Discussiones Mathematicae Graph Theory 38 (2018) 203–215 doi:10.7151/dmgt.2002

DOMINATION PARAMETERS OF A GRAPH AND ITS COMPLEMENT

Wyatt J. Desormeaux¹, Teresa W. Haynes^{1,2}

AND

MICHAEL A. HENNING¹

¹Department of Mathematics Department of Pure and Applied Mathematics University of Johannesburg Auckland Park, 2006 South Africa

²Department of Mathematics and Statistics East Tennessee State University Johnson City, TN 37614-0002 USA

e-mail: wjdesormeaux@gmail.com haynes@etsu.edu mahenning@uj.ac.za

Abstract

A dominating set in a graph G is a set S of vertices such that every vertex in $V(G) \setminus S$ is adjacent to at least one vertex in S, and the domination number of G is the minimum cardinality of a dominating set of G. Placing constraints on a dominating set yields different domination parameters, including total, connected, restrained, and clique domination numbers. In this paper, we study relationships among domination parameters of a graph and its complement.

Keywords: domination, complement, total domination, connected domination, clique domination, restrained domination.

2010 Mathematics Subject Classification: 05C69.

1. INTRODUCTION

The literature on the subject of domination parameters in graphs has been surveyed through 1997 and detailed in the two books [7, 8]. Our aim in this paper

is to study graph relationships involving domination parameters in a graph G and its complement \overline{G} . We will also study relationships between the domination number of a graph and its total, restrained, clique and connected domination numbers.

For notation and graph theory terminology not defined herein, we refer the reader to [7]. Let G = (V, E) be a graph with vertex set V = V(G) of order n =|V| and edge set E = E(G) of size m = |E|, and let v be a vertex in V. The open neighborhood of v is $N_G(v) = \{u \in V \mid uv \in E\}$, and the closed neighborhood of v is $N_G[v] = \{v\} \cup N_G(v)$. We denote the *complement* of a graph G by \overline{G} . For any vertex v, we call the subgraph of G induced by $N_G(v)$ the link of v and will denote it as $\mathcal{L}(v)$. We will denote the subgraph of \overline{G} induced by $N_G(v)$ as $\overline{\mathcal{L}}(v)$. For a set $S \subseteq V$, its open neighborhood is the set $N_G(S) = \bigcup_{v \in S} N(v)$, and its closed neighborhood is the set $N_G[S] = N_G(S) \cup S$. The degree of a vertex v in G is $d_G(v) = |N_G(v)|$. If the graph G is clear from the context, we simply write d(v), N(v), N[v], N(S) and N[S] rather than $d_G(v), N_G(v), N_G[v], N_G(S)$ and $N_G[S]$, respectively. A vertex is *isolated* in G if its degree in G is zero. A graph is isolate-free if it has no isolated vertex. For any set $S \subset V(G)$, we denote the subgraph induced by S as G[S]. The minimum and maximum degree among the vertices of G is denoted by $\delta(G)$ and $\Delta(G)$, respectively. For a subset $X \subseteq V$, the degree of a vertex v in X, denoted $d_X(v)$, is the number of vertices in X adjacent to v; that is, $d_X(v) = |N(v) \cap X|$. In particular, $d_G(v) = d_V(v)$.

For sets $A, B \subseteq V$, we let G[A, B], or simply [A, B] if the graph is clear from the context, denote the set of edges in G with one end in A and the other in B. A *nontrivial graph* is a graph with at least two vertices. We say that a graph is F-free if it does not contain F as an induced subgraph. In particular, if $F = K_{1,3}$, then we say that the graph is *claw-free*.

A dominating set in G = (V, E) is a set S of vertices of G such that every vertex in $V \setminus S$ is adjacent to at least one vertex in S, that is, N[S] = V. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. A dominating set of G of cardinality $\gamma(G)$ is called a $\gamma(G)$ set. For subsets $X, Y \subseteq V$, the set X dominates the set Y in G if $Y \subseteq N[X]$. In particular, if X dominates V, then X is a dominating set of G. A vertex is called $\gamma(G)$ -good if it is contained in some $\gamma(G)$ -set, and $\gamma(G)$ -bad, otherwise. In other words, a $\gamma(G)$ -good vertex is contained in at least one $\gamma(G)$ -set, while a $\gamma(G)$ bad vertex is not in any $\gamma(G)$ -set. The minimum degree among the $\gamma(G)$ -good (respectively, $\gamma(G)$ -bad) vertices of G is denoted by $\delta_g(G)$ (respectively, $\delta_b(G)$).

A total dominating set, abbreviated TD-set, of G is a set S of vertices of G such that every vertex in V(G) is adjacent to at least one vertex in S. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a TD-set of G. A TD-set of G of cardinality $\gamma_t(G)$ is called a $\gamma_t(G)$ -set. Total domination is now well studied in graph theory. The literature on the subject of

total domination in graphs has been surveyed and detailed in the recent book [10]. A survey of total domination in graphs can also be found in [9].

Another way of looking at total domination is that a dominating set S is a TD-set if the induced subgraph G[S] has no isolated vertices. Placing the constraint that G[S] is connected (respectively, a complete graph) yields connected domination (respectively, clique domination). More formally, a dominating set Sis a connected dominating set, abbreviated CD-set, of a graph G if the induced subgraph G[S] is connected. Every connected graph has a CD-set, since V is such a set. The connected domination number of G, denoted by $\gamma_c(G)$, is the minimum cardinality of a CD-set of G, and a CD-set of G of cardinality $\gamma_c(G)$ is called a $\gamma_c(G)$ -set. Connected domination in graphs was first introduced by Sampathkumar et al. [14] and is now very well studied (see, for example, [4] and the recent papers [13, 15]). The study of connected domination has extensive application in the study of routing problems and virtual backbone based routing in wireless networks [6, 12, 17]. A subset $S \subset V$ of vertices in a graph G = (V, E) is a dominating clique in G if S dominates V in G and G[S] is complete. If a graph G has a dominating clique, then the minimum cardinality among all dominating cliques of G is the *clique domination number* of G, denoted by $\gamma_{\rm cl}(G)$.

A restrained dominating set of a graph G is a set S of vertices in G such that every vertex in $V \setminus S$ is adjacent to a vertex in S and to some other vertex in $V \setminus S$. Every connected graph has an RD-set, since V is such a set. The restrained domination number of G, denoted by $\gamma_r(G)$, is the minimum cardinality of an RD-set of G, and an RD-set of G of cardinality $\gamma_r(G)$ is called a $\gamma_r(G)$ -set.

A proper vertex coloring of a graph G is an assignment of colors (elements of some set) to the vertices of G, one color to each vertex, so that adjacent vertices are assigned distinct colors. If k colors are used, then the coloring is referred to as a k-coloring. In a given coloring of G, a color class of the coloring is a set consisting of all those vertices assigned the same color. The vertex chromatic number $\chi(G)$ of G is the minimum integer k such that G is k-colorable. A $\chi(G)$ -coloring of G is a coloring of G with $\chi(G)$ colors.

Given a graph G, two edges are said to *cross* in the plane if in a drawing of the graph in the plane they intersect at a point that is not a vertex. The graph G is *planar* if it can be drawn in the plane with no edges crossing. The *crossing number* of G, denoted cr(G), is the minimum number of crossing edges amongst all drawings of G in the plane. Note that if G is planar, then necessarily cr(G) = 0.

2. Bounds on the Domination Number

In this section, we determine bounds on the domination number. If the graph G is clear from the context, then we write δ , $\overline{\delta}$, Δ , $\overline{\Delta}$, γ and $\overline{\gamma}$ rather than $\delta(G)$,

 $\delta(\overline{G}), \Delta(G), \Delta(\overline{G}), \gamma(G) \text{ and } \gamma(\overline{G}), \text{ respectively.}$

2.1. Dominating the complement of a graph

We begin with results bounding the domination number of the complement of a graph. If v is an arbitrary vertex in a graph G, then the closed neighborhood, $N_G[v]$, of v is a dominating set of \overline{G} . In particular, choosing v to be a vertex of minimum degree in G, we have that $\gamma(\overline{G}) \leq \delta(G) + 1$. Furthermore, a set formed by taking a vertex from each color class of an arbitrary $\chi(G)$ -coloring of G is a dominating set of \overline{G} , and so $\gamma(\overline{G}) \leq \chi(G)$. We state these well known observations formally as follows.

Observation 1. Let G be a graph. Then the following hold.

(a) $\gamma(\overline{G}) \le \delta(G) + 1.$ (b) $\gamma(\overline{G}) \le \gamma(G)$

(b)
$$\gamma(G) \leq \chi(G)$$
.

By Observation 1, $\gamma(\overline{G}) \leq \Delta(G) + 1$. From Brook's Coloring Theorem [2], $\chi(G) \leq \Delta(G) + 1$ with equality if and only if G is the complete graph or an odd cycle. Noting that the domination number of the complement of any odd cycle C_n , where $n \geq 5$, is equal to 2, we observe that if G is a graph, then $\gamma(\overline{G}) \leq \Delta(G) + 1$ with equality if and only if G is a complete graph. Next we give an upper bound on $\gamma(\overline{G})$ in terms of $\gamma(G)$ and $\delta(G)$.

Theorem 2. If G is a graph with $\gamma(G) \ge 2$, then $\gamma(\overline{G}) \le \left\lceil \frac{\delta(G)}{\gamma(G)-1} \right\rceil + 1$.

Proof. Let v be a vertex of G having degree δ . Let $A = N_G(v)$, and so $|A| = \delta$. Let $k = \lceil \delta/(\gamma - 1) \rceil$ and partition the set A into k sets A_1, \ldots, A_k each of cardinality at most $\gamma - 1$. Thus, $A = \bigcup_{i=1}^k A_i$ and $1 \leq |A_i| \leq \gamma - 1$ for each i, $1 \leq i \leq k$. In particular, we note that no set A_i dominates V in G. For each set A_i , $1 \leq i \leq k$, select one vertex $a_i \in V \setminus A_i$ that is not dominated by A_i in G, and let $A' = \bigcup_{i=1}^k \{a_i\}$. Then, $|A'| \leq k$ and A' dominates A in \overline{G} . Therefore, the set $A' \cup \{v\}$ is a dominating set of \overline{G} , and so $\overline{\gamma} \leq |A'| + 1 \leq k + 1 = 1 + \lceil \delta/(\gamma - 1) \rceil$.

As an immediate consequence of Theorem 2, we have the following corollaries.

Corollary 1. If G is a graph with $\gamma(\overline{G}) > \gamma(G) \ge 2$, then $\delta(G) \ge \gamma(G)$.

The next result shows that if G is a graph satisfying $\gamma(G) \ge \gamma(\overline{G}) - 1$, then the bound of Observation 1(a) can be improved.

Corollary 2. If G is a graph satisfying $\gamma(G) \geq \gamma(\overline{G}) - 1$, then $\gamma(\overline{G}) < 2 + \sqrt{\delta(G)}$.

Proof. Let G be a graph satisfying $\gamma \geq \overline{\gamma} - 1$. If $\gamma = 1$, then $\overline{\gamma} \leq 2$, and the result follows. Accordingly, we may assume that $\gamma \geq 2$. By Theorem 2, $\overline{\gamma} \leq \lceil \delta/(\gamma-1) \rceil + 1$. This simplifies to $(\overline{\gamma} - 2)(\gamma - 1) < \delta$. By assumption, $\gamma \geq \overline{\gamma} - 1$. Hence, $(\overline{\gamma} - 2)(\overline{\gamma} - 2) < \delta$, and the result follows.

From Corollary 2, we have the following Nordhaus-Gaddum type result for graphs G with $\gamma(G) = \gamma(\overline{G})$.

Corollary 3. If G is a graph with $\gamma(G) = \gamma(\overline{G})$, then $\gamma(G) + \gamma(\overline{G}) < 4 + \sqrt{\delta(\overline{G})} + \sqrt{\delta(\overline{G})}$.

2.2. Graphs G with $\gamma(G) < \gamma(\overline{G})$

For a subset $S \subset V$ in a graph G = (V, E), let $X_S(G)$ be the set of all vertices x in $V \setminus S$ such that x dominates S in G; that is, $X_S(G) = \{x \in V \setminus S \mid S \subseteq N(x)\}$. We observe that if $X_S(G) = \emptyset$, then S is a dominating set of \overline{G} . We state this formally as follows.

Observation 3. If G is a graph and $S \subset V$ satisfies $|S| < \gamma(\overline{G})$, then $X_S(G) \neq \emptyset$.

The following result establishes properties about the set $X_S(G)$.

Theorem 4. Let G be a graph with $\gamma(G) = \gamma(G) + k$, where $k \ge 2$, and let S be a $\gamma(G)$ -set. It follows that $|X_S| \ge k$. Moreover, any subset $X' \subseteq X_S$ of size $|X_S| - k + 2$ is a dominating set of G.

Proof. By the definition of X_S , the set S dominates $V \setminus (S \cup X_S)$ in \overline{G} . This gives that $S \cup X_S$ is a dominating set of \overline{G} , and so $\gamma(G) + |X_S| = |S| + |X_S| \ge \gamma(\overline{G}) = \gamma(G) + k$ which implies $|X_S| \ge k$.

Let u be an arbitrary vertex in $V \setminus S$, and let $U = N_G(u) \cap X_S$. Since S dominates $V \setminus (S \cup X_S)$ in \overline{G} , and u dominates $X_S \setminus U$ in \overline{G} , the set $S \cup U \cup \{u\}$ is a dominating set of \overline{G} . Then, $\gamma(G) + k = \gamma(\overline{G}) \leq \gamma(G) + |U| + 1$. Consequently, $k - 1 \leq |U| = |N_G(u) \cap (X_S \setminus X')| + |N_G(u) \cap X'| \leq k - 2 + |N_G(u) \cap X'|$ and so $N_G(u) \cap X' \neq \emptyset$. Hence, X' dominates $V \setminus S$ in G. Since every vertex of X' dominates S in G, the set X' is a dominating set of G.

Let G be a graph with $\gamma(G) \leq \gamma(\overline{G}) - 2$. Further, let S be a $\gamma(G)$ -set, and let $X = X_S(G)$. By definition of the set X, we note that the edges, G[X, S], in G between X and S induce a complete bipartite graph $K_{|X|,|S|}$. By Theorem 4, $\gamma \leq |X|$. Thus, we have the following corollary of Theorem 4.

Corollary 4. If G is a graph with $\gamma(G) \leq \gamma(\overline{G}) - 2$, then G contains $K_{\gamma,\gamma}$ as a subgraph.

We observe from Corollary 4 that if G is a graph that contains no 4-cycle (and thus does not contain $K_{r,r}$ for $r \geq 2$ as a subgraph), then $\gamma(G) = 1$ or $\gamma(G) \geq \gamma(\overline{G}) - 1$. We establish next a property of claw-free graphs G with $\gamma(G) \leq \gamma(\overline{G}) - 2$. **Theorem 5.** Let G be a graph with $\gamma(G) \leq \gamma(\overline{G}) - 2$, and let S be a $\gamma(G)$ -set. If G is claw-free, then $\gamma(G) \leq 2$ or $S \cup X_S(G)$ is a clique in G.

Proof. Let G = (V, E) be a claw-free graph with $\gamma \leq \overline{\gamma} - 2$, and let S be a $\gamma(G)$ -set. Following our earlier notation, let $X = X_S(G)$. By Theorem 4, the set X is a dominating set of G, and so $\gamma \leq |X|$. Suppose that $G[S \cup X]$ is not a clique. Then there are two vertices, say a and b, in $S \cup X$ that are not adjacent in G. Since every vertex in X is by definition adjacent in G to every vertex in S, we observe that both a and b are in S or both a and b are in X. Let c be an arbitrary vertex in $V \setminus \{a, b\}$.

We show that c is dominated by $\{a, b\}$. Suppose to the contrary that c is adjacent to neither a nor b. On the one hand, suppose that $\{a, b\} \subseteq S$. Then, $c \notin X$. However since X is a dominating set in G, there is a vertex $x \in X$ that is adjacent to c in G. But then the set $\{a, b, c, x\}$ induces a claw in G, a contradiction. On the other hand, suppose that $\{a, b\} \subseteq X$. Then, $c \notin S$. However since S is a dominating set in G, there is a vertex $x \in S$ that is adjacent to c in G. But then the set $\{a, b, c, x\}$ induces a claw in G, a contradiction. In both cases, we have that c is dominated by $\{a, b\}$, implying that $\{a, b\}$ is a dominating set in G, and therefore, that $\gamma \leq 2$.

Let G be a claw-free graph with $\gamma(G) \leq \gamma(\overline{G}) - 2$, and let S be a $\gamma(G)$ -set and let $X = X_S(G)$. If $\gamma(G) \geq 3$, then by Theorem 5, the set $S \cup X$ is a clique in G, and therefore, an independent set in \overline{G} . Hence, as an immediate consequence of Theorem 5, we have the following result, where $\alpha(G)$ and $\omega(G)$ denote the vertex independence number and the clique number, respectively, of G.

Corollary 5. If G is a claw-free graph with $\gamma(G) \leq \gamma(\overline{G}) - 2$, then $\gamma(G) \leq 2$ or $\gamma(G) \leq \omega(G)/2 = \alpha(\overline{G})/2$.

2.3. Graphs G with a $\gamma(G)$ -bad vertex

Recall that a vertex in a graph G is a $\gamma(G)$ -bad vertex if it is contained in no $\gamma(G)$ set. We establish next an upper bound on the sum of the domination numbers of a graph G and its complement \overline{G} in terms of the degree of a $\gamma(G)$ -bad vertex.

Theorem 6. If a graph G contains a vertex v that is a $\gamma(\overline{G})$ -bad vertex, then $\gamma(G) + \gamma(\overline{G}) \leq d_G(v) + 3$.

Proof. Let G = (V, E) be a graph that contains a $\gamma(\overline{G})$ -bad vertex v. Let $A = N_G(v)$, and so $|A| = d_G(v)$. Since the set $A \cup \{v\}$ is a dominating set in \overline{G} , we have that $\gamma(\overline{G}) \leq |A| + 1$. However if $\gamma(\overline{G}) = |A| + 1$, then $A \cup \{v\}$ is a $\gamma(\overline{G})$ -set, contradicting the fact that v is a $\gamma(\overline{G})$ -bad vertex. Therefore, $\gamma(\overline{G}) < |A| + 1$, or, equivalently, $|A| \geq \gamma(\overline{G})$.

Let $B = V \setminus N_G[v]$. If $B = \emptyset$, then v dominates V in the graph G, implying that v is isolated in \overline{G} and therefore belongs to every $\gamma(\overline{G})$ -set, a contradiction. Hence, $B \neq \emptyset$. We show next that each vertex in B has at least $\overline{\gamma} - 1$ neighbors in G that belong to the set A. Let $x \in B$, and let $A_x = A \cap N_G(x)$. Then in the graph \overline{G} , the vertex x dominates the set $A \setminus A_x$. Thus since the vertex vdominates the set B in \overline{G} , we have that the set $A_x \cup \{v, x\}$ is a dominating set in \overline{G} , implying that $\gamma(\overline{G}) \leq |A_x| + 2$. However if $\gamma(\overline{G}) = |A_x| + 2$, then $A_x \cup \{v, x\}$ is a $\gamma(\overline{G})$ -set, contradicting the fact that v is a $\gamma(\overline{G})$ -bad vertex. Therefore, $\gamma(\overline{G}) < |A_x| + 2$, or, equivalently, $\gamma(\overline{G}) \leq |A_x| + 1$. Thus in the graph \overline{G} , we have that $d_A(x) = |A_x| \geq \gamma(\overline{G}) - 1$. This is true for every vertex $x \in B$.

