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Abstract

For a 2-connected cubic graph G, the perfect matching polytope P (G) of
G contains a special point xc =

(

1

3
, 1

3
, . . . , 1

3

)

. The core index ϕ(P (G)) of the
polytope P (G) is the minimum number of vertices of P (G) whose convex hull
contains xc. The Fulkerson’s conjecture asserts that every 2-connected cubic
graph G has six perfect matchings such that each edge appears in exactly
two of them, namely, there are six vertices of P (G) such that xc is the convex
combination of them, which implies that ϕ(P (G)) ≤ 6. It turns out that
the latter assertion in turn implies the Fan-Raspaud conjecture: In every
2-connected cubic graph G, there are three perfect matchings M1, M2, and
M3 such that M1 ∩M2 ∩M3 = ∅. In this paper we prove the Fan-Raspaud
conjecture for ϕ(P (G)) ≤ 12 with certain dimensional conditions.

Keywords: Fulkerson’s conjecture, Fan-Raspaud conjecture, cubic graph,
perfect matching polytope, core index.
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1. Introduction

The celebrated Fulkerson’s conjecture in graph theory is the following (cf. [1, 5]).

Conjecture A (Fulkerson’s conjecture). Every 2-connected cubic graph has six

perfect matchings such that each edge appears in exactly two of them.

We may state the polyhedral version of this conjecture as follows. Let G
be a 2-connected cubic graph. Thus each edge of G is contained in a perfect
matching of G. The characteristic vector of a perfect matching M of G is a
vector x ∈ R

E(G) such that xe = 1 if e ∈ M and xe = 0 otherwise. The perfect
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matching polytope of G, denoted by P (G), is the convex hull of the characteristic
vectors of all perfect matchings in G. Now let x1, x2, . . . , x6 be the characteristic
vectors of the six perfect matchings in the Fulkerson’s conjecture. Then x1+x2+
· · · + x6 = (2, 2, . . . , 2) and thus 1

6

(

x1 + x2 + · · ·+ x6
)

=
(

1
3 ,

1
3 , . . . ,

1
3

)

. That is,
xc :=

(

1
3 ,

1
3 , . . . ,

1
3

)

is the convex combination of x1, x2, . . . , x6.

We call this xc the core of the perfect matching polytope P (G), which lies
in P (G) (see Proposition 3). Furthermore, a subset Q ⊆ P (G) is called a core

polytope of P (G) if it is the convex hull of k vertices of P (G) such that xc ∈ Q and
k is minimum. Meanwhile, the above minimum value k is called the core index

of P (G), denoted by ϕ(P (G)). In other words, the core index ϕ(P (G)) is the
minimum number of vertices of P (G) whose convex hull contains xc. Therefore,
the Fulkerson’s conjecture yields the following conjecture.

Conjecture B. For every 2-connected cubic graph G, ϕ(P (G)) ≤ 6.

The study of Conjecture B would be meaningful to cope with the Fulkerson’s
conjecture. In particular, the structure of the core polytope Q inside a perfect
matching polytope P (G) is quite mysterious. Fan and Raspaud [5] proposed the
following conjecture.

Conjecture C (Fan-Raspaud conjecture). In every 2-connected cubic graph there

exist three perfect matchings M1, M2, and M3 such that M1 ∩M2 ∩M3 = ∅.

Let us see the relation of these three conjectures.

Proposition 1. Conjecture A implies Conjecture B and Conjecture B implies

Conjecture C.

Proof. The first assertion is clear, as xc :=
(

1
3 ,

1
3 , . . . ,

1
3

)

is contained in the
convex hull of {x1, x2, . . . , x6}. We show the second assertion. Suppose Con-
jecture B holds. Let x1, x2, . . . , x6 be six vertices of P (G) whose convex hull
contains xc. Then xc = c1x

1 + c2x
2 + · · · + c6x

6, where
∑6

i=1 ci = 1 and
ci ≥ 0. We may assume that c1, c2, c3 are the three largest numbers among
all ci. Then c1 + c2 + c3 ≥ 1

2

∑6
i=1 ci =

1
2 . We claim that Conjecture C holds

for the perfect matchings M1,M2,M3 corresponding to x1, x2, x3. Suppose not.
Then there is an edge e ∈ M1 ∩ M2 ∩ M3, namely, xie = 1 for i = 1, 2, 3. Then
xce = c1x

1
e + c2x

2
e + · · ·+ c6x

6
e ≥ c1x

1
e + c2x

2
e + c3x

3
e = c1 + c2 + c3 ≥

1
2 > 1

3 , which
is a contradiction.

In brief, if the Fulkerson’s conjecture is true, then ϕ(P (G)) ≤ 6, and thus
the Fan-Raspaud conjecture holds. However, the Fulkerson’s conjecture is far
from being proved at the moment. So we do not know the exact range of values
ϕ(P (G)) for all 2-connected cubic graphs. In this circumstance we can use the
parameter ϕ(P (G)) as a condition in proving the Fan-Raspaud conjecture.
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The dimension of a polytope P , denoted by d(P ), is the dimension of its
affine hull (the minimal affine subspace containing P ). Let G be a 2-connected
cubic graph, and P (G) the perfect matching polytope of G. If all vertices of
P (G) are affinely independent (namely, P (G) is a simplex), then d(P (G)) ≤ 8
(see [3, 9]). In our previous paper [9], we showed that Fan-Raspaud conjecture
holds if d(P (G)) ≤ 9, which implies ϕ(P (G)) ≤ 10. In this paper, we obtain
some improved results. The main results are the following:

(1) The Fan-Raspaud conjecture is true if d(P (G)) ≤ 13 and ϕ(P (G)) ≤ 11.

(2) The Fan-Raspaud conjecture is true if G is a cubic brick, d(P (G)) ≤ 18,
and ϕ(P (G)) ≤ 12.

Since the dimension of a cubic brick G is d(P (G)) = m−n = n/2 (see Lemma
4 with b = 1), d(P (G)) ≤ 18 is equivalent to n = |V (G)| ≤ 36. Hence the above
result (2) means that the Fan-Raspaud conjecture is true for cubic bricks with
up to 36 vertices (provided ϕ(P (G)) ≤ 12). Recently, in [2], the computer search
shows that the Fulkerson’s conjecture is true for snarks with up to 36 vertices, and
so is the Fan-Raspaud conjecture. Here, a snark is a cyclically 4-edge connected
cubic graph which cannot be 3-edge colored and has girth at least 5.

The organization of the paper is as follows. In Section 2, we present some
basic properties. Section 3 is devoted to the results on 2-connected cubic graphs
with ϕ(P (G)) ≤ 11. Section 4 is concerned with cubic bricks with ϕ(P (G)) ≤ 12.

2. Preliminary on Perfect Matching Polytopes

The basic notions on polyhedral combinatorics can be found in [6, 8]. The well-
known characterization of perfect matching polytope, due to Edmonds (1965), is
the following (cf. [7]).

Lemma 2. The perfect matching polytope of a graph G is the set of vectors

x ∈ R
E(G) satisfying

xe ≥ 0 (for all e ∈ E(G)),(1)

∑

e∈δ(v)

xe = 1 (for all v ∈ V (G)),(2)

∑

e∈δ(A)

xe ≥ 1 (for all A ⊆ V (G), |A| is odd),(3)

where δ(v) stands for the set of edges incident with v ∈ V (G), and δ(A) is the

set of edges with exactly one end in A.
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For a 2-connected cubic graph G, every edge is contained in a perfect match-
ing (see Corollary 3.4.3 of [7]). A graph is matching-covered if every edge of this
graph is contained in a perfect matching of it. Hