CORE INDEX OF PERFECT MATCHING POLYTOPE FOR A 2-CONNECTED CUBIC GRAPH

Xiumei Wang and Yixun Lin
School of Mathematics and Statistics
Zhengzhou University
Zhengzhou 450001, China
e-mail: wangxiumei@zzu.edu.cn.

Abstract

For a 2-connected cubic graph G, the perfect matching polytope $P(G)$ of G contains a special point $x^{c}=\left(\frac{1}{3}, \frac{1}{3}, \ldots, \frac{1}{3}\right)$. The core index $\varphi(P(G))$ of the polytope $P(G)$ is the minimum number of vertices of $P(G)$ whose convex hull contains x^{c}. The Fulkerson's conjecture asserts that every 2 -connected cubic graph G has six perfect matchings such that each edge appears in exactly two of them, namely, there are six vertices of $P(G)$ such that x^{c} is the convex combination of them, which implies that $\varphi(P(G)) \leq 6$. It turns out that the latter assertion in turn implies the Fan-Raspaud conjecture: In every 2-connected cubic graph G, there are three perfect matchings M_{1}, M_{2}, and M_{3} such that $M_{1} \cap M_{2} \cap M_{3}=\emptyset$. In this paper we prove the Fan-Raspaud conjecture for $\varphi(P(G)) \leq 12$ with certain dimensional conditions.

Keywords: Fulkerson's conjecture, Fan-Raspaud conjecture, cubic graph, perfect matching polytope, core index.
2010 Mathematics Subject Classification: 05C70.

1. Introduction

The celebrated Fulkerson's conjecture in graph theory is the following (cf. $[1,5]$).
Conjecture A (Fulkerson's conjecture). Every 2-connected cubic graph has six perfect matchings such that each edge appears in exactly two of them.

We may state the polyhedral version of this conjecture as follows. Let G be a 2 -connected cubic graph. Thus each edge of G is contained in a perfect matching of G. The characteristic vector of a perfect matching M of G is a vector $x \in \mathbb{R}^{E(G)}$ such that $x_{e}=1$ if $e \in M$ and $x_{e}=0$ otherwise. The perfect
matching polytope of G, denoted by $P(G)$, is the convex hull of the characteristic vectors of all perfect matchings in G. Now let $x^{1}, x^{2}, \ldots, x^{6}$ be the characteristic vectors of the six perfect matchings in the Fulkerson's conjecture. Then $x^{1}+x^{2}+$ $\cdots+x^{6}=(2,2, \ldots, 2)$ and thus $\frac{1}{6}\left(x^{1}+x^{2}+\cdots+x^{6}\right)=\left(\frac{1}{3}, \frac{1}{3}, \ldots, \frac{1}{3}\right)$. That is, $x^{c}:=\left(\frac{1}{3}, \frac{1}{3}, \ldots, \frac{1}{3}\right)$ is the convex combination of $x^{1}, x^{2}, \ldots, x^{6}$.

We call this x^{c} the core of the perfect matching polytope $P(G)$, which lies in $P(G)$ (see Proposition 3). Furthermore, a subset $Q \subseteq P(G)$ is called a core polytope of $P(G)$ if it is the convex hull of k vertices of $P(G)$ such that $x^{c} \in Q$ and k is minimum. Meanwhile, the above minimum value k is called the core index of $P(G)$, denoted by $\varphi(P(G))$. In other words, the core index $\varphi(P(G))$ is the minimum number of vertices of $P(G)$ whose convex hull contains x^{c}. Therefore, the Fulkerson's conjecture yields the following conjecture.

Conjecture B. For every 2-connected cubic graph $G, \varphi(P(G)) \leq 6$.
The study of Conjecture B would be meaningful to cope with the Fulkerson's conjecture. In particular, the structure of the core polytope Q inside a perfect matching polytope $P(G)$ is quite mysterious. Fan and Raspaud [5] proposed the following conjecture.

Conjecture C (Fan-Raspaud conjecture). In every 2-connected cubic graph there exist three perfect matchings M_{1}, M_{2}, and M_{3} such that $M_{1} \cap M_{2} \cap M_{3}=\emptyset$.

Let us see the relation of these three conjectures.
Proposition 1. Conjecture A implies Conjecture B and Conjecture B implies Conjecture C.

Proof. The first assertion is clear, as $x^{c}:=\left(\frac{1}{3}, \frac{1}{3}, \ldots, \frac{1}{3}\right)$ is contained in the convex hull of $\left\{x^{1}, x^{2}, \ldots, x^{6}\right\}$. We show the second assertion. Suppose Conjecture B holds. Let $x^{1}, x^{2}, \ldots, x^{6}$ be six vertices of $P(G)$ whose convex hull contains x^{c}. Then $x^{c}=c_{1} x^{1}+c_{2} x^{2}+\cdots+c_{6} x^{6}$, where $\sum_{i=1}^{6} c_{i}=1$ and $c_{i} \geq 0$. We may assume that c_{1}, c_{2}, c_{3} are the three largest numbers among all c_{i}. Then $c_{1}+c_{2}+c_{3} \geq \frac{1}{2} \sum_{i=1}^{6} c_{i}=\frac{1}{2}$. We claim that Conjecture C holds for the perfect matchings M_{1}, M_{2}, M_{3} corresponding to x^{1}, x^{2}, x^{3}. Suppose not. Then there is an edge $e \in M_{1} \cap M_{2} \cap M_{3}$, namely, $x_{e}^{i}=1$ for $i=1,2,3$. Then $x_{e}^{c}=c_{1} x_{e}^{1}+c_{2} x_{e}^{2}+\cdots+c_{6} x_{e}^{6} \geq c_{1} x_{e}^{1}+c_{2} x_{e}^{2}+c_{3} x_{e}^{3}=c_{1}+c_{2}+c_{3} \geq \frac{1}{2}>\frac{1}{3}$, which is a contradiction.

In brief, if the Fulkerson's conjecture is true, then $\varphi(P(G)) \leq 6$, and thus the Fan-Raspaud conjecture holds. However, the Fulkerson's conjecture is far from being proved at the moment. So we do not know the exact range of values $\varphi(P(G))$ for all 2-connected cubic graphs. In this circumstance we can use the parameter $\varphi(P(G))$ as a condition in proving the Fan-Raspaud conjecture.