Recall that $|A| \ge \gamma(\overline{G})$. Let A' be an arbitrary subset of A of cardinality $\gamma(\overline{G}) - 2$, and let $A^* = A \setminus A'$. Thus, $|A'| = \gamma(\overline{G}) - 2$ and $|A^*| = |A| - |A'| = d_G(v) - \gamma(\overline{G}) + 2$. Since $d_A(x) \ge \gamma(\overline{G}) - 1$ for every vertex $x \in B$, the set A^* dominates the set B in G. Thus, $A^* \cup \{v\}$ is a dominating set in G, implying that $\gamma(G) \le |A^*| + 1 = d_G(v) - \gamma(\overline{G}) + 3$.

As a consequence of Theorem 6, we have the following result.

Corollary 6. If G is an r-regular graph that contains a $\gamma(\overline{G})$ -bad vertex, then $\gamma(G) + \gamma(\overline{G}) \leq r+3$.

2.4. Domination and planarity

In this section, we study some relationships between planarity, the crossing number of G and the domination number of \overline{G} . Fundamental to our results in this section is the famous Four Color Theorem.

Theorem 7 [1]. If G is a planar graph, then $\chi(G) \leq 4$.

We first establish the following upper bound on the domination number of the complement of a graph. For this purpose, for a vertex v in a graph G, we denote by G_v the subgraph of G induced by the neighbors of v; that is, $G_v = G[N(v)]$. If C is a minimum coloring of the vertices of G_v , and S is a set of vertices comprising of exactly one vertex from each color class of C, then the set $S \cup \{v\}$ forms a dominating set of \overline{G} , implying that $\gamma(\overline{G}) \leq |\mathcal{C}| + 1 = \chi(G_v) + 1$. We state this formally as follows.

Observation 8. If v is an arbitrary vertex in a graph G, then $\gamma(\overline{G}) \leq \chi(G_v) + 1$.

As a consequence of Theorem 7 and Observation 8, we have the following results.

Corollary 7. If a graph G contains a vertex v with the property that G_v is a planar graph, then $\gamma(\overline{G}) \leq 5$.

Corollary 8. If a graph G satisfies $\gamma(G) > 2cr(G)$, then $\gamma(\overline{G}) \leq 5$.

Proof. Let G^* be a drawing of G in the plane with exactly cr(G) crossing edges, and let S be the set of vertices of G incident with at least one crossing edge of G^* . Clearly, $|S| \leq 2cr(G)$. Since, by assumption, $\gamma(G) > 2cr(G)$, it follows there exists some vertex v in G that is not dominated by S. This implies that G_v is a planar graph. Thus, by Corollary 7, $\gamma(\overline{G}) \leq 5$.

3. TOTAL, CONNECTED, RESTRAINED, AND CLIQUE DOMINATION

In this section, we establish relationships involving the domination, total domination, restrained domination, connected domination and clique domination numbers of a graph. We begin with the following lemma.

Lemma 9. If there exists a $\gamma(G)$ -set for a graph G that is not a dominating set in \overline{G} , then $\gamma_t(G) \leq \gamma_c(G) \leq \gamma(G) + 1$.

Proof. Let S be a $\gamma(G)$ -set in a graph G = (V, E) that is not a dominating set in \overline{G} . Then there exists a vertex $v \in V \setminus S$ that is not adjacent to any vertex of S in \overline{G} . Hence in G, the vertex v is adjacent to every vertex of S, implying that the graph $G[S \cup \{v\}]$ is connected. Since every superset of a dominating set is also a dominating set, the set $S \cup \{v\}$ is a CD-set, and so $\gamma_c(G) \leq |S \cup \{v\}| = \gamma(G) + 1$. Since the total domination of a graph is at most its connected domination number, the desired result follows from the observation that $\gamma_t(G) \leq \gamma_c(G)$.

By the contrapositive of Lemma 9, we note that if a graph G satisfies $\gamma_t(G) \geq \gamma(G) + 2$, then every $\gamma(G)$ -set is a dominating set in \overline{G} . Further as a consequence of Lemma 9 and the well-known result due to Jaeger and Payan [11] that if G is a graph of order n, then $\gamma(G)\gamma(\overline{G}) \leq n$, we have the following result.

Corollary 10. Let G be a graph of order n satisfying $\gamma(G) < \gamma(\overline{G})$. Then the following holds.

- (a) $\gamma_t(G) \le \gamma_c(G) \le \gamma(G) + 1.$
- (b) $\gamma_c(G) \le (1 + \sqrt{4n+1})/2.$

Proof. Part (a) is an immediate consequence of Lemma 9. To prove part (b), let G be a graph of order n satisfying $\gamma(G) < \gamma(\overline{G})$. By part (a) and our assumption that $\gamma(G) \leq \gamma(\overline{G}) - 1$, we have that $\gamma_c(G) \leq \gamma(G) + 1 \leq \gamma(\overline{G})$. Applying the result due to Jaeger and Payan, we therefore have that $(\gamma_c(G) - 1)\gamma_c(G) \leq \gamma(G)\gamma(\overline{G}) \leq n$. Solving for $\gamma_c(G)$, we have that $\gamma_c(G) \leq (1 + \sqrt{4n+1})/2$.

In the following result, we consider the case when $\gamma(G) \leq \gamma(\overline{G}) + 1$.

210

Theorem 9. Let G be a graph satisfying $\gamma(G) \leq \gamma(\overline{G}) + 1$. Then the following holds.

