DOMINATION PARAMETERS OF A GRAPH AND ITS COMPLEMENT

Wyatt J. Desormeaux ${ }^{1}$, Teresa W. Haynes ${ }^{1,2}$
AND
Michael A. Henning ${ }^{1}$
${ }^{1}$ Department of Mathematics
Department of Pure and Applied Mathematics
University of Johannesburg Auckland Park, 2006 South Africa
${ }^{2}$ Department of Mathematics and Statistics
East Tennessee State University
Johnson City, TN 37614-0002 USA
e-mail: wjdesormeaux@gmail.com
haynes@etsu.edu
mahenning@uj.ac.za

Abstract

A dominating set in a graph G is a set S of vertices such that every vertex in $V(G) \backslash S$ is adjacent to at least one vertex in S, and the domination number of G is the minimum cardinality of a dominating set of G. Placing constraints on a dominating set yields different domination parameters, including total, connected, restrained, and clique domination numbers. In this paper, we study relationships among domination parameters of a graph and its complement.

Keywords: domination, complement, total domination, connected domination, clique domination, restrained domination.
2010 Mathematics Subject Classification: 05C69.

1. InTRODUCTION

The literature on the subject of domination parameters in graphs has been surveyed through 1997 and detailed in the two books [7, 8]. Our aim in this paper
is to study graph relationships involving domination parameters in a graph G and its complement \bar{G}. We will also study relationships between the domination number of a graph and its total, restrained, clique and connected domination numbers.

For notation and graph theory terminology not defined herein, we refer the reader to [7]. Let $G=(V, E)$ be a graph with vertex set $V=V(G)$ of order $n=$ $|V|$ and edge set $E=E(G)$ of size $m=|E|$, and let v be a vertex in V. The open neighborhood of v is $N_{G}(v)=\{u \in V \mid u v \in E\}$, and the closed neighborhood of v is $N_{G}[v]=\{v\} \cup N_{G}(v)$. We denote the complement of a graph G by \bar{G}. For any vertex v, we call the subgraph of G induced by $N_{G}(v)$ the link of v and will denote it as $\mathcal{L}(v)$. We will denote the subgraph of \bar{G} induced by $N_{G}(v)$ as $\overline{\mathcal{L}}(v)$. For a set $S \subseteq V$, its open neighborhood is the set $N_{G}(S)=\bigcup_{v \in S} N(v)$, and its closed neighborhood is the set $N_{G}[S]=N_{G}(S) \cup S$. The degree of a vertex v in G is $d_{G}(v)=\left|N_{G}(v)\right|$. If the graph G is clear from the context, we simply write $d(v), N(v), N[v], N(S)$ and $N[S]$ rather than $d_{G}(v), N_{G}(v), N_{G}[v], N_{G}(S)$ and $N_{G}[S]$, respectively. A vertex is isolated in G if its degree in G is zero. A graph is isolate-free if it has no isolated vertex. For any set $S \subset V(G)$, we denote the subgraph induced by S as $G[S]$. The minimum and maximum degree among the vertices of G is denoted by $\delta(G)$ and $\Delta(G)$, respectively. For a subset $X \subseteq V$, the degree of a vertex v in X, denoted $d_{X}(v)$, is the number of vertices in X adjacent to v; that is, $d_{X}(v)=|N(v) \cap X|$. In particular, $d_{G}(v)=d_{V}(v)$.

For sets $A, B \subseteq V$, we let $G[A, B]$, or simply $[A, B]$ if the graph is clear from the context, denote the set of edges in G with one end in A and the other in B. A nontrivial graph is a graph with at least two vertices. We say that a graph is F-free if it does not contain F as an induced subgraph. In particular, if $F=K_{1,3}$, then we say that the graph is claw-free.

A dominating set in $G=(V, E)$ is a set S of vertices of G such that every vertex in $V \backslash S$ is adjacent to at least one vertex in S, that is, $N[S]=V$. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. A dominating set of G of cardinality $\gamma(G)$ is called a $\gamma(G)$ set. For subsets $X, Y \subseteq V$, the set X dominates the set Y in G if $Y \subseteq N[X]$. In particular, if X dominates V, then X is a dominating set of G. A vertex is called $\gamma(G)$-good if it is contained in some $\gamma(G)$-set, and $\gamma(G)$-bad, otherwise. In other words, a $\gamma(G)$-good vertex is contained in at least one $\gamma(G)$-set, while a $\gamma(G)$ bad vertex is not in any $\gamma(G)$-set. The minimum degree among the $\gamma(G)$-good (respectively, $\gamma(G)$-bad) vertices of G is denoted by $\delta_{g}(G)$ (respectively, $\delta_{b}(G)$).

A total dominating set, abbreviated TD-set, of G is a set S of vertices of G such that every vertex in $V(G)$ is adjacent to at least one vertex in S. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a TD-set of G. A TD-set of G of cardinality $\gamma_{t}(G)$ is called a $\gamma_{t}(G)$-set. Total domination is now well studied in graph theory. The literature on the subject of
total domination in graphs has been surveyed and detailed in the recent book [10]. A survey of total domination in graphs can also be found in [9].