The dimension of a polytope P, denoted by $d(P)$, is the dimension of its affine hull (the minimal affine subspace containing P). Let G be a 2 -connected cubic graph, and $P(G)$ the perfect matching polytope of G. If all vertices of $P(G)$ are affinely independent (namely, $P(G)$ is a simplex), then $d(P(G)) \leq 8$ (see $[3,9]$). In our previous paper [9], we showed that Fan-Raspaud conjecture holds if $d(P(G)) \leq 9$, which implies $\varphi(P(G)) \leq 10$. In this paper, we obtain some improved results. The main results are the following:
(1) The Fan-Raspaud conjecture is true if $d(P(G)) \leq 13$ and $\varphi(P(G)) \leq 11$.
(2) The Fan-Raspaud conjecture is true if G is a cubic brick, $d(P(G)) \leq 18$, and $\varphi(P(G)) \leq 12$.

Since the dimension of a cubic brick G is $d(P(G))=m-n=n / 2$ (see Lemma 4 with $b=1), d(P(G)) \leq 18$ is equivalent to $n=|V(G)| \leq 36$. Hence the above result (2) means that the Fan-Raspaud conjecture is true for cubic bricks with up to 36 vertices (provided $\varphi(P(G)) \leq 12$). Recently, in [2], the computer search shows that the Fulkerson's conjecture is true for snarks with up to 36 vertices, and so is the Fan-Raspaud conjecture. Here, a snark is a cyclically 4 -edge connected cubic graph which cannot be 3 -edge colored and has girth at least 5 .

The organization of the paper is as follows. In Section 2, we present some basic properties. Section 3 is devoted to the results on 2-connected cubic graphs with $\varphi(P(G)) \leq 11$. Section 4 is concerned with cubic bricks with $\varphi(P(G)) \leq 12$.

2. Preliminary on Perfect Matching Polytopes

The basic notions on polyhedral combinatorics can be found in $[6,8]$. The wellknown characterization of perfect matching polytope, due to Edmonds (1965), is the following (cf. [7]).

Lemma 2. The perfect matching polytope of a graph G is the set of vectors $x \in \mathbb{R}^{E(G)}$ satisfying

$$
\begin{array}{ll}
x_{e} \geq 0 & (\text { for all } e \in E(G)), \\
\sum_{e \in \delta(v)} x_{e}=1 & (\text { for all } v \in V(G)), \tag{2}
\end{array}
$$

$$
\begin{equation*}
\sum_{e \in \delta(A)} x_{e} \geq 1 \quad(\text { for all } A \subseteq V(G),|A| \text { is odd }) \tag{3}
\end{equation*}
$$

where $\delta(v)$ stands for the set of edges incident with $v \in V(G)$, and $\delta(A)$ is the set of edges with exactly one end in A.

For a 2-connected cubic graph G, every edge is contained in a perfect matching (see Corollary 3.4.3 of [7]). A graph is matching-covered if every edge of this graph is contained in a perfect matching of it. Hence G is matching-covered and there are at least three different perfect matchings in G. Thus the perfect matching polytope $P(G)$ has at least three vertices. In particular, we have

Proposition 3. Let G be a 2 -connected cubic graph. Then the core $x^{c}=\left(\frac{1}{3}, \frac{1}{3}\right.$, $\left.\ldots, \frac{1}{3}\right)$ lies in $P(G)$.

Proof. Clearly, x^{c} satisfies (1) and (2) of Lemma 2. It suffices to verify (3). For a subset $A \subseteq V(G)$ with odd cardinality, the degree sum of the vertices in A is $3|A|=2|E(G[A])|+|\delta(A)|$, where $G[A]$ is the subgraph of G induced by A. So $|\delta(A)|$ is odd. If $|\delta(A)|=1$, then the only edge of $\delta(A)$ is a cut edge of G, contradicting the assumption that G is 2-connected. Therefore $|\delta(A)| \geq 3$ and thus $\sum_{e \in \delta(A)} x_{e}^{c}=\frac{1}{3}|\delta(A)| \geq 1$. That is, the point x^{c} satisfies (3), as required.

The following characterization of the dimension of perfect matching polytope found by Edmonds, Lovász, and Pulleyblank (see [4] or Theorem 7.6.6 of [7]) is used in the proof of the main results.

Lemma 4. For every matching-covered graph G, the dimension of perfect matching polytope $P(G)$ is $d(P(G))=m-n+1-b$, where m, n, b are the numbers of edges, vertices, and bricks of G, respectively.

Here, a brick is a 3 -connected and bicritical graph, where a graph G is bicritical if $G-u-v$ has a perfect matching for any two distinct vertices u, v in G. Clearly, a brick is non-bipartite and matching-covered. The number of bricks of a matching-covered graph G is the number of bricks produced in a procedure of 'tight cut decomposition', see $[4,7]$.

With respect to the dimension, the following Carathéodory theorem is classical (Theorem 5.1 of [8]).

Lemma 5. For any $V \subseteq \mathbb{R}^{m}$ and x in the convex hull of V, there exist affinely independent vectors x^{1}, \ldots, x^{k} in V such that x is contained in the convex hull of $\left\{x^{1}, \ldots, x^{k}\right\}$.

We obtain an upper bound of the core index as follows.
Proposition 6. For every 2-connected cubic graph $G, \varphi(P(G)) \leq d(P(G))+1$.
Proof. Let V be the set of vertices in $P(G)$. Then x^{c} is contained in the convex hull of V. By the Carathéodory theorem, x^{c} is contained in the convex hull of $d(P(G))+1$ affinely independent vectors. The assertion follows.

3. Results on Core Index and Dimension

For convenience, we refer to the property specified in the Fan-Raspaud conjecture as the 3PM-property. We start with some simple facts.

If $\varphi(P(G))=k$, then there are vertices $x^{1}, x^{2}, \ldots, x^{k}$ of $P(G)$ whose convex hull contains the core x^{c}, i.e.,

$$
\begin{equation*}
x^{c}=c_{1} x^{1}+c_{2} x^{2}+\cdots+c_{k} x^{k}, \quad \sum_{i=1}^{k} c_{i}=1, c_{i}>0 \tag{4}
\end{equation*}
$$

Let $S^{c}=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$, which stands for the convex combination representation of the core x^{c} in the convex hull of $\left\{x^{1}, x^{2}, \ldots, x^{k}\right\}$. Meanwhile, each $c_{i} \in S^{c}$ is called a c-element. For a set S, by an h-combination X of S we mean a subset $X \subseteq S$ with $|X|=h$. Furthermore, for every edge $e \in E(G)$, we have

$$
\begin{equation*}
c_{1} x_{e}^{1}+c_{2} x_{e}^{2}+\cdots+c_{k} x_{e}^{k}=\frac{1}{3} \tag{5}
\end{equation*}
$$

Let $M_{1}, M_{2}, \ldots, M_{k}$ be the perfect matchings corresponding to $x^{1}, x^{2}, \ldots, x^{k}$ respectively, and let $\mathcal{M}=\left\{M_{1}, M_{2}, \ldots, M_{k}\right\}$. For an edge $e \in E(G)$, let $\mathcal{M}_{e}=$ $\left\{M_{i}: x_{e}^{i}=1,1 \leq i \leq k\right\}(\subseteq \mathcal{M})$, which is the set of perfect matchings containing the edge e. Then (5) is equivalent to

$$
\begin{equation*}
\sum_{M_{i} \in \mathcal{M}_{e}} c_{i}=\frac{1}{3} \tag{6}
\end{equation*}
$$

Conversely, a subset S of S^{c} with $\sum_{c_{i} \in S} c_{i}=\frac{1}{3}$ is not necessarily corresponding to an edge. We now give a useful definition as follows.