(a) If both G and \overline{G} are connected, then $\gamma_c(G) \leq \gamma(G) + 1$ or $\gamma_c(\overline{G}) \leq \gamma(\overline{G}) + 1$.

(b) If both G and \overline{G} are isolate-free, then $\gamma_t(G) \leq \gamma(G) + 1$ or $\gamma_t(\overline{G}) \leq \gamma(\overline{G}) + 1$.

Proof. Let G = (V, E), and let S be a $\gamma(G)$ -set in the graph. We first establish part (a). Suppose that both G and \overline{G} are connected. If G[S] is connected, then S is a CD-set in G, implying that $\gamma_c(G) \leq |S| = \gamma(G)$. Hence we may assume that G[S] is not connected, for otherwise part (a) is immediate. This implies that $\overline{G}[S]$ is connected. If the set S is not a dominating set in \overline{G} , then by Lemma 9, we have that $\gamma_c(G) \leq \gamma(G) + 1$. If the set S is a dominating set in \overline{G} , then Sis a CD-set in \overline{G} , implying that $\gamma_c(\overline{G}) \leq |S| = \gamma(G) \leq \gamma(\overline{G}) + 1$. This proves part (a).

Next we prove part (b). Suppose that both G and \overline{G} are isolate-free. If G[S] is isolate-free, then S is a TD-set in G, implying that $\gamma_t(G) \leq |S| = \gamma(G)$. Hence we may assume that G[S] contains an isolated vertex, for otherwise part (b) is immediate. This implies that $\overline{G}[S]$ is connected. If the set S is not a dominating set in \overline{G} , then by Lemma 9 we have that $\gamma_t(G) \leq \gamma(G) + 1$. If the set S is a dominating set in \overline{G} , then S is a TD-set in \overline{G} , implying that $\gamma_t(\overline{G}) \leq |S| = \gamma(G) \leq \gamma(\overline{G}) + 1$. This proves part (b).

We establish next an upper bound on the total domination number of a graph in terms of its domination number and the domination number of its complement.

Theorem 10. Let G be an isolate-free graph, and let S be a $\gamma(G)$ -set. If s is the number of isolated vertices in G[S], then $\gamma_t(G) \leq \gamma(G) + \lceil s/(\gamma(\overline{G}) - 1) \rceil$.

Proof. Let G = (V, E). Since G is isolate-free, we note that $\gamma(\overline{G}) \geq 2$. Let I be the set of isolated vertices in G[S], and so s = |I|. Let $k = \lceil s/(\overline{\gamma} - 1) \rceil$, and partition the set I into k sets I_1, \ldots, I_k each of cardinality at most $\overline{\gamma} - 1$. Thus, $I = \bigcup_{i=1}^k I_i$ and $1 \leq |I_i| \leq \overline{\gamma} - 1$ for each $i, 1 \leq i \leq k$. In particular, we note that no set I_i dominates V in \overline{G} . For each set $I_i, 1 \leq i \leq k$, select one vertex $w_i \in V \setminus I_i$ that is not dominated by I_i in \overline{G} , and let $W = \bigcup_{i=1}^k \{w_i\}$. Then, $|W| \leq k$. We note that in the graph G, the vertex w_i is adjacent to every vertex of I_i , and so $S \cup W$ is a TD-set in G. Hence, $\gamma_t(G) \leq |S \cup W| \leq |S| + |W| \leq \gamma(G) + k = \gamma(G) + \lceil s/(\overline{\gamma} - 1) \rceil$.

As an immediate consequence of Theorem 10, we have the following upper bound on the total domination number of a graph.

Corollary 11. If G is an isolate-free graph, then $\gamma_t(G) \leq \gamma(G) + \left\lceil \frac{\gamma(G)}{\gamma(\overline{G}) - 1} \right\rceil$.

Theorem 11. If G is a graph with $\gamma_t(G) \ge \gamma(G) + 2$, then $\gamma_t(\overline{G}) \le 1 + \left\lceil \frac{\delta(G)}{\gamma(G)} \right\rceil$.

Proof. Let G = (V, E) be a graph with $\gamma_t(G) \geq \gamma(G) + 2$, and let v be a vertex of G having degree $\delta(G)$. Let $A = N_G(v)$, and so $|A| = \delta(G)$. Let $k = \lceil \delta(G)/\gamma(G) \rceil$ and partition the set A into k sets A_1, \ldots, A_k each of cardinality at most $\gamma(G)$. Thus, $A = \bigcup_{i=1}^k A_i$ and $1 \leq |A_i| \leq \gamma(G)$ for each $i, 1 \leq i \leq k$. If the set A_i dominates $V \setminus N_G[v]$ in G for some $i, 1 \leq i \leq k$, then the set $A_i \cup \{v\}$ is a TD-set in G, implying that $\gamma_t(G) \leq |A_i| + 1 \leq \gamma(G) + 1$, a contradiction. Therefore, no set A_i dominates $V \setminus N_G[v]$ in G. For each set $A_i, 1 \leq i \leq k$, select one vertex $a_i \in V \setminus N_G[v]$ that is not dominated by A_i in G, and let $A' = \bigcup_{i=1}^k \{a_i\}$. Then, $|A'| \leq k$ and A' dominates A in \overline{G} . Therefore, the set $A' \cup \{v\}$ is a TD-set in \overline{G} , and so $\gamma_t(\overline{G}) \leq |A'| + 1 \leq k + 1 = 1 + \lceil \delta(G)/\gamma(G) \rceil$.

