)− 2, then G contains Kγ,γ as a

subgraph.

We observe from Corollary 4 that if G is a graph that contains no 4-cycle
(and thus does not contain Kr,r for r ≥ 2 as a subgraph), then γ(G) = 1 or
γ(G) ≥ γ(G) − 1. We establish next a property of claw-free graphs G with
γ(G) ≤ γ(G)− 2.
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Theorem 5. Let G be a graph with γ(G) ≤ γ(G) − 2, and let S be a γ(G)-set.
If G is claw-free, then γ(G) ≤ 2 or S ∪XS(G) is a clique in G.

Proof. Let G = (V,E) be a claw-free graph with γ ≤ γ − 2, and let S be a
γ(G)-set. Following our earlier notation, let X = XS(G). By Theorem 4, the set
X is a dominating set of G, and so γ ≤ |X|. Suppose that G[S ∪ X] is not a
clique. Then there are two vertices, say a and b, in S ∪X that are not adjacent
in G. Since every vertex in X is by definition adjacent in G to every vertex in
S, we observe that both a and b are in S or both a and b are in X. Let c be an
arbitrary vertex in V \ {a, b}.

We show that c is dominated by {a, b}. Suppose to the contrary that c is
adjacent to neither a nor b. On the one hand, suppose that {a, b} ⊆ S. Then,
c /∈ X. However since X is a dominating set in G, there is a vertex x ∈ X
that is adjacent to c in G. But then the set {a, b, c, x} induces a claw in G,
a contradiction. On the other hand, suppose that {a, b} ⊆ X. Then, c /∈ S.
However since S is a dominating set in G, there is a vertex x ∈ S that is adjacent
to c in G. But then the set {a, b, c, x} induces a claw in G, a contradiction.
In both cases, we have that c is dominated by {a, b}, implying that {a, b} is a
dominating set in G, and therefore, that γ ≤ 2.

Let G be a claw-free graph with γ(G) ≤ γ(G) − 2, and let S be a γ(G)-set
and let X = XS(G). If γ(G) ≥ 3, then by Theorem 5, the set S ∪X is a clique in
G, and therefore, an independent set in G. Hence, as an immediate consequence
of Theorem 5, we have the following result, where α(G) and ω(G) denote the
vertex independence number and the clique number, respectively, of G.

Corollary 5. If G is a claw-free graph with γ(G) ≤ γ(G)− 2, then γ(G) ≤ 2 or

γ(G) ≤ ω(G)/2 = α(G)/2.

2.3. Graphs G with a γ(G)-bad vertex

Recall that a vertex in a graph G is a γ(G)-bad vertex if it is contained in no γ(G)-
set. We establish next an upper bound on the sum of the domination numbers
of a graph G and its complement G in terms of the degree of a γ(G)-bad vertex.

Theorem 6. If a graph G contains a vertex v that is a γ(G)-bad vertex, then

γ(G) + γ(G) ≤ dG(v) + 3.

Proof. Let G = (V,E) be a graph that contains a γ(G)-bad vertex v. Let A =
NG(v), and so |A| = dG(v). Since the set A ∪ {v} is a dominating set in G, we
have that γ(G) ≤ |A|+1. However if γ(G) = |A|+1, then A∪ {v} is a γ(G)-set,
contradicting the fact that v is a γ(G)-bad vertex. Therefore, γ(G) < |A|+1, or,
equivalently, |A| ≥ γ(G).
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Let B = V \NG[v]. If B = ∅, then v dominates V in the graph G, implying
that v is isolated in G and therefore belongs to every γ(G)-set, a contradiction.
Hence, B 6= ∅. We show next that each vertex in B has at least γ − 1 neighbors
in G that belong to the set A. Let x ∈ B, and let Ax = A ∩ NG(x). Then in
the graph G, the vertex x dominates the set A \ Ax. Thus since the vertex v
dominates the set B in G, we have that the set Ax ∪{v, x} is a dominating set in
G, implying that γ(G) ≤ |Ax|+ 2. However if γ(G) = |Ax|+ 2, then Ax ∪ {v, x}
is a γ(G)-set, contradicting the fact that v is a γ(G)-bad vertex. Therefore,
γ(G) < |Ax|+2, or, equivalently, γ(G) ≤ |Ax|+1. Thus in the graph G, we have
that dA(x) = |Ax| ≥ γ(G)− 1. This is true for every vertex x ∈ B.