Another way of looking at total domination is that a dominating set S is a TD-set if the induced subgraph $G[S]$ has no isolated vertices. Placing the constraint that $G[S]$ is connected (respectively, a complete graph) yields connected domination (respectively, clique domination). More formally, a dominating set S is a connected dominating set, abbreviated CD-set, of a graph G if the induced subgraph $G[S]$ is connected. Every connected graph has a CD-set, since V is such a set. The connected domination number of G, denoted by $\gamma_{c}(G)$, is the minimum cardinality of a CD-set of G, and a CD-set of G of cardinality $\gamma_{c}(G)$ is called a $\gamma_{c}(G)$-set. Connected domination in graphs was first introduced by Sampathkumar et al. [14] and is now very well studied (see, for example, [4] and the recent papers $[13,15])$. The study of connected domination has extensive application in the study of routing problems and virtual backbone based routing in wireless networks $[6,12,17]$. A subset $S \subset V$ of vertices in a graph $G=(V, E)$ is a dominating clique in G if S dominates V in G and $G[S]$ is complete. If a graph G has a dominating clique, then the minimum cardinality among all dominating cliques of G is the clique domination number of G, denoted by $\gamma_{\mathrm{cl}}(G)$.

A restrained dominating set of a graph G is a set S of vertices in G such that every vertex in $V \backslash S$ is adjacent to a vertex in S and to some other vertex in $V \backslash S$. Every connected graph has an RD-set, since V is such a set. The restrained domination number of G, denoted by $\gamma_{r}(G)$, is the minimum cardinality of an RD-set of G, and an RD-set of G of cardinality $\gamma_{r}(G)$ is called a $\gamma_{r}(G)$-set.

A proper vertex coloring of a graph G is an assignment of colors (elements of some set) to the vertices of G, one color to each vertex, so that adjacent vertices are assigned distinct colors. If k colors are used, then the coloring is referred to as a k-coloring. In a given coloring of G, a color class of the coloring is a set consisting of all those vertices assigned the same color. The vertex chromatic number $\chi(G)$ of G is the minimum integer k such that G is k-colorable. A $\chi(G)$ coloring of G is a coloring of G with $\chi(G)$ colors.

Given a graph G, two edges are said to cross in the plane if in a drawing of the graph in the plane they intersect at a point that is not a vertex. The graph G is planar if it can be drawn in the plane with no edges crossing. The crossing number of G, denoted $\operatorname{cr}(G)$, is the minimum number of crossing edges amongst all drawings of G in the plane. Note that if G is planar, then necessarily $c r(G)=0$.

2. Bounds on the Domination Number

In this section, we determine bounds on the domination number. If the graph G is clear from the context, then we write $\delta, \bar{\delta}, \Delta, \bar{\Delta}, \gamma$ and $\bar{\gamma}$ rather than $\delta(G)$,
$\delta(\bar{G}), \Delta(G), \Delta(\bar{G}), \gamma(G)$ and $\gamma(\bar{G})$, respectively.

2.1. Dominating the complement of a graph

We begin with results bounding the domination number of the complement of a graph. If v is an arbitrary vertex in a graph G, then the closed neighborhood, $N_{G}[v]$, of v is a dominating set of \bar{G}. In particular, choosing v to be a vertex of minimum degree in G, we have that $\gamma(\bar{G}) \leq \delta(G)+1$. Furthermore, a set formed by taking a vertex from each color class of an arbitrary $\chi(G)$-coloring of G is a dominating set of \bar{G}, and so $\gamma(\bar{G}) \leq \chi(G)$. We state these well known observations formally as follows.
Observation 1. Let G be a graph. Then the following hold
(a) $\gamma(\bar{G}) \leq \delta(G)+1$.
(b) $\gamma(\bar{G}) \leq \chi(G)$.

By Observation 1, $\gamma(\bar{G}) \leq \Delta(G)+1$. From Brook's Coloring Theorem [2], $\chi(G) \leq \Delta(G)+1$ with equality if and only if G is the complete graph or an odd cycle. Noting that the domination number of the complement of any odd cycle C_{n}, where $n \geq 5$, is equal to 2 , we observe that if G is a graph, then $\gamma(\bar{G}) \leq \Delta(G)+1$ with equality if and only if G is a complete graph. Next we give an upper bound on $\gamma(\bar{G})$ in terms of $\gamma(G)$ and $\delta(G)$.
Theorem 2. If G is a graph with $\gamma(G) \geq 2$, then $\gamma(\bar{G}) \leq\left\lceil\frac{\delta(G)}{\gamma(G)-1}\right\rceil+1$.
Proof. Let v be a vertex of G having degree δ. Let $A=N_{G}(v)$, and so $|A|=\delta$. Let $k=\lceil\delta /(\gamma-1)\rceil$ and partition the set A into k sets A_{1}, \ldots, A_{k} each of cardinality at most $\gamma-1$. Thus, $A=\bigcup_{i=1}^{k} A_{i}$ and $1 \leq\left|A_{i}\right| \leq \gamma-1$ for each i, $1 \leq i \leq k$. In particular, we note that no set A_{i} dominates V in G. For each set $A_{i}, 1 \leq i \leq k$, select one vertex $a_{i} \in V \backslash A_{i}$ that is not dominated by A_{i} in G, and let $A^{\prime}=\bigcup_{i=1}^{k}\left\{a_{i}\right\}$. Then, $\left|A^{\prime}\right| \leq k$ and A^{\prime} dominates A in \bar{G}. Therefore, the set $A^{\prime} \cup\{v\}$ is a dominating set of \bar{G}, and so $\bar{\gamma} \leq\left|A^{\prime}\right|+1 \leq k+1=1+\lceil\delta /(\gamma-1)\rceil$.