Next we consider the restrained domination number. We first prove a general lemma.

Lemma 12. If a graph G has a $\gamma(G)$ -set S such that the induced subgraph $G[V \setminus S]$ has an isolated vertex, then $\gamma(\overline{G}) \leq 3$.

Proof. Let S be a $\gamma(G)$ -set such that $G[V \setminus S]$ has an isolated vertex, say w. If G[S] has an isolated vertex v, then $\{v, w\}$ is dominating set of \overline{G} , and so $\gamma(\overline{G}) \leq 2$. If G[S] contains no isolated vertices, then by the minimality of S, for each $v \in S$, there exists a vertex, say $v' \in V \setminus S$, such that $N(v') \cap S = \{v\}$. In this case, the set $\{v, w, v'\}$ is a dominating set of \overline{G} , implying that $\gamma(\overline{G}) \leq 3$.

As an immediate consequence of Lemma 12, we have the following result.

Corollary 13. If a graph G has $\gamma(\overline{G}) \ge 4$, then every $\gamma(G)$ -set is a $\gamma_r(G)$ -set. In particular, $\gamma(G) = \gamma_r(G)$.

We close this section with two results about the clique domination number of a graph.

Theorem 12. If G is a graph with $\gamma_t(G) \geq \gamma(G) + 2$, then $\gamma_{cl}(\overline{G}) \leq \gamma(G)$. Moreover, if G is claw-free, then $\gamma_{cl}(\overline{G}) \leq 3$.

Proof. Let G be a graph with $\gamma_t(G) \geq \gamma(G)+2$, and let S be a $\gamma(G)$ -set. Further, let I(S) be the set of isolated vertices in G[S]. If $I(S) = \emptyset$, then S is a TD-set of G, implying that $\gamma_t(G) \leq |S| = \gamma(G)$, a contradiction. Hence, $I(S) \neq \emptyset$. We show that I(S) dominates \overline{G} . Suppose to the contrary that there exists a vertex v that is not adjacent to any vertex of I(S) in \overline{G} . Then in the graph G, the vertex v is adjacent to every vertex of I(S), implying that $S \cup \{v\}$ is a TD-set for G, and so $\gamma_t(G) \leq |S| + 1 = \gamma(G) + 1$, a contradiction. Hence, the set I(S) dominates \overline{G} . Since I(S) is an independent set in G, it forms a clique in \overline{G} . Therefore, I(S)is a dominating clique in \overline{G} , implying that $\gamma_{cl}(\overline{G}) \leq |I(S)| \leq \gamma(G)$.

Now, suppose that G is claw free. If $|I(S)| \leq 3$, then the result follows. Hence, we may assume that $|I(S)| \geq 4$ and there exists a subset $\{a, b, c\} \subseteq I(S)$ that is not a dominating set in \overline{G} . Then there exists a vertex v that is not adjacent to a, b, or c in \overline{G} . But then in the graph G, we have that $\{a, b, c, v\}$ induces a claw, a contradiction. Therefore, every subset of I(S) of cardinality 3 is a dominating set in \overline{G} , implying that $\gamma_{cl}(\overline{G}) \leq 3$.

4. Bounds on the Domination Number of a Graph in Terms of the Adjacency Matrix of its Complement

We begin this section by stating two well-known theorems. The first result counts the number of walks of length k for an arbitrary positive integer k in a graph (see [3]; see also Theorem 1.17 in [5]). The second result is a consequence of a result due to Vizing [16] and provides an upper bound for the domination number of a graph in terms of its order and size.

Theorem 13 [3]. Let G be a graph of order n with $V(G) = \{v_1, v_2, \ldots, v_n\}$ and with adjacency matrix A. For each positive integer k, the number of different walks of length k from the vertex v_i to the vertex v_j is the (i, j)-entry in the matrix A^k .

Theorem 14 [16]. If G is graph of order n and size m, then $\gamma(G) \leq n + 1 - \sqrt{1+2m}$.

Let G be a graph of order n with $V(G) = \{v_1, v_2, \ldots, v_n\}$ and with adjacency matrix A, and let $a_{ij}^{(k)}$ denote the (i, j)-entry in A^k . Recall that if v is a vertex in G, then the subgraph of G induced by $N_G(v)$ is called the link of v and is denoted by $\mathcal{L}(v)$, while the subgraph of \overline{G} induced by $N_G(v)$ is denoted $\overline{\mathcal{L}}(v)$. Theorem 13 implies that the (i, i)-entry of A^2 , $1 \le i \le n$, is the degree $d_G(v_i)$ of v_i , and the (i, i)-entry of A^3 , $1 \le i \le n$, is equal to twice the number of edges in $\mathcal{L}(v_i)$. Suppose that $a_{ii}^{(3)} < a_{ii}^{(2)}$ for some $i, 1 \le i \le n$. Since $a_{ii}^{(2)} = d_G(v_i)$ and $\frac{1}{2}a_{ii}^{(3)}$ is the number of edges in $\mathcal{L}(v_i)$, this implies that $\mathcal{L}(v_i)$ contains an isolated vertex, v say. Thus the set $\{v, v_i\}$ is a dominating set in the graph \overline{G} , implying that $\gamma(\overline{G}) \le 2$. We state this formally as follows.