A subset S of S^{c} is called an edge-combination if (1) $\sum_{c_{i} \in S} c_{i}=\frac{1}{3}$; (2) there exists a 3 -combination X of S such that

$$
\bigcap_{c_{i} \in X} M_{i} \neq \emptyset \text { implies } \bigcap_{c_{i} \in S} M_{i} \neq \emptyset
$$

For instance, if the 3PM-property does not hold, then any 3-combination S of S^{c} with $\sum_{c_{i} \in S} c_{i}=\frac{1}{3}$ is an edge-combination. Moreover, for any edge-combination S of S^{c}, we have $|S| \geq 3$ and $\bigcap_{c_{i} \in S} M_{i} \neq \emptyset$, and thus S indeed corresponds to an edge in $\bigcap_{c_{i} \in S} M_{i}$. This is the intention of the term "edge-combination". We call the number of all the edge-combinations in S^{c} the edge-combination number of S^{c}, denoted by $\mathcal{E}\left(S^{c}\right)$.
Lemma 7. If $|E(G)|<\mathcal{E}\left(S^{c}\right)$, then the 3PM property holds.
Proof. If the 3PM-property does not hold, then for each edge-combination S, we have $\bigcap_{c_{i} \in S} M_{i} \neq \emptyset$. Thus there exists an edge e contained in $\bigcap_{c_{i} \in S} M_{i}$. So each
edge-combination S corresponds to an edge $e \in \bigcap_{c_{i} \in S} M_{i}$. Furthermore, we claim that an edge $e \in E(G)$ cannot correspond to two different edge-combinations. In fact, if e corresponds to two edge-combinations S and S^{\prime} with $S \neq S^{\prime}$, then $e \in \bigcap_{c_{i} \in S} M_{i}$ and $e \in \bigcap_{c_{i} \in S^{\prime}} M_{i}$, whence $e \in \bigcap_{c_{i} \in S \cup S^{\prime}} M_{i}$. By the definition of edge-combination, we have $\sum_{c_{i} \in S} c_{i}=\frac{1}{3}$ and $\sum_{c_{i} \in S^{\prime}} c_{i}=\frac{1}{3}$. Hence $\sum_{M_{i} \in \mathcal{M}_{e}} c_{i} \geq$ $\sum_{c_{i} \in S \cup S^{\prime}} c_{i}>\sum_{c_{i} \in S} c_{i}=\frac{1}{3}$, contradicting the equation (6). In this way, we define an injection (one-to-one mapping) from the set of edge-combinations to $E(G)$. Therefore $\mathcal{E}\left(S^{c}\right) \leq|E(G)|$, contradicting the condition of the lemma.

Lemma 8. If the 3PM-property does not hold, then $S^{c}=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ satisfies the following:
(i) For any 3-combination $X \subseteq S^{c}, \sum_{c_{i} \in X} c_{i} \leq \frac{1}{3}$;
(ii) For any 3-combination $X \subseteq S^{c}$, there exists an edge-combination $S \subseteq S^{c}$ such that $X \subseteq S$;
(iii) S^{c} can be partitioned into three parts $\left\{S_{1}, S_{2}, S_{3}\right\}$ such that $\sum_{c_{i} \in S_{k}} c_{i}=\frac{1}{3}$ for $k=1,2,3$.

Proof. Suppose that the 3PM-property does not hold. We show the three assertions as follows.
(i) Suppose that for $X=\left\{c_{i_{1}}, c_{i_{2}}, c_{i_{3}}\right\}, c_{i_{1}}+c_{i_{2}}+c_{i_{3}}>\frac{1}{3}$. Since $M_{i_{1}} \cap M_{i_{2}} \cap$ $M_{i_{3}} \neq \emptyset$, there is an edge $e \in M_{i_{1}} \cap M_{i_{2}} \cap M_{i_{3}}$ such that $x_{e}^{c}=c_{1} x_{e}^{1}+c_{2} x_{e}^{2}+\cdots+$ $c_{k} x_{e}^{k} \geq c_{i_{1}} x_{e}^{i_{1}}+c_{i_{2}} x_{e}^{i_{2}}+c_{i_{3}} x_{e}^{i_{3}}=c_{i_{1}}+c_{i_{2}}+c_{i_{3}}>\frac{1}{3}$, a contradiction.
(ii) For any 3-combination $X \subseteq S^{c}$, since $\bigcap_{c_{i} \in X} M_{i} \neq \emptyset$, there exists an edge e in $\bigcap_{c_{i} \in X} M_{i}$. Let $S=\left\{c_{i}: M_{i} \in \mathcal{M}_{e}\right\}$. Then $X \subseteq S$ and $\sum_{c_{i} \in S} c_{i}=$ $\sum_{M_{i} \in \mathcal{M}_{e}} c_{i}=\frac{1}{3}$, which implies that S is an edge-combination.
(iii) We take a vertex v in G and let e_{1}, e_{2}, e_{3} be the three edges incident with this vertex v in G. Since no perfect matching M_{i} can contain two of e_{1}, e_{2}, e_{3}, all perfect matchings $M_{1}, M_{2}, \ldots, M_{k}$ are partitioned into three disjoint sets, each of which contains one of e_{1}, e_{2}, e_{3}. Therefore S^{c} is partitioned into three parts $\left\{S_{1}, S_{2}, S_{3}\right\}$ such that $\sum_{c_{i} \in S_{k}} c_{i}=\sum_{M_{i} \in \mathcal{M}_{e_{k}}} c_{i}=\frac{1}{3}$ for $k=1,2,3$.

Our previous paper [9] shows the following.
Proposition 9. For a 2 -connected cubic graph G with $d(P(G)) \leq 9$, the 3PMproperty holds.

Now we present several improved results. Proposition 1 says that if $\varphi(P(G))$ ≤ 6, then the 3PM-property holds. The following improvement is straightforward.

Proposition 10. For a 2-connected cubic graph G with $\varphi(P(G)) \leq 8$, the 3PMproperty holds.