As an immediate consequence of Theorem 2, we have the following corollaries.
Corollary 1. If G is a graph with $\gamma(\bar{G})>\gamma(G) \geq 2$, then $\delta(G) \geq \gamma(G)$.
The next result shows that if G is a graph satisfying $\gamma(G) \geq \gamma(\bar{G})-1$, then the bound of Observation 1(a) can be improved.
Corollary 2. If G is a graph satisfying $\gamma(G) \geq \gamma(\bar{G})-1$, then $\gamma(\bar{G})<2+\sqrt{\delta(G)}$.
Proof. Let G be a graph satisfying $\gamma \geq \bar{\gamma}-1$. If $\gamma=1$, then $\bar{\gamma} \leq 2$, and the result follows. Accordingly, we may assume that $\gamma \geq 2$. By Theorem 2, $\bar{\gamma} \leq$ $\lceil\delta /(\gamma-1)\rceil+1$. This simplifies to $(\bar{\gamma}-2)(\gamma-1)<\delta$. By assumption, $\gamma \geq \bar{\gamma}-1$. Hence, $(\bar{\gamma}-2)(\bar{\gamma}-2)<\delta$, and the result follows.

From Corollary 2, we have the following Nordhaus-Gaddum type result for graphs G with $\gamma(G)=\gamma(\bar{G})$.

Corollary 3. If G is a graph with $\gamma(G)=\gamma(\bar{G})$, then $\gamma(G)+\gamma(\bar{G})<4+\sqrt{\delta(G)}+$ $\sqrt{\delta(\bar{G})}$.

2.2. Graphs G with $\gamma(G)<\gamma(\overline{\boldsymbol{G}})$

For a subset $S \subset V$ in a graph $G=(V, E)$, let $X_{S}(G)$ be the set of all vertices x in $V \backslash S$ such that x dominates S in G; that is, $X_{S}(G)=\{x \in V \backslash S \mid S \subseteq N(x)\}$. We observe that if $X_{S}(G)=\emptyset$, then S is a dominating set of \bar{G}. We state this formally as follows.

Observation 3. If G is a graph and $S \subset V$ satisfies $|S|<\gamma(\bar{G})$, then $X_{S}(G) \neq \emptyset$.
The following result establishes properties about the set $X_{S}(G)$.
Theorem 4. Let G be a graph with $\gamma(\bar{G})=\gamma(G)+k$, where $k \geq 2$, and let S be a $\gamma(G)$-set. It follows that $\left|X_{S}\right| \geq k$. Moreover, any subset $X^{\prime} \subseteq X_{S}$ of size $\left|X_{S}\right|-k+2$ is a dominating set of G.

Proof. By the definition of X_{S}, the set S dominates $V \backslash\left(S \cup X_{S}\right)$ in \bar{G}. This gives that $S \cup X_{S}$ is a dominating set of \bar{G}, and so $\gamma(G)+\left|X_{S}\right|=|S|+\left|X_{S}\right| \geq$ $\gamma(\bar{G})=\gamma(G)+k$ which implies $\left|X_{S}\right| \geq k$.

Let u be an arbitrary vertex in $V \backslash S$, and let $U=N_{G}(u) \cap X_{S}$. Since S dominates $V \backslash\left(S \cup X_{S}\right)$ in \bar{G}, and u dominates $X_{S} \backslash U$ in \bar{G}, the set $S \cup U \cup\{u\}$ is a dominating set of \bar{G}. Then, $\gamma(G)+k=\gamma(\bar{G}) \leq \gamma(G)+|U|+1$. Consequently, $k-1 \leq|U|=\left|N_{G}(u) \cap\left(X_{S} \backslash X^{\prime}\right)\right|+\left|N_{G}(u) \cap X^{\prime}\right| \leq k-2+\left|N_{G}(u) \cap X^{\prime}\right|$ and so $N_{G}(u) \cap X^{\prime} \neq \emptyset$. Hence, X^{\prime} dominates $V \backslash S$ in G. Since every vertex of X^{\prime} dominates S in G, the set X^{\prime} is a dominating set of G.

Let G be a graph with $\gamma(G) \leq \gamma(\bar{G})-2$. Further, let S be a $\gamma(G)$-set, and let $X=X_{S}(G)$. By definition of the set X, we note that the edges, $G[X, S]$, in G between X and S induce a complete bipartite graph $K_{|X|,|S|}$. By Theorem 4, $\gamma \leq|X|$. Thus, we have the following corollary of Theorem 4.

Corollary 4. If G is a graph with $\gamma(G) \leq \gamma(\bar{G})-2$, then G contains $K_{\gamma, \gamma}$ as a subgraph.

We observe from Corollary 4 that if G is a graph that contains no 4 -cycle (and thus does not contain $K_{r, r}$ for $r \geq 2$ as a subgraph), then $\gamma(G)=1$ or $\gamma(G) \geq \gamma(\bar{G})-1$. We establish next a property of claw-free graphs G with $\gamma(G) \leq \gamma(\bar{G})-2$.

Theorem 5. Let G be a graph with $\gamma(G) \leq \gamma(\bar{G})-2$, and let S be a $\gamma(G)$-set. If G is claw-free, then $\gamma(G) \leq 2$ or $S \cup X_{S}(G)$ is a clique in G.