Recall that |A| ≥ γ(G). Let A′ be an arbitrary subset of A of cardinal-
ity γ(G)− 2, and let A∗ = A \A′. Thus, |A′| = γ(G)− 2 and |A∗| = |A| − |A′| =
dG(v) − γ(G) + 2. Since dA(x) ≥ γ(G) − 1 for every vertex x ∈ B, the set A∗

dominates the set B in G. Thus, A∗ ∪ {v} is a dominating set in G, implying
that γ(G) ≤ |A∗|+ 1 = dG(v)− γ(G) + 3.

As a consequence of Theorem 6, we have the following result.

Corollary 6. If G is an r-regular graph that contains a γ(G)-bad vertex, then

γ(G) + γ(G) ≤ r + 3.

2.4. Domination and planarity

In this section, we study some relationships between planarity, the crossing num-
ber of G and the domination number of G. Fundamental to our results in this
section is the famous Four Color Theorem.

Theorem 7 [1]. If G is a planar graph, then χ(G) ≤ 4.

We first establish the following upper bound on the domination number of the
complement of a graph. For this purpose, for a vertex v in a graphG, we denote by
Gv the subgraph of G induced by the neighbors of v; that is, Gv = G[N(v)]. If C
is a minimum coloring of the vertices of Gv, and S is a set of vertices comprising
of exactly one vertex from each color class of C, then the set S ∪ {v} forms a
dominating set of G, implying that γ(G) ≤ |C| + 1 = χ(Gv) + 1. We state this
formally as follows.

Observation 8. If v is an arbitrary vertex in a graph G, then γ(G) ≤ χ(Gv)+1.

As a consequence of Theorem 7 and Observation 8, we have the following
results.

Corollary 7. If a graph G contains a vertex v with the property that Gv is a

planar graph, then γ(G) ≤ 5.
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Corollary 8. If a graph G satisfies γ(G) > 2cr(G), then γ(G) ≤ 5.

Proof. Let G∗ be a drawing of G in the plane with exactly cr(G) crossing edges,
and let S be the set of vertices of G incident with at least one crossing edge of
G∗. Clearly, |S| ≤ 2cr(G). Since, by assumption, γ(G) > 2cr(G), it follows there
exists some vertex v in G that is not dominated by S. This implies that Gv is a
planar graph. Thus, by Corollary 7, γ(G) ≤ 5.

3. Total, Connected, Restrained, and Clique Domination

In this section, we establish relationships involving the domination, total domina-
tion, restrained domination, connected domination and clique domination num-
bers of a graph. We begin with the following lemma.

Lemma 9. If there exists a γ(G)-set for a graph G that is not a dominating set

in G, then γt(G) ≤ γc(G) ≤ γ(G) + 1.

Proof. Let S be a γ(G)-set in a graph G = (V,E) that is not a dominating set
in G. Then there exists a vertex v ∈ V \S that is not adjacent to any vertex of S
in G. Hence in G, the vertex v is adjacent to every vertex of S, implying that the
graph G[S ∪ {v}] is connected. Since every superset of a dominating set is also a
dominating set, the set S ∪{v} is a CD-set, and so γc(G) ≤ |S ∪{v}| = γ(G)+1.
Since the total domination of a graph is at most its connected domination number,
the desired result follows from the observation that γt(G) ≤ γc(G).