Proof. Suppose that (4) holds for $k=8$ and $c_{1}, c_{2}, c_{3}, c_{4}$ are the four largest elements in S^{c} with $c_{1} \geq c_{2} \geq c_{3} \geq c_{4}$. Then $c_{1}+c_{2}+c_{3}+c_{4} \geq \frac{1}{2}$. If $c_{1}+c_{2}+c_{3}<\frac{3}{8}$, then $c_{3}<\frac{1}{8}$ and $c_{4} \geq \frac{1}{2}-\left(c_{1}+c_{2}+c_{3}\right)>\frac{1}{8}$, a contradiction to the assumption that $c_{3} \geq c_{4}$. Therefore $c_{1}+c_{2}+c_{3} \geq \frac{3}{8}>\frac{1}{3}$, and thus the assertion follows from (i) of Lemma 8 .

This result is independent of the dimension of the perfect matching polytope. In the results below, we have to combine the dimensional condition.

Lemma 11. For a 2-connected cubic graph G, if $d(P(G))=d$, then $|E(G)| \leq$ $6(d-1)$.

Proof. Since G is cubic, we have $2|E(G)|=3|V(G)|$. Moreover, as a result of the brick decompositions of graphs, G has at most $\frac{|E(G)|-|V(G)|}{2}=\frac{|E(G)|}{6}$ bricks (see Lemma 5.12 of [4]). Hence by the formula of dimension of perfect matching polytope, we have $d=m-n+1-b \geq m-\frac{2 m}{3}+1-\frac{m}{6}=\frac{m}{6}+1$, which implies that $m \leq 6(d-1)$.

Theorem 12. For a 2 -connected cubic graph G with $d(P(G)) \leq 14$, if $\varphi(P(G)) \leq$ 10, then the 3PM-property holds.

Proof. By Lemma 11 and $d(P(G)) \leq 14$, we have $|E(G)| \leq 6(d-1) \leq 78$. Suppose, to the contrary, that the 3PM-property does not hold.

The case of $\varphi(P(G)) \leq 8$ has been settled in Proposition 10. We consider the case of $\varphi(P(G))=9$ now. In this case, the convex combination of (4) with $k=9$ holds. Suppose, without loss of generality, that $c_{1} \geq c_{2} \geq \cdots \geq c_{9}$. By Lemma 8(i), the sum of any three c-elements is at most $\frac{1}{3}$. On the other hand, $c_{1}+c_{2}+c_{3} \geq \frac{1}{3} \sum_{i=1}^{9} c_{i}=\frac{1}{3}$. It follows that $c_{1}+c_{2}+c_{3}=\frac{1}{3}$, and so $c_{4}+c_{5}+c_{6}=c_{7}+c_{8}+c_{9}=\frac{1}{3}$. Therefore, $c_{7} \geq \frac{1}{9}$ and $c_{6} \leq \frac{1}{9}$. Since $c_{6} \geq c_{7}$, we have $c_{6}=\frac{1}{9}$, and so $c_{4}=c_{5}=\frac{1}{9}$. By the same way, we have $c_{1}=c_{2}=c_{3}=\frac{1}{9}$, and $c_{7}=c_{8}=c_{9}=\frac{1}{9}$. Hence every 3 -combination of S^{c} is an edge-combination, and so $\mathcal{E}\left(S^{c}\right)=\binom{9}{3}>78 \geq|E(G)|$. This is a contradiction to Lemma 7 .

We next consider the case of $\varphi(P(G))=10$ with convex combination representation (4) with $k=10$. By Lemma $8(\mathrm{i})$, the sum of any two c-elements is less than $\frac{1}{3}$. We further observe that the sum of any five c-elements is greater than $\frac{1}{3}$. This is because if there are five c-elements whose sum is less than or equal to $\frac{1}{3}$, then the sum of the remaining five c-elements is at least $\frac{2}{3}$, say $c_{i_{1}}+c_{i_{2}}+\cdots+c_{i_{5}}$ $\geq \frac{2}{3}$, and thus the sum of the three largest members of $\left\{c_{i_{1}}, c_{i_{2}}, \ldots, c_{i_{5}}\right\}$ is greater than $\frac{1}{3}$, contradicting Lemma 8(i). Therefore, each edge of G is covered by precisely three or four of the ten perfect matchings $M_{1}, M_{2}, \ldots, M_{10}$.

By Lemma 8(iii), S^{c} can be partitioned into three parts each of which has sum $\frac{1}{3}$. Note that the only partition $\left\{k_{1}, k_{2}, k_{3}\right\}$ of integer 10 is $\{3,3,4\}$, where $k_{1}+k_{2}+k_{3}=10$, and $3 \leq k_{i} \leq 4$. Hence the above partition of the ten c-elements
is a $\{3,3,4\}$-partition. Therefore, we assume, without loss of generality, that $c_{1}+c_{2}+c_{3}=c_{4}+c_{5}+c_{6}=c_{7}+c_{8}+c_{9}+c_{10}=\frac{1}{3}$.

By Lemma $8(\mathrm{i})$, we have $c_{1}=c_{2}=\cdots=c_{6}=\frac{1}{9}$ and $c_{7}, \ldots, c_{10} \leq \frac{1}{9}$. In this context, we choose a 3 -combination $X=\left\{c_{1}, c_{2}, c_{i}\right\}$ where $7 \leq i \leq 10$. If X is an edge-combination, then $c_{i}=\frac{1}{9}$. Otherwise, by Lemma 8(ii), X can be extended to an edge-combination S with $|S|=4$. Then there exists another c_{j} $(7 \leq j \leq 10)$ such that $c_{i}+c_{j}=\frac{1}{9}$. We further claim that among c_{7}, \ldots, c_{10}, there is at most one such pair with $c_{i}+c_{j}=\frac{1}{9}$. Suppose without loss of generality that $c_{7}+c_{8}=c_{9}+c_{10}=\frac{1}{9}$ or $c_{7}+c_{8}=c_{7}+c_{9}=\frac{1}{9}$. The former contradicts the assumption $c_{7}+c_{8}+c_{9}+c_{10}=\frac{1}{3}$, and the latter implies that $c_{10}>\frac{1}{9}$, also a contradiction. Therefore, we obtain that $c_{1}=c_{2}=\cdots=c_{8}=\frac{1}{9}$ and $c_{9}+c_{10}=\frac{1}{9}$.

We proceed to compute the edge-combination number $\mathcal{E}\left(S^{c}\right)$ as follows.