Proof. Let $G=(V, E)$ be a claw-free graph with $\gamma \leq \bar{\gamma}-2$, and let S be a $\gamma(G)$-set. Following our earlier notation, let $X=X_{S}(G)$. By Theorem 4, the set X is a dominating set of G, and so $\gamma \leq|X|$. Suppose that $G[S \cup X]$ is not a clique. Then there are two vertices, say a and b, in $S \cup X$ that are not adjacent in G. Since every vertex in X is by definition adjacent in G to every vertex in S, we observe that both a and b are in S or both a and b are in X. Let c be an arbitrary vertex in $V \backslash\{a, b\}$.

We show that c is dominated by $\{a, b\}$. Suppose to the contrary that c is adjacent to neither a nor b. On the one hand, suppose that $\{a, b\} \subseteq S$. Then, $c \notin X$. However since X is a dominating set in G, there is a vertex $x \in X$ that is adjacent to c in G. But then the set $\{a, b, c, x\}$ induces a claw in G, a contradiction. On the other hand, suppose that $\{a, b\} \subseteq X$. Then, $c \notin S$. However since S is a dominating set in G, there is a vertex $x \in S$ that is adjacent to c in G. But then the set $\{a, b, c, x\}$ induces a claw in G, a contradiction. In both cases, we have that c is dominated by $\{a, b\}$, implying that $\{a, b\}$ is a dominating set in G, and therefore, that $\gamma \leq 2$.

Let G be a claw-free graph with $\gamma(G) \leq \gamma(\bar{G})-2$, and let S be a $\gamma(G)$-set and let $X=X_{S}(G)$. If $\gamma(G) \geq 3$, then by Theorem 5 , the set $S \cup X$ is a clique in G, and therefore, an independent set in \bar{G}. Hence, as an immediate consequence of Theorem 5, we have the following result, where $\alpha(G)$ and $\omega(G)$ denote the vertex independence number and the clique number, respectively, of G.

Corollary 5. If G is a claw-free graph with $\gamma(G) \leq \gamma(\bar{G})-2$, then $\gamma(G) \leq 2$ or $\gamma(G) \leq \omega(G) / 2=\alpha(\bar{G}) / 2$.

2.3. Graphs G with a $\gamma(G)$-bad vertex

Recall that a vertex in a graph G is a $\gamma(G)$-bad vertex if it is contained in no $\gamma(G)$ set. We establish next an upper bound on the sum of the domination numbers of a graph G and its complement \bar{G} in terms of the degree of a $\gamma(G)$-bad vertex.

Theorem 6. If a graph G contains a vertex v that is a $\gamma(\bar{G})$-bad vertex, then $\gamma(G)+\gamma(\bar{G}) \leq d_{G}(v)+3$.

Proof. Let $G=(V, E)$ be a graph that contains a $\gamma(\bar{G})$-bad vertex v. Let $A=$ $N_{G}(v)$, and so $|A|=d_{G}(v)$. Since the set $A \cup\{v\}$ is a dominating set in \bar{G}, we have that $\gamma(\bar{G}) \leq|A|+1$. However if $\gamma(\bar{G})=|A|+1$, then $A \cup\{v\}$ is a $\gamma(\bar{G})$-set, contradicting the fact that v is a $\gamma(\bar{G})$-bad vertex. Therefore, $\gamma(\bar{G})<|A|+1$, or, equivalently, $|A| \geq \gamma(\bar{G})$.

Let $B=V \backslash N_{G}[v]$. If $B=\emptyset$, then v dominates V in the graph G, implying that v is isolated in \bar{G} and therefore belongs to every $\gamma(\bar{G})$-set, a contradiction. Hence, $B \neq \emptyset$. We show next that each vertex in B has at least $\bar{\gamma}-1$ neighbors in G that belong to the set A. Let $x \in B$, and let $A_{x}=A \cap N_{G}(x)$. Then in the graph \bar{G}, the vertex x dominates the set $A \backslash A_{x}$. Thus since the vertex v dominates the set B in \bar{G}, we have that the set $A_{x} \cup\{v, x\}$ is a dominating set in \bar{G}, implying that $\gamma(\bar{G}) \leq\left|A_{x}\right|+2$. However if $\gamma(\bar{G})=\left|A_{x}\right|+2$, then $A_{x} \cup\{v, x\}$ is a $\gamma(\bar{G})$-set, contradicting the fact that v is a $\gamma(\bar{G})$-bad vertex. Therefore, $\gamma(\bar{G})<\left|A_{x}\right|+2$, or, equivalently, $\gamma(\bar{G}) \leq\left|A_{x}\right|+1$. Thus in the graph \bar{G}, we have that $d_{A}(x)=\left|A_{x}\right| \geq \gamma(\bar{G})-1$. This is true for every vertex $x \in B$.

Recall that $|A| \geq \gamma(\bar{G})$. Let A^{\prime} be an arbitrary subset of A of cardinality $\gamma(\bar{G})-2$, and let $A^{*}=A \backslash A^{\prime}$. Thus, $\left|A^{\prime}\right|=\gamma(\bar{G})-2$ and $\left|A^{*}\right|=|A|-\left|A^{\prime}\right|=$ $d_{G}(v)-\gamma(\bar{G})+2$. Since $d_{A}(x) \geq \gamma(\bar{G})-1$ for every vertex $x \in B$, the set A^{*} dominates the set B in G. Thus, $A^{*} \cup\{v\}$ is a dominating set in G, implying that $\gamma(G) \leq\left|A^{*}\right|+1=d_{G}(v)-\gamma(\bar{G})+3$.

As a consequence of Theorem 6, we have the following result.
Corollary 6. If G is an r-regular graph that contains a $\gamma(\bar{G})$-bad vertex, then $\gamma(G)+\gamma(\bar{G}) \leq r+3$.

2.4. Domination and planarity

In this section, we study some relationships between planarity, the crossing number of G and the domination number of \bar{G}. Fundamental to our results in this section is the famous Four Color Theorem.

Theorem 7 [1]. If G is a planar graph, then $\chi(G) \leq 4$.
We first establish the following upper bound on the domination number of the complement of a graph. For this purpose, for a vertex v in a graph G, we denote by G_{v} the subgraph of G induced by the neighbors of v; that is, $G_{v}=G[N(v)]$. If \mathcal{C} is a minimum coloring of the vertices of G_{v}, and S is a set of vertices comprising of exactly one vertex from each color class of \mathcal{C}, then the set $S \cup\{v\}$ forms a dominating set of \bar{G}, implying that $\gamma(\bar{G}) \leq|\mathcal{C}|+1=\chi\left(G_{v}\right)+1$. We state this formally as follows.

Observation 8. If v is an arbitrary vertex in a graph G, then $\gamma(\bar{G}) \leq \chi\left(G_{v}\right)+1$.
As a consequence of Theorem 7 and Observation 8, we have the following results.

Corollary 7. If a graph G contains a vertex v with the property that G_{v} is a planar graph, then $\gamma(\bar{G}) \leq 5$.

Corollary 8. If a graph G satisfies $\gamma(G)>2 c r(G)$, then $\gamma(\bar{G}) \leq 5$.
Proof. Let G^{*} be a drawing of G in the plane with exactly $\operatorname{cr}(G)$ crossing edges, and let S be the set of vertices of G incident with at least one crossing edge of G^{*}. Clearly, $|S| \leq 2 c r(G)$. Since, by assumption, $\gamma(G)>2 c r(G)$, it follows there exists some vertex v in G that is not dominated by S. This implies that G_{v} is a planar graph. Thus, by Corollary $7, \gamma(\bar{G}) \leq 5$.

3. Total, Connected, Restrained, and Clique Domination

In this section, we establish relationships involving the domination, total domination, restrained domination, connected domination and clique domination numbers of a graph. We begin with the following lemma.

Lemma 9. If there exists a $\gamma(G)$-set for a graph G that is not a dominating set in \bar{G}, then $\gamma_{t}(G) \leq \gamma_{c}(G) \leq \gamma(G)+1$.

Proof. Let S be a $\gamma(G)$-set in a graph $G=(V, E)$ that is not a dominating set in \bar{G}. Then there exists a vertex $v \in V \backslash S$ that is not adjacent to any vertex of S in \bar{G}. Hence in G, the vertex v is adjacent to every vertex of S, implying that the graph $G[S \cup\{v\}]$ is connected. Since every superset of a dominating set is also a dominating set, the set $S \cup\{v\}$ is a CD-set, and so $\gamma_{c}(G) \leq|S \cup\{v\}|=\gamma(G)+1$. Since the total domination of a graph is at most its connected domination number, the desired result follows from the observation that $\gamma_{t}(G) \leq \gamma_{c}(G)$.

By the contrapositive of Lemma 9, we note that if a graph G satisfies $\gamma_{t}(G) \geq$ $\gamma(G)+2$, then every $\gamma(G)$-set is a dominating set in \bar{G}. Further as a consequence of Lemma 9 and the well-known result due to Jaeger and Payan [11] that if G is a graph of order n, then $\gamma(G) \gamma(\bar{G}) \leq n$, we have the following result.

Corollary 10. Let G be a graph of order n satisfying $\gamma(G)<\gamma(\bar{G})$. Then the following holds.
(a) $\gamma_{t}(G) \leq \gamma_{c}(G) \leq \gamma(G)+1$.
(b) $\gamma_{c}(G) \leq(1+\sqrt{4 n+1}) / 2$.

Proof. Part (a) is an immediate consequence of Lemma 9. To prove part (b), let G be a graph of order n satisfying $\gamma(G)<\gamma(\bar{G})$. By part (a) and our assumption that $\gamma(G) \leq \gamma(\bar{G})-1$, we have that $\gamma_{c}(G) \leq \gamma(G)+1 \leq \gamma(\bar{G})$. Applying the result due to Jaeger and Payan, we therefore have that $\left(\gamma_{c}(\bar{G})-1\right) \gamma_{c}(G) \leq \gamma(G) \gamma(\bar{G}) \leq$ n. Solving for $\gamma_{c}(G)$, we have that $\gamma_{c}(G) \leq(1+\sqrt{4 n+1}) / 2$.

In the following result, we consider the case when $\gamma(G) \leq \gamma(\bar{G})+1$.