Observation 15. Let G be an isolate-free graph of order n with adjacency matrix A. If the (i, i)-entry of A^3 is less than the (i, i)-entry of A^2 for some $i, 1 \le i \le n$, then $\gamma(\overline{G}) \le 2$.

Using Observation 15, we obtain the following bound on the domination number of the complement of a graph.

Theorem 16. Let G be a graph of order n with adjacency matrix A, and let $a_{ij}^{(k)}$ denote the (i, j)-entry in A^k . For every $i, 1 \le i \le n$, we have that

$$\gamma(\overline{G}) \le a_{ii}^{(2)} + 2 - \sqrt{1 + a_{ii}^{(2)}(a_{ii}^{(2)} - 1) - a_{ii}^{(3)}}.$$

Proof. Let *i* be an arbitrary integer with $1 \leq i \leq n$. Since $a_{ii}^{(2)} = d_G(v_i)$ and $\frac{1}{2}a_{ii}^{(3)}$ is the number of edges in $\mathcal{L}(v_i)$, this implies that $\overline{\mathcal{L}}(v_i)$ has order $a_{ii}^{(2)}$ and size

$$\binom{a_{ii}^{(2)}}{2} - \frac{1}{2}a_{ii}^{(3)} = \frac{1}{2}\left(a_{ii}^{(2)}(a_{ii}^{(2)} - 1) - a_{ii}^{(3)}\right).$$

Thus, by Theorem 14, we have that

$$\gamma(\overline{\mathcal{L}}(v_i)) \le a_{ii}^{(2)} + 1 - \sqrt{1 + a_{ii}^{(2)}(a_{ii}^{(2)} - 1) - a_{ii}^{(3)}}.$$

The desired bound now follows from the observation that every $\gamma(\overline{\mathcal{L}}(v_i))$ -set can be extended to a dominating set in \overline{G} by adding to it the vertex v_i , and so $\gamma(\overline{G}) \leq \gamma(\overline{\mathcal{L}}(v_i)) + 1$.

References

- K. Appel and W. Haken, Every planar map is four colorable, Bull. Amer. Math. Soc. 82 (1976) 711–712. doi:10.1090/S0002-9904-1976-14122-5
- [2] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194–197.
 doi:10.1017/S030500410002168X
- [3] F. Buckley and M. Lewinter, A Friendly Introduction to Graph Theory (Prentice Hall Inc., New Jersey, 2003).
- [4] Y. Caro, D.B. West and R. Yuster, Connected domination and spanning trees with many leaves, SIAM J. Discrete Math. 13 (2000) 202–211. doi:10.1137/S0895480199353780
- [5] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, Fifth Edition (Chapman and Hall/CRC, 2010) pp. 598.
- [6] B. Das and V. Bhargavan, Routing in ad-hoc networks using minimum connected dominating sets, IEEE International Conference on Communications (ICC 97), June 1997. doi:10.1109/ICC.1997.605303
- [7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
- [8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).
- M.A. Henning, Recent results on total domination in graphs: A survey, Discrete Math. 309 (2009) 32-63. doi:10.1016/j.disc.2007.12.044
- [10] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer Monographs in Mathematics, 2013).

- [11] F. Jaeger and C. Payan, Relations du type Nordhaus-Gaddum pour le nombre d'absorption d'un graphe simple, C.R. Acad. Sci. Paris 274 (1972) 728–730.
- [12] D. Li, H. Du, P.J. Wan, X. Gao, Z. Zhang and W. Wu, Construction of strongly connected dominating sets in asymmetric multi-hop wireless networks, Theoret. Comput. Sci. 410 (2009) 661–669. doi:10.1016/j.tcs.2008.09.058
- [13] H. Karami, A. Khodkar, S.M. Sheikholeslami and D.B. West, Connected domination number of a graph and its complement, Graphs Combin. 28 (2012) 189–197. doi:10.1007/s00373-011-1028-z
- [14] E. Sampathkumar and H.B. Walikar, The connected domination number of a graph, J. Math. Phys. Sci. 13 (1979) 607–613.
- [15] O. Schaudt, On graphs for which the connected domination number is at most the total domination number, Discrete Appl. Math. 160 (2012) 281–284. doi:10.1016/j.dam.2011.12.025
- [16] V.G. Vizing, A bound on the external stability number of a graph, Dokl. Akad. Nauk 164 (1965) 729–731.
- [17] J. Wu and H. Li, On calculating connected dominating set for efficient routing in ad hoc wireless networks, in: Proc. 3rd International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications ACM (1999) 7–14. doi:10.1145/313239.313261

Received 2 June 2016 Revised 2 November 2016 Accepted 2 November 2016