- There are $\binom{8}{3} 3$-combinations $\left\{c_{i}, c_{j}, c_{k}\right\}$ chosen from $\left\{c_{1}, c_{2}, \ldots, c_{8}\right\}$, each of which is an edge-combination.
- There are $\binom{8}{2}$ 4-combinations $S=\left\{c_{i}, c_{j}, c_{9}, c_{10}\right\}$ such that $\left\{c_{i}, c_{j}\right\}$ are chosen from $\left\{c_{1}, c_{2}, \ldots, c_{8}\right\}$, each of which is an edge-combination.

To sum up, $\mathcal{E}\left(S^{c}\right) \geq\binom{ 8}{3}+\binom{8}{2}>78 \geq|E(G)|$, contradicting Lemma 7.
Theorem 13. For a 2-connected cubic graph G with $d(P(G)) \leq 13$, if $\varphi(P(G)) \leq$ 11, then the 3PM-property holds.

Proof. We consider the case $\varphi(P(G))=11$ and representation (4) with $k=11$. By Lemma 11, $d(P(G)) \leq 13$ implies $|E(G)| \leq 6(d-1) \leq 72$. Suppose, to the contrary, that the 3 PM-property does not hold.

By Lemma 8(i), no two c-elements have sum $\frac{1}{3}$. Also, no six c-elements have sum $\frac{1}{3}$, for otherwise the remaining five c-elements would have $\sum c_{i}=\frac{2}{3}$, and thus there are three of them with $\sum c_{i}>\frac{1}{3}$, contradicting Lemma 8(i). Moreover, by Lemma 8(iii), the $11 c$-elements are divided into three sets, each of which has sum $\frac{1}{3}$. Note that the only partitions $\left\{k_{1}, k_{2}, k_{3}\right\}$ of integer 11 are $\{3,3,5\}$ and $\{3,4,4\}$, where $k_{1}+k_{2}+k_{3}=11,3 \leq k_{i} \leq 5$. We distinguish two cases as follows.

Case 1. There is a $\{3,3,5\}$-partition of S^{c}. By Lemma 8(i), the first six c-elements are $\frac{1}{9}$ and no other c_{i} is greater than $\frac{1}{9}$. Therefore, we can sort all c-elements in the form that $c_{1}=c_{2}=\cdots=c_{6}=\frac{1}{9} \geq c_{7} \geq c_{8} \geq \cdots \geq c_{11}$ and $c_{7}+c_{8}+\cdots+c_{11}=\frac{1}{3}$. Note that there are at most two of $\left\{c_{7}, c_{8}, \ldots, c_{11}\right\}$ being $\frac{1}{9}$ (for otherwise $c_{10}=c_{11}=0$). We have the following subcases.

Subcase 1.1. $c_{7}=c_{8}=\frac{1}{9}$ and $c_{9}+c_{10}+c_{11}=\frac{1}{9}$. Let us see the edge-combination number.

- There are $\binom{8}{3} 3$-combinations $\left\{c_{i}, c_{j}, c_{k}\right\}$ chosen from $\left\{c_{1}, c_{2}, \ldots, c_{8}\right\}$, each of which is an edge-combination.
- There are $\binom{8}{2} 5$-combinations $\left\{c_{i}, c_{j}, c_{9}, c_{10}, c_{11}\right\}$ such that $\left\{c_{i}, c_{j}\right\}$ are chosen from $\left\{c_{1}, c_{2}, \ldots, c_{8}\right\}$, each of which is an edge-combination.

Therefore, $\mathcal{E}\left(S^{c}\right) \geq\binom{ 8}{3}+\binom{8}{2}>72 \geq|E(G)|$, a contradiction to Lemma 7 .
Subcase 1.2. $c_{7}=\frac{1}{9}, c_{8}, c_{9}, c_{10}, c_{11}<\frac{1}{9}$, and $c_{8}+c_{9}+c_{10}+c_{11}=\frac{2}{9}$. We choose a 3-combination $X=\left\{c_{i}, c_{j}, c_{k}\right\}$, where $1 \leq i, j \leq 7$ and $8 \leq k \leq 11$. By Lemma 8(ii), X can be extended to an edge-combination S. If $|S|=5$, then $S \backslash X \subset\left\{c_{8}, c_{9}, c_{10}, c_{11}\right\}$ and the sum of c_{k} and the two elements in $S \backslash X$ is $\frac{1}{9}$. So the remaining one of $c_{8}, c_{9}, c_{10}, c_{11}$ equals $\frac{1}{9}$, a contradiction. Therefore, $|S|=4$ and there exists $c_{r(k)}(8 \leq r(k) \leq 11)$ such that $S=\left\{c_{i}, c_{j}, c_{k}, c_{r(k)}\right\}$. Without loss of generality, we may assume that $9 \neq r(8)$. We obtain the following computation.

- There are $\binom{7}{3} 3$-combinations $\left\{c_{i}, c_{j}, c_{k}\right\}$ chosen from $\left\{c_{1}, c_{2}, \ldots, c_{7}\right\}$, each of which is an edge-combination.
- There are $\binom{7}{2}$ 4-combinations $\left\{c_{i}, c_{j}, c_{8}, c_{r(8)}\right\}$ and $\binom{7}{2} 4$-combinations $\left\{c_{i}, c_{j}\right.$, $\left.c_{9}, c_{r(9)}\right\}$ with $\left\{c_{i}, c_{j}\right\}$ chosen from $\left\{c_{1}, c_{2}, \ldots, c_{7}\right\}$, each of which is an edgecombination.

Therefore, $\mathcal{E}\left(S^{c}\right) \geq\binom{ 7}{3}+2\binom{7}{2}>72 \geq|E(G)|$, a contradiction to Lemma 7 .
Subcase 1.3. $c_{i}<\frac{1}{9}$ for $7 \leq i \leq 11$. As in the previous subcase, we choose a 3 -combination $X=\left\{c_{1}, c_{2}, c_{i}\right\}$, where $7 \leq i \leq 11$. By Lemma 8(ii), X can be extended to an edge-combination S. We can assert that $|S|=4$. In fact, if $|S|=5$, say $S=\left\{c_{1}, c_{2}, c_{7}, c_{8}, c_{9}\right\}$, then $c_{7}+c_{8}+c_{9}=\frac{1}{9}$ and so $c_{10}+c_{11}=\frac{2}{9}$. Thus $\max \left\{c_{10}, c_{11}\right\} \geq \frac{1}{9}$, a contradiction. Hence there exists another $c_{j}(7 \leq j \leq 11)$ such that $S=\left\{c_{1}, c_{2}, c_{i}, c_{j}\right\}$ and $c_{i}+c_{j}=\frac{1}{9}$.