Theorem 9. Let G be a graph satisfying $\gamma(G) \leq \gamma(\bar{G})+1$. Then the following holds.
(a) If both G and \bar{G} are connected, then $\gamma_{c}(G) \leq \gamma(G)+1$ or $\gamma_{c}(\bar{G}) \leq \gamma(\bar{G})+1$.
(b) If both G and \bar{G} are isolate-free, then $\gamma_{t}(G) \leq \gamma(G)+1$ or $\gamma_{t}(\bar{G}) \leq \gamma(\bar{G})+1$.

Proof. Let $G=(V, E)$, and let S be a $\gamma(G)$-set in the graph. We first establish part (a). Suppose that both G and \bar{G} are connected. If $G[S]$ is connected, then S is a CD-set in G, implying that $\gamma_{c}(G) \leq|S|=\gamma(G)$. Hence we may assume that $G[S]$ is not connected, for otherwise part (a) is immediate. This implies that $\bar{G}[S]$ is connected. If the set S is not a dominating set in \bar{G}, then by Lemma 9 , we have that $\gamma_{c}(G) \leq \gamma(G)+1$. If the set S is a dominating set in \bar{G}, then S is a CD-set in \bar{G}, implying that $\gamma_{c}(\bar{G}) \leq|S|=\gamma(G) \leq \gamma(\bar{G})+1$. This proves part (a).

Next we prove part (b). Suppose that both G and \bar{G} are isolate-free. If $G[S]$ is isolate-free, then S is a TD-set in G, implying that $\gamma_{t}(G) \leq|S|=\gamma(G)$. Hence we may assume that $G[S]$ contains an isolated vertex, for otherwise part (b) is immediate. This implies that $\bar{G}[S]$ is connected. If the set S is not a dominating set in \bar{G}, then by Lemma 9 we have that $\gamma_{t}(G) \leq \gamma(G)+1$. If the set S is a dominating set in \bar{G}, then S is a TD-set in \bar{G}, implying that $\gamma_{t}(\bar{G}) \leq|S|=$ $\gamma(G) \leq \gamma(\bar{G})+1$. This proves part (b).

We establish next an upper bound on the total domination number of a graph in terms of its domination number and the domination number of its complement.

Theorem 10. Let G be an isolate-free graph, and let S be a $\gamma(G)$-set. If s is the number of isolated vertices in $G[S]$, then $\gamma_{t}(G) \leq \gamma(G)+\lceil s /(\gamma(\bar{G})-1)\rceil$.

Proof. Let $G=(V, E)$. Since G is isolate-free, we note that $\gamma(\bar{G}) \geq 2$. Let I be the set of isolated vertices in $G[S]$, and so $s=|I|$. Let $k=\lceil s /(\bar{\gamma}-1)\rceil$, and partition the set I into k sets I_{1}, \ldots, I_{k} each of cardinality at most $\bar{\gamma}-1$. Thus, $I=\bigcup_{i=1}^{k} I_{i}$ and $1 \leq\left|I_{i}\right| \leq \bar{\gamma}-1$ for each $i, 1 \leq i \leq k$. In particular, we note that no set I_{i} dominates V in \bar{G}. For each set $I_{i}, 1 \leq i \leq k$, select one vertex $w_{i} \in V \backslash I_{i}$ that is not dominated by I_{i} in \bar{G}, and let $W=\bigcup_{i=1}^{k}\left\{w_{i}\right\}$. Then, $|W| \leq k$. We note that in the graph G, the vertex w_{i} is adjacent to every vertex of I_{i}, and so $S \cup W$ is a TD-set in G. Hence, $\gamma_{t}(G) \leq|S \cup W| \leq|S|+|W| \leq$ $\gamma(G)+k=\gamma(G)+\lceil s /(\bar{\gamma}-1)\rceil$.

As an immediate consequence of Theorem 10, we have the following upper bound on the total domination number of a graph.
Corollary 11. If G is an isolate-free graph, then $\gamma_{t}(G) \leq \gamma(G)+\left\lceil\frac{\gamma(G)}{\gamma(\bar{G})-1}\right\rceil$.
Theorem 11. If G is a graph with $\gamma_{t}(G) \geq \gamma(G)+2$, then $\gamma_{t}(\bar{G}) \leq 1+\left\lceil\frac{\delta(G)}{\gamma(G)}\right\rceil$.

Proof. Let $G=(V, E)$ be a graph with $\gamma_{t}(G) \geq \gamma(G)+2$, and let v be a vertex of G having degree $\delta(G)$. Let $A=N_{G}(v)$, and so $|A|=\delta(G)$. Let $k=\lceil\delta(G) / \gamma(G)\rceil$ and partition the set A into k sets A_{1}, \ldots, A_{k} each of cardinality at most $\gamma(G)$. Thus, $A=\bigcup_{i=1}^{k} A_{i}$ and $1 \leq\left|A_{i}\right| \leq \gamma(G)$ for each $i, 1 \leq i \leq k$. If the set A_{i} dominates $V \backslash N_{G}[v]$ in G for some $i, 1 \leq i \leq k$, then the set $A_{i} \cup\{v\}$ is a TD-set in G, implying that $\gamma_{t}(G) \leq\left|A_{i}\right|+1 \leq \gamma(G)+1$, a contradiction. Therefore, no set A_{i} dominates $V \backslash N_{G}[v]$ in G. For each set $A_{i}, 1 \leq i \leq k$, select one vertex $a_{i} \in V \backslash N_{G}[v]$ that is not dominated by A_{i} in G, and let $A^{\prime}=\bigcup_{i=1}^{k}\left\{a_{i}\right\}$. Then, $\left|A^{\prime}\right| \leq k$ and A^{\prime} dominates A in \bar{G}. Therefore, the set $A^{\prime} \cup\{v\}$ is a TD-set in \bar{G}, and so $\gamma_{t}(\bar{G}) \leq\left|A^{\prime}\right|+1 \leq k+1=1+\lceil\delta(G) / \gamma(G)\rceil$.