By the contrapositive of Lemma 9, we note that if a graph G satisfies γt(G) ≥
γ(G)+2, then every γ(G)-set is a dominating set in G. Further as a consequence
of Lemma 9 and the well-known result due to Jaeger and Payan [11] that if G is
a graph of order n, then γ(G)γ(G) ≤ n, we have the following result.

Corollary 10. Let G be a graph of order n satisfying γ(G) < γ(G). Then the

following holds.

(a) γt(G) ≤ γc(G) ≤ γ(G) + 1.

(b) γc(G) ≤ (1 +
√
4n+ 1)/2.

Proof. Part (a) is an immediate consequence of Lemma 9. To prove part (b), let
G be a graph of order n satisfying γ(G) < γ(G). By part (a) and our assumption
that γ(G) ≤ γ(G)−1, we have that γc(G) ≤ γ(G)+1 ≤ γ(G). Applying the result
due to Jaeger and Payan, we therefore have that (γc(G)−1)γc(G) ≤ γ(G)γ(G) ≤
n. Solving for γc(G), we have that γc(G) ≤ (1 +

√
4n+ 1 )/2.

In the following result, we consider the case when γ(G) ≤ γ(G) + 1.
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Theorem 9. Let G be a graph satisfying γ(G) ≤ γ(G) + 1. Then the following

holds.

(a) If both G and G are connected, then γc(G) ≤ γ(G)+ 1 or γc(G) ≤ γ(G)+ 1.

(b) If both G and G are isolate-free, then γt(G) ≤ γ(G)+1 or γt(G) ≤ γ(G)+1.

Proof. Let G = (V,E), and let S be a γ(G)-set in the graph. We first establish
part (a). Suppose that both G and G are connected. If G[S] is connected, then
S is a CD-set in G, implying that γc(G) ≤ |S| = γ(G). Hence we may assume
that G[S] is not connected, for otherwise part (a) is immediate. This implies that
G[S] is connected. If the set S is not a dominating set in G, then by Lemma 9,
we have that γc(G) ≤ γ(G) + 1. If the set S is a dominating set in G, then S
is a CD-set in G, implying that γc(G) ≤ |S| = γ(G) ≤ γ(G) + 1. This proves
part (a).

Next we prove part (b). Suppose that both G and G are isolate-free. If G[S]
is isolate-free, then S is a TD-set in G, implying that γt(G) ≤ |S| = γ(G). Hence
we may assume that G[S] contains an isolated vertex, for otherwise part (b) is
immediate. This implies that G[S] is connected. If the set S is not a dominating
set in G, then by Lemma 9 we have that γt(G) ≤ γ(G) + 1. If the set S is
a dominating set in G, then S is a TD-set in G, implying that γt(G) ≤ |S| =
γ(G) ≤ γ(G) + 1. This proves part (b).

We establish next an upper bound on the total domination number of a graph
in terms of its domination number and the domination number of its complement.

Theorem 10. Let G be an isolate-free graph, and let S be a γ(G)-set. If s is the

number of isolated vertices in G[S], then γt(G) ≤ γ(G) + ⌈s/(γ(G)− 1)⌉.

Proof. Let G = (V,E). Since G is isolate-free, we note that γ(G) ≥ 2. Let I
be the set of isolated vertices in G[S], and so s = |I|. Let k = ⌈s/(γ − 1)⌉, and
partition the set I into k sets I1, . . . , Ik each of cardinality at most γ − 1. Thus,
I =

⋃k
i=1 Ii and 1 ≤ |Ii| ≤ γ − 1 for each i, 1 ≤ i ≤ k. In particular, we note

that no set Ii dominates V in G. For each set Ii, 1 ≤ i ≤ k, select one vertex
wi ∈ V \ Ii that is not dominated by Ii in G, and let W =

⋃k
i=1{wi}. Then,

|W | ≤ k. We note that in the graph G, the vertex wi is adjacent to every vertex
of Ii, and so S ∪ W is a TD-set in G. Hence, γt(G) ≤ |S ∪ W | ≤ |S| + |W | ≤
γ(G) + k = γ(G) + ⌈s/(γ − 1)⌉.