Now we consider a graph F with vertex set $\left\{c_{7}, c_{8}, c_{9}, c_{10}, c_{11}\right\}$, two vertices c_{i} and c_{j} being adjacent if and only if $c_{i}+c_{j}=\frac{1}{9}$. Then no two edges in F are nonadjacent, for otherwise the vertex not incident to these edges would have $c_{i}=\frac{1}{9}$, a contradiction. This implies that F is a star on 5 vertices. Suppose c_{11} is the center of the star. We calculate the edge-combination number as follows.

- There are $\binom{6}{3} 3$-combinations $\left\{c_{i}, c_{j}, c_{k}\right\}$ chosen from $\left\{c_{1}, c_{2}, \ldots, c_{6}\right\}$, each of which is an edge-combination.
- There are $\binom{6}{2}\binom{4}{1}$ 4-combinations $\left\{c_{i}, c_{j}, c_{k}, c_{11}\right\}$ such that $\left\{c_{i}, c_{j}\right\}$ are chosen from $\left\{c_{1}, c_{2}, \ldots, c_{6}\right\}$ and c_{k} is chosen from $\left\{c_{7}, c_{8}, c_{9}, c_{10}\right\}$, each of which is an edge-combination.

To sum up, $\mathcal{E}\left(S^{c}\right) \geq\binom{ 6}{3}+\binom{6}{2}\binom{4}{1}>72 \geq|E(G)|$, a contradiction to Lemma 7. This completes the proof of Case 1.

Case 2. There is a $\{3,4,4\}$-partition of S^{c}. So we may assume that

$$
c_{1}+c_{2}+c_{3}=c_{4}+c_{5}+c_{6}+c_{7}=c_{8}+c_{9}+c_{10}+c_{11}=\frac{1}{3}
$$

We first observe that $\min \left\{c_{1}, c_{2}, c_{3}\right\} \geq \max \left\{c_{4}, c_{5}, \ldots, c_{11}\right\}$. If not, say $c_{4}>c_{3}$, then $c_{1}+c_{2}+c_{4}>\frac{1}{3}$, contradicting Lemma $8(\mathrm{i})$. So $\max \left\{c_{4}, c_{5}, \ldots, c_{11}\right\} \leq \frac{1}{9}$. Moreover, if $\max \left\{c_{4}, c_{5}, \ldots, c_{11}\right\}=\frac{1}{9}$, then in addition to $c_{1}=c_{2}=c_{3}=\frac{1}{9}$,
each of $\left\{c_{4}, c_{5}, c_{6}, c_{7}\right\}$ and $\left\{c_{8}, c_{9}, c_{10}, c_{11}\right\}$ has at most two elements being $\frac{1}{9}$. We distinguish the following subcases.

Subcase 2.1. Each of $\left\{c_{4}, c_{5}, c_{6}, c_{7}\right\}$ and $\left\{c_{8}, c_{9}, c_{10}, c_{11}\right\}$ has exactly two elements being $\frac{1}{9}$. We may assume that $c_{4}=c_{5}=\frac{1}{9}$ and $c_{6}+c_{7}=\frac{1}{9}$, and $c_{8}=c_{9}=\frac{1}{9}$ and $c_{10}+c_{11}=\frac{1}{9}$. Similar to Subcase 1.2, there are $\binom{7}{3}$ edge-combinations $\left\{c_{i}\right.$, $\left.c_{j}, c_{k}\right\}$ chosen from $\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{8}, c_{9}\right\}$. There are $2\binom{7}{2}$ edge-combinations $\left\{c_{i}\right.$, $\left.c_{j}, c_{6}, c_{r(6)}\right\}$ and $\left\{c_{i}, c_{j}, c_{10}, c_{r(10)}\right\}$, where $10 \neq r(6)$, and $\left\{c_{i}, c_{j}\right\}$ are chosen from $\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{8}, c_{9}\right\}$. Therefore, $\mathcal{E}\left(S^{c}\right) \geq\binom{ 7}{3}+2\binom{7}{2}>72 \geq|E(G)|$, as required.

Subcase 2.2. $\left\{c_{4}, c_{5}, c_{6}, c_{7}\right\}$ has only one element being $\frac{1}{9}$, say $c_{4}=\frac{1}{9}$. Then $c_{5}+c_{6}+c_{7}=\frac{2}{9}$. Assume that $\frac{1}{9}>c_{5} \geq c_{6} \geq c_{7}$. Then $c_{1}+c_{2}+c_{i}<\frac{1}{3}$ for $5 \leq i \leq 7$. By Lemma 8(ii), $\left\{c_{1}, c_{2}, c_{i}\right\}$ can be extended to an edge-combination S with $|S|=4$ (if $|S|=5$, then we can get a $\{3,3,5\}$-partition of S^{c}, which reduces to Case 1). Note that $c_{i}+c_{k}>\frac{1}{9}$ for $5 \leq i, k \leq 7$. There is a c_{j} with $j>7$ such that $S=\left\{c_{1}, c_{2}, c_{i}, c_{j}\right\}$ and $c_{i}+c_{j}=\frac{1}{9}$. Thus we can define a mapping from $\left\{c_{i}: 5 \leq i \leq 7\right\}$ to $\left\{c_{j}: 8 \leq j \leq 11\right\}$ with $c_{i}+c_{j}=\frac{1}{9}$. In this respect, we claim that it is impossible that $\left\{c_{8}, c_{9}, c_{10}, c_{11}\right\}$ has only one element being $\frac{1}{9}$. To see this, assume that $c_{8}=\frac{1}{9}$ and $c_{9}+c_{10}+c_{11}=\frac{2}{9}$. Then we can also define a mapping from $\left\{c_{j}: 9 \leq j \leq 11\right\}$ to $\left\{c_{i}: 5 \leq i \leq 7\right\}$ as above. Hence we obtain a bijection between $\left\{c_{5}, c_{6}, c_{7}\right\}$ and $\left\{c_{9}, c_{10}, c_{11}\right\}$. Consequently, $c_{5}+c_{6}+c_{7}+c_{9}+c_{10}+c_{11}=\frac{1}{9}+\frac{1}{9}+\frac{1}{9}=\frac{1}{3}$ and so $c_{4}+c_{8}=\frac{1}{3}$, which is impossible. Therefore, $\left\{c_{8}, c_{9}, c_{10}, c_{11}\right\}$ has exactly two elements being $\frac{1}{9}$, say $c_{8}=c_{9}=\frac{1}{9}$, and so $c_{10}+c_{11}=\frac{1}{9}$.