Next we consider the restrained domination number. We first prove a general lemma.

Lemma 12. If a graph G has a $\gamma(G)$-set S such that the induced subgraph $G[V \backslash S]$ has an isolated vertex, then $\gamma(\bar{G}) \leq 3$.
Proof. Let S be a $\gamma(G)$-set such that $G[V \backslash S]$ has an isolated vertex, say w. If $G[S]$ has an isolated vertex v, then $\{v, w\}$ is dominating set of \bar{G}, and so $\gamma(\bar{G}) \leq 2$. If $G[S]$ contains no isolated vertices, then by the minimality of S, for each $v \in S$, there exists a vertex, say $v^{\prime} \in V \backslash S$, such that $N\left(v^{\prime}\right) \cap S=\{v\}$. In this case, the set $\left\{v, w, v^{\prime}\right\}$ is a dominating set of \bar{G}, implying that $\gamma(\bar{G}) \leq 3$.

As an immediate consequence of Lemma 12, we have the following result.
Corollary 13. If a graph G has $\gamma(\bar{G}) \geq 4$, then every $\gamma(G)$-set is a $\gamma_{r}(G)$-set. In particular, $\gamma(G)=\gamma_{r}(G)$.

We close this section with two results about the clique domination number of a graph.
Theorem 12. If G is a graph with $\gamma_{t}(G) \geq \gamma(G)+2$, then $\gamma_{\mathrm{cl}}(\bar{G}) \leq \gamma(G)$. Moreover, if G is claw-free, then $\gamma_{\mathrm{cl}}(\bar{G}) \leq 3$.

Proof. Let G be a graph with $\gamma_{t}(G) \geq \gamma(G)+2$, and let S be a $\gamma(G)$-set. Further, let $I(S)$ be the set of isolated vertices in $G[S]$. If $I(S)=\emptyset$, then S is a TD-set of G, implying that $\gamma_{t}(G) \leq|S|=\gamma(G)$, a contradiction. Hence, $I(S) \neq \emptyset$. We show that $I(S)$ dominates \bar{G}. Suppose to the contrary that there exists a vertex v that is not adjacent to any vertex of $I(S)$ in \bar{G}. Then in the graph G, the vertex v is adjacent to every vertex of $I(S)$, implying that $S \cup\{v\}$ is a TD-set for G, and so $\gamma_{t}(G) \leq|S|+1=\gamma(G)+1$, a contradiction. Hence, the set $I(S)$ dominates \bar{G}. Since $I(S)$ is an independent set in G, it forms a clique in \bar{G}. Therefore, $I(S)$ is a dominating clique in \bar{G}, implying that $\gamma_{\mathrm{cl}}(\bar{G}) \leq|I(S)| \leq \gamma(G)$.

Now, suppose that G is claw free. If $|I(S)| \leq 3$, then the result follows. Hence, we may assume that $|I(S)| \geq 4$ and there exists a subset $\{a, b, c\} \subseteq I(S)$
that is not a dominating set in \bar{G}. Then there exists a vertex v that is not adjacent to a, b, or c in \bar{G}. But then in the graph G, we have that $\{a, b, c, v\}$ induces a claw, a contradiction. Therefore, every subset of $I(S)$ of cardinality 3 is a dominating set in \bar{G}, implying that $\gamma_{\mathrm{cl}}(\bar{G}) \leq 3$.

4. Bounds on the Domination Number of a Graph in Terms of the Adjacency Matrix of its Complement

We begin this section by stating two well-known theorems. The first result counts the number of walks of length k for an arbitrary positive integer k in a graph (see [3]; see also Theorem 1.17 in [5]). The second result is a consequence of a result due to Vizing [16] and provides an upper bound for the domination number of a graph in terms of its order and size.

Theorem 13 [3]. Let G be a graph of order n with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and with adjacency matrix A. For each positive integer k, the number of different walks of length k from the vertex v_{i} to the vertex v_{j} is the (i, j)-entry in the matrix A^{k}.

Theorem 14 [16]. If G is graph of order n and size m, then $\gamma(G) \leq n+1-$ $\sqrt{1+2 m}$.

Let G be a graph of order n with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and with adjacency matrix A, and let $a_{i j}^{(k)}$ denote the (i, j)-entry in A^{k}. Recall that if v is a vertex in G, then the subgraph of G induced by $N_{G}(v)$ is called the link of v and is denoted by $\mathcal{L}(v)$, while the subgraph of \bar{G} induced by $N_{G}(v)$ is denoted $\overline{\mathcal{L}}(v)$. Theorem 13 implies that the (i, i)-entry of $A^{2}, 1 \leq i \leq n$, is the degree $d_{G}\left(v_{i}\right)$ of v_{i}, and the (i, i)-entry of $A^{3}, 1 \leq i \leq n$, is equal to twice the number of edges in $\mathcal{L}\left(v_{i}\right)$. Suppose that $a_{i i}^{(3)}<a_{i i}^{(2)}$ for some $i, 1 \leq i \leq n$. Since $a_{i i}^{(2)}=d_{G}\left(v_{i}\right)$ and $\frac{1}{2} a_{i i}^{(3)}$ is the number of edges in $\mathcal{L}\left(v_{i}\right)$, this implies that $\mathcal{L}\left(v_{i}\right)$ contains an isolated vertex, v say. Thus the set $\left\{v, v_{i}\right\}$ is a dominating set in the graph \bar{G}, implying that $\gamma(\bar{G}) \leq 2$. We state this formally as follows.
Observation 15. Let G be an isolate-free graph of order n with adjacency matrix A. If the (i, i)-entry of A^{3} is less than the (i, i)-entry of A^{2} for some $i, 1 \leq i \leq n$, then $\gamma(\bar{G}) \leq 2$.