As an immediate consequence of Theorem 10, we have the following upper
bound on the total domination number of a graph.

Corollary 11. If G is an isolate-free graph, then γt(G) ≤ γ(G) +
⌈

γ(G)

γ(G)−1

⌉

.

Theorem 11. If G is a graph with γt(G) ≥ γ(G) + 2, then γt(G) ≤ 1 +
⌈

δ(G)
γ(G)

⌉

.
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Proof. Let G = (V,E) be a graph with γt(G) ≥ γ(G)+2, and let v be a vertex of
G having degree δ(G). Let A = NG(v), and so |A| = δ(G). Let k = ⌈δ(G)/γ(G)⌉
and partition the set A into k sets A1, . . . , Ak each of cardinality at most γ(G).
Thus, A =

⋃k
i=1Ai and 1 ≤ |Ai| ≤ γ(G) for each i, 1 ≤ i ≤ k. If the set Ai

dominates V \NG[v] in G for some i, 1 ≤ i ≤ k, then the set Ai∪{v} is a TD-set
in G, implying that γt(G) ≤ |Ai|+ 1 ≤ γ(G) + 1, a contradiction. Therefore, no
set Ai dominates V \ NG[v] in G. For each set Ai, 1 ≤ i ≤ k, select one vertex
ai ∈ V \NG[v] that is not dominated by Ai in G, and let A′ =

⋃k
i=1{ai}. Then,

|A′| ≤ k and A′ dominates A in G. Therefore, the set A′ ∪ {v} is a TD-set in G,
and so γt(G) ≤ |A′|+ 1 ≤ k + 1 = 1 + ⌈δ(G)/γ(G)⌉.

Next we consider the restrained domination number. We first prove a general
lemma.

Lemma 12. If a graph G has a γ(G)-set S such that the induced subgraph G[V \S]
has an isolated vertex, then γ(G) ≤ 3.

Proof. Let S be a γ(G)-set such that G[V \ S] has an isolated vertex, say w.
If G[S] has an isolated vertex v, then {v, w} is dominating set of G, and so
γ(G) ≤ 2. If G[S] contains no isolated vertices, then by the minimality of S, for
each v ∈ S, there exists a vertex, say v′ ∈ V \ S, such that N(v′) ∩ S = {v}. In
this case, the set {v, w, v′} is a dominating set of G, implying that γ(G) ≤ 3.

As an immediate consequence of Lemma 12, we have the following result.

Corollary 13. If a graph G has γ(G) ≥ 4, then every γ(G)-set is a γr(G)-set.
In particular, γ(G) = γr(G).

We close this section with two results about the clique domination number
of a graph.

Theorem 12. If G is a graph with γt(G) ≥ γ(G) + 2, then γcl(G) ≤ γ(G).
Moreover, if G is claw-free, then γcl(G) ≤ 3.

Proof. Let G be a graph with γt(G) ≥ γ(G)+2, and let S be a γ(G)-set. Further,
let I(S) be the set of isolated vertices in G[S]. If I(S) = ∅, then S is a TD-set
of G, implying that γt(G) ≤ |S| = γ(G), a contradiction. Hence, I(S) 6= ∅. We
show that I(S) dominates G. Suppose to the contrary that there exists a vertex
v that is not adjacent to any vertex of I(S) in G. Then in the graph G, the vertex
v is adjacent to every vertex of I(S), implying that S∪{v} is a TD-set for G, and
so γt(G) ≤ |S| + 1 = γ(G) + 1, a contradiction. Hence, the set I(S) dominates
G. Since I(S) is an independent set in G, it forms a clique in G. Therefore, I(S)
is a dominating clique in G, implying that γcl(G) ≤ |I(S)| ≤ γ(G).