As stated in Subcase 1.3, we may define a graph F with vertex set $\left\{c_{5}, c_{6}, c_{7}\right.$, $\left.c_{10}, c_{11}\right\}$, two vertices c_{i} and c_{j} being adjacent if and only if $c_{i}+c_{j}=\frac{1}{9}$. Then F is a star on 5 vertices. By the same calculation as in Subcase 1.3, we obtain $\mathcal{E}\left(S^{c}\right) \geq\binom{ 6}{3}+\binom{6}{2}\binom{4}{1}>72 \geq|E(G)|$, a contradiction to Lemma 7 .

Subcase 2.3. max $\left\{c_{4}, c_{5}, \ldots, c_{11}\right\}<\frac{1}{9}$. For this, we cannot assure $\left\{c_{1}, c_{2}, c_{3}\right\}$ has some element being $\frac{1}{9}$. We may assume that $c_{1} \geq c_{2} \geq c_{3} \geq c_{4} \geq c_{5} \geq c_{6} \geq c_{7}$, $c_{8} \geq c_{9} \geq c_{10} \geq c_{11}$, and $c_{4} \geq c_{8}$. We show that $c_{3}=c_{4}$. In fact, if $c_{3}>c_{4}$, then $c_{1}+c_{2}+c_{4}<\frac{1}{3}$, and so there is an i with $5 \leq i \leq 11$ such that $c_{1}+c_{2}+c_{4}+c_{i}=\frac{1}{3}$ (by Lemma 8(ii)). Noting $c_{3} \leq \frac{1}{9}$, we have $c_{1}+c_{2} \geq \frac{2}{9}$. This implies that $c_{4}+c_{i} \leq \frac{1}{9}$, and thus $c_{8}+c_{i} \leq \frac{1}{9}$. Consequently, there would be c_{j} and $c_{k}(4 \leq j$, $k \leq 11)$ such that $c_{j}+c_{k} \geq \frac{2}{9}$. Then one of them is at least $\frac{1}{9}$, contradicting our assumption. By the same argument, we can show that $c_{4}=c_{5}$, and further $c_{3}=c_{4}=c_{5}=c_{6}=c_{7}=c_{8}=c_{9}=c_{10}=c_{11}=\frac{1}{12}$.

Furthermore, we claim that $c_{2}=c_{3}$. In fact, if $c_{1} \geq c_{2}>c_{3}$, then $c_{2} \leq$ $\frac{1}{2}\left(\frac{1}{3}-\frac{1}{12}\right)=\frac{1}{8}$, and so $c_{2}+c_{3}+c_{4} \leq \frac{1}{8}+\frac{1}{6}=\frac{7}{24}<\frac{1}{3}$. By Lemma 8(ii), there is an $i(i \geq 5)$ such that $c_{2}+c_{3}+c_{4}+c_{i}=\frac{1}{3}$. But this contradicts the fact that $c_{2}+c_{3}+c_{4}+c_{i}>\frac{4}{12}=\frac{1}{3}$. Therefore, $c_{2}=c_{3}=\cdots=c_{11}=\frac{1}{12}$ which implies $c_{1}=\frac{1}{6}$.

From this, we consider the edge-combination number $\mathcal{E}\left(S^{c}\right)$ as follows.

- There are $\binom{10}{3} 3$-combinations $\left\{c_{i}, c_{j}, c_{k}\right\}$ with $c_{i}=c_{j}=c_{k}=\frac{1}{12}$, apart from $c_{1}=\frac{1}{6}$, at most $\binom{4}{3}$ of which correspond to a common edge-combination $\left\{\frac{1}{12}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}\right\}$.
- There are $\binom{10}{2} 3$-combinations $\left\{c_{1}, c_{i}, c_{j}\right\}$ with $c_{1}=\frac{1}{6}$ and $c_{i}=c_{j}=\frac{1}{12}$, each of which corresponds to an edge-combination $\left\{\frac{1}{6}, \frac{1}{12}, \frac{1}{12}\right\}$.

To summarize, $\mathcal{E}\left(S^{c}\right) \geq\binom{ 10}{3} / 4+\binom{10}{2}>72 \geq|E(G)|$, a contradiction to Lemma 7. This completes the proof.

As a consequence, if $d(P(G)) \leq 10$ (whence $\varphi(P(G)) \leq 11$), then the 3PMproperty holds. This includes our previous result (Proposition 9).

4. Bricks

Recall that a brick is 3 -connected and bicritical. Relative to Theorem 12 and 13, we can get better results for cubic bricks.

Lemma 14. For a cubic brick G, if $d(P(G))=d$, then $|E(G)|=3 d$.
Proof. Since G is cubic, $2|E(G)|=3|V(G)|$. Since G is a brick, $b=1$. By Lemma $4, d=m-n+1-b=m-\frac{2 m}{3}=\frac{m}{3}$, which implies $|E(G)|=3 d$.

Theorem 15. For a cubic brick G with $d(P(G)) \leq 24$, if $\varphi(P(G)) \leq 11$, then the 3PM-property holds.

Proof. Recalling the proofs of Theorems 12 and 13, we note that when $\varphi(P(G))$ ≤ 11, as long as $|E(G)| \leq 72$, all these proofs are valid. Now for a brick G, if $d(P(G)) \leq 24$, then $|E(G)|=3 d \leq 72$, as we needed in the proofs.

Theorem 16. For a cubic brick G with $d(P(G)) \leq 18$, if $\varphi(P(G)) \leq 12$, then the 3PM-property holds.

Proof. By Lemma $14,|E(G)|=3 d \leq 54$. By Theorem 15, we need only consider the case $\varphi(P(G))=12$. Then the equations (4) and (5) hold for $k=12$. Suppose, to the contrary, that the 3PM-property does not hold.

By Lemma 8(i), each edge-combination contains from three to six c-elements of $c_{1}, c_{2}, \ldots, c_{12}$. Moreover, by Lemma 8(iii), the $12 c$-elements are divided into three sets, each of which has sum $\frac{1}{3}$. Note that the only partitions $\left\{k_{1}, k_{2}, k_{3}\right\}$ of integer 12 , where $k_{1}+k_{2}+k_{3}=12,3 \leq k_{i} \leq 6$, are $\{3,3,6\},\{3,4,5\}$, and $\{4,4,4\}$. So we consider three cases as follows.

Case 1. There is a $\{3,3,6\}$-partition of S^{c}. By Lemma 8(i), there are six c-elements being $\frac{1}{9}$ and no other c_{i} is greater than $\frac{1}{9}$. So we may assume that
$c_{1}=c_{2}=\cdots=c_{6}=\frac{1}{9}, c_{7}+c_{8}+\cdots+c_{12}=\frac{1}{3}$, and $\frac{1}{9} \geq c_{7} \geq \cdots \geq c_{12}$. Similarly to Case 1 in the proof of Theorem 13, we have the following subcases.