Using Observation 15, we obtain the following bound on the domination number of the complement of a graph.
Theorem 16. Let G be a graph of order n with adjacency matrix A, and let $a_{i j}^{(k)}$ denote the (i, j)-entry in A^{k}. For every $i, 1 \leq i \leq n$, we have that

$$
\gamma(\bar{G}) \leq a_{i i}^{(2)}+2-\sqrt{1+a_{i i}^{(2)}\left(a_{i i}^{(2)}-1\right)-a_{i i}^{(3)}} .
$$

Proof. Let i be an arbitrary integer with $1 \leq i \leq n$. Since $a_{i i}^{(2)}=d_{G}\left(v_{i}\right)$ and $\frac{1}{2} a_{i i}^{(3)}$ is the number of edges in $\mathcal{L}\left(v_{i}\right)$, this implies that $\overline{\mathcal{L}}\left(v_{i}\right)$ has order $a_{i i}^{(2)}$ and size

$$
\binom{a_{i i}^{(2)}}{2}-\frac{1}{2} a_{i i}^{(3)}=\frac{1}{2}\left(a_{i i}^{(2)}\left(a_{i i}^{(2)}-1\right)-a_{i i}^{(3)}\right) .
$$

Thus, by Theorem 14, we have that

$$
\gamma\left(\overline{\mathcal{L}}\left(v_{i}\right)\right) \leq a_{i i}^{(2)}+1-\sqrt{1+a_{i i}^{(2)}\left(a_{i i}^{(2)}-1\right)-a_{i i}^{(3)}} .
$$

The desired bound now follows from the observation that every $\gamma\left(\overline{\mathcal{L}}\left(v_{i}\right)\right)$-set can be extended to a dominating set in \bar{G} by adding to it the vertex v_{i}, and so $\gamma(\bar{G}) \leq \gamma\left(\overline{\mathcal{L}}\left(v_{i}\right)\right)+1$.

References

[1] K. Appel and W. Haken, Every planar map is four colorable, Bull. Amer. Math. Soc. 82 (1976) 711-712. doi:10.1090/S0002-9904-1976-14122-5
[2] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. $\mathbf{3 7}$ (1941) 194-197. doi:10.1017/S030500410002168X
[3] F. Buckley and M. Lewinter, A Friendly Introduction to Graph Theory (Prentice Hall Inc., New Jersey, 2003).
[4] Y. Caro, D.B. West and R. Yuster, Connected domination and spanning trees with many leaves, SIAM J. Discrete Math. 13 (2000) 202-211. doi:10.1137/S0895480199353780
[5] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, Fifth Edition (Chapman and Hall/CRC, 2010) pp. 598.
[6] B. Das and V. Bhargavan, Routing in ad-hoc networks using minimum connected dominating sets, IEEE International Conference on Communications (ICC 97), June 1997. doi:10.1109/ICC.1997.605303
[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).
[9] M.A. Henning, Recent results on total domination in graphs: A survey, Discrete Math. 309 (2009) 32-63. doi:10.1016/j.disc.2007.12.044
[10] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer Monographs in Mathematics, 2013).
[11] F. Jaeger and C. Payan, Relations du type Nordhaus-Gaddum pour le nombre d'absorption d'un graphe simple, C.R. Acad. Sci. Paris 274 (1972) 728-730.
[12] D. Li, H. Du, P.J. Wan, X. Gao, Z. Zhang and W. Wu, Construction of strongly connected dominating sets in asymmetric multi-hop wireless networks, Theoret. Comput. Sci. 410 (2009) 661-669. doi:10.1016/j.tcs.2008.09.058
[13] H. Karami, A. Khodkar, S.M. Sheikholeslami and D.B. West, Connected domination number of a graph and its complement, Graphs Combin. 28 (2012) 189-197. doi:10.1007/s00373-011-1028-z
[14] E. Sampathkumar and H.B. Walikar, The connected domination number of a graph, J. Math. Phys. Sci. 13 (1979) 607-613.
[15] O. Schaudt, On graphs for which the connected domination number is at most the total domination number, Discrete Appl. Math. 160 (2012) 281-284. doi:10.1016/j.dam.2011.12.025
[16] V.G. Vizing, A bound on the external stability number of a graph, Dokl. Akad. Nauk 164 (1965) 729-731.
[17] J. Wu and H. Li, On calculating connected dominating set for efficient routing in ad hoc wireless networks, in: Proc. 3rd International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications ACM (1999) 7-14. doi:10.1145/313239.313261

Received 2 June 2016
Revised 2 November 2016
Accepted 2 November 2016