Now, suppose that G is claw free. If |I(S)| ≤ 3, then the result follows.
Hence, we may assume that |I(S)| ≥ 4 and there exists a subset {a, b, c} ⊆ I(S)
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that is not a dominating set in G. Then there exists a vertex v that is not
adjacent to a, b, or c in G. But then in the graph G, we have that {a, b, c, v}
induces a claw, a contradiction. Therefore, every subset of I(S) of cardinality 3
is a dominating set in G, implying that γcl(G) ≤ 3.

4. Bounds on the Domination Number of a Graph in Terms of the

Adjacency Matrix of its Complement

We begin this section by stating two well-known theorems. The first result counts
the number of walks of length k for an arbitrary positive integer k in a graph
(see [3]; see also Theorem 1.17 in [5]). The second result is a consequence of a
result due to Vizing [16] and provides an upper bound for the domination number
of a graph in terms of its order and size.

Theorem 13 [3]. Let G be a graph of order n with V (G) = {v1, v2, . . . , vn} and

with adjacency matrix A. For each positive integer k, the number of different

walks of length k from the vertex vi to the vertex vj is the (i, j)-entry in the

matrix Ak.

Theorem 14 [16]. If G is graph of order n and size m, then γ(G) ≤ n + 1 −√
1 + 2m.

Let G be a graph of order n with V (G) = {v1, v2, . . . , vn} and with adjacency

matrix A, and let a
(k)
ij denote the (i, j)-entry in Ak. Recall that if v is a vertex

in G, then the subgraph of G induced by NG(v) is called the link of v and is
denoted by L(v), while the subgraph of G induced by NG(v) is denoted L(v).
Theorem 13 implies that the (i, i)-entry of A2, 1 ≤ i ≤ n, is the degree dG(vi) of
vi, and the (i, i)-entry of A3, 1 ≤ i ≤ n, is equal to twice the number of edges in

L(vi). Suppose that a
(3)
ii < a

(2)
ii for some i, 1 ≤ i ≤ n. Since a

(2)
ii = dG(vi) and

1
2a

(3)
ii is the number of edges in L(vi), this implies that L(vi) contains an isolated

vertex, v say. Thus the set {v, vi} is a dominating set in the graph G, implying
that γ(G) ≤ 2. We state this formally as follows.

Observation 15. Let G be an isolate-free graph of order n with adjacency matrix

A. If the (i, i)-entry of A3 is less than the (i, i)-entry of A2 for some i, 1 ≤ i ≤ n,
then γ(G) ≤ 2.

Using Observation 15, we obtain the following bound on the domination
number of the complement of a graph.

Theorem 16. Let G be a graph of order n with adjacency matrix A, and let a
(k)
ij

denote the (i, j)-entry in Ak. For every i, 1 ≤ i ≤ n, we have that

γ(G) ≤ a
(2)
ii + 2−

√

1 + a
(2)
ii (a

(2)
ii − 1)− a

(3)
ii .
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Proof. Let i be an arbitrary integer with 1 ≤ i ≤ n. Since a
(2)
ii = dG(vi) and

1
2a

(3)
ii is the number of edges in L(vi), this implies that L(vi) has order a(2)ii and

size
(

a
(2)
ii

2

)

− 1

2
a
(3)
ii =

1

2

(

a
(2)
ii (a

(2)
ii − 1)− a

(3)
ii

)

.

Thus, by Theorem 14, we have that

γ(L(vi)) ≤ a
(2)
ii + 1−

√

1 + a
(2)
ii (a

(2)
ii − 1)− a

(3)
ii .

The desired bound now follows from the observation that every γ
(

L(vi)
)

-set
can be extended to a dominating set in G by adding to it the vertex vi, and so
γ
(

G
)

≤ γ
(

L(vi)
)

+ 1.
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