Subcase 1.1. $c_{7}=c_{8}=\frac{1}{9}$ and $c_{9}+c_{10}+c_{11}+c_{12}=\frac{1}{9}$. Since each 3combination $\left\{c_{i}, c_{j}, c_{k}\right\}$ taken from $\left\{c_{1}, c_{2}, \ldots, c_{8}\right\}$ is an edge-combination, we have $\mathcal{E}\left(S^{c}\right) \geq\binom{ 8}{3}>54 \geq|E(G)|$, contradicting Lemma 7 .

Subcase 1.2. $c_{7}=\frac{1}{9}$ and $c_{8}+c_{9}+c_{10}+c_{11}+c_{12}=\frac{2}{9}$. Then there are $\binom{7}{3}$ 3-combinations $\left\{c_{i}, c_{j}, c_{k}\right\}$ taken from $\left\{c_{1}, c_{2}, \ldots, c_{7}\right\}$, each of which is an edgecombination. For each $\left\{c_{i}, c_{j}\right\}$ chosen from $\left\{c_{1}, c_{2}, \ldots, c_{7}\right\}, c_{i}+c_{j}+c_{8}<\frac{1}{3}$. By Lemma 8(ii), $\left\{c_{i}, c_{j}, c_{8}\right\}$ can be extended to an edge-combination. Therefore, $\mathcal{E}\left(S^{c}\right) \geq\binom{ 7}{3}+\binom{7}{2}>54 \geq|E(G)|$, as required.

Subcase 1.3. $c_{i}<\frac{1}{9}$ for $7 \leq i \leq 12$ and $c_{7} \geq c_{8} \geq \cdots \geq c_{12}$. For a pair of given $i, j(1 \leq i, j \leq 6), c_{i}+c_{j}+c_{k}<\frac{1}{3}$ for any k with $7 \leq k \leq 12$, and so $\left\{c_{i}, c_{j}, c_{k}\right\}$ can be extended to an edge-combination S_{k}. Note that $S_{k} \backslash\left\{c_{i}, c_{j}\right\} \subseteq\left\{c_{7}, c_{8}, \ldots, c_{12}\right\}$. It is impossible that $\left|S_{k}\right|=6$, for otherwise there would be a $c_{l} \geq \frac{1}{9}$ for $7 \leq l \leq 12$. So $4 \leq\left|S_{k}\right| \leq 5$.

If there is an S_{k} with $\left|S_{k}\right|=5$, then the sum of the three c-elements of $S_{k} \backslash\left\{c_{i}, c_{j}\right\}$ is $\frac{1}{9}$ and the sum of the remaining three c-elements in $\left\{c_{7}, c_{8}, \ldots, c_{12}\right\}$ is $\frac{2}{9}$, say $c_{k_{1}}+c_{k_{2}}+c_{k_{3}}=\frac{2}{9}$. Since the sum of any two c-elements of $c_{k_{1}}, c_{k_{2}}, c_{k_{3}}$ is more than $\frac{1}{9}, S_{k_{1}}, S_{k_{2}}$, and $S_{k_{3}}$ are different. If each S_{k} has exactly four c elements, say $S_{k}=\left\{c_{i}, c_{j}, c_{k}, c_{r(k)}\right\}$, then there are at least three different S_{k} 's.

Now we evaluate the number of edge-combinations. There are $\binom{6}{3} 3$-combinations taken from $\left\{c_{1}, c_{2}, \ldots, c_{6}\right\}$, each of which is an edge-combination. Moreover, each 2-combination $\left\{c_{i}, c_{j}\right\}$ taken from $\left\{c_{1}, c_{2}, \ldots, c_{6}\right\}$ corresponds to at least three edge-combinations. Therefore, we have $\mathcal{E}\left(S^{c}\right) \geq\binom{ 6}{3}+3\binom{6}{2}>54 \geq$ $|E(G)|$, as needed.

Case 2 . There is a $\{4,4,4\}$-partition of S^{c}. Then every edge-combination has cardinality 4 . In this context, there are $\binom{12}{3} 3$-combinations $\left\{c_{i}, c_{j}, c_{k}\right\}$, at most $\binom{4}{3}$ of which correspond to a common edge-combination. Therefore, $\mathcal{E}\left(S^{c}\right) \geq$ $\binom{12}{3} / 4>54 \geq|E(G)|$, as needed.

Case 3. Every 3-partition of S^{c} is a $\{3,4,5\}$-partition. Then for any vertex v of G, the three edges of G incident with v lie in exactly three, four, and five perfect matchings of $M_{1}, M_{2}, \ldots, M_{12}$, respectively. Let N_{1}, N_{2}, N_{3} be the sets of edges which lie in exactly three, four, and five perfect matchings of $M_{1}, M_{2}, \ldots, M_{12}$, respectively. Then we see that N_{1}, N_{2}, and N_{3} are three pairwise disjoint perfect matchings of G, a contradiction to the assumption that 3PM-property fails. This completes the proof.

Acknowledgement

The authors are grateful to referee for his/her helpful comments which have improved the presentation of this paper. This work is supported by NSFC (grant no. 11571323 and 71301038) and NSF-Henan (grant no. 15IRTSTHN006).

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer-Verlag, Berlin, 2008).
[2] G. Brinkmann, J. Goedgebeur, J. Hägglund and K. Markström, Generation and properties of snarks, J. Combin. Theory Ser. B 103 (2013) 468-488. doi:10.1016/j.jctb.2013.05.001
[3] M.H. de Carvalho, C.L. Lucchesi and U.S.R. Murty, Graphs with independent perfect matchings, J. Graph Theory 48 (2005) 19-50. doi:10.1002/jgt. 20036
[4] J. Edmonds, L. Lovász and W.R. Pulleyblank, Brick decompositions and matching rank of graphs, Combinatorica 2 (1982) 247-274.
doi:10.1007/BF02579233
[5] G. Fan and A. Raspaud, Fulkerson's conjecture and circuit covers, J. Combin. Theory Ser. B 61 (1994) 133-138. doi:10.1006/jctb.1994.1039
[6] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, 4th Edition (Springer-Verlag, Berlin, 2008).
[7] L. Lovász and M.D. Plummer, Matching Theory (Elsevier Science Publishers, B.V. North Holland, 1986).
[8] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency (SpringerVerlag, Berlin, 2003).
[9] X. Wang and Y. Lin, Three-matching intersection conjecture for perfect matching polytopes of small dimensions, Theoret. Comput. Sci. 482 (2013) 111-114. doi:10.1016/j.tcs.2013.02.023

Received 4 April 2016
Revised 31 October 2016 Accepted 31 October 2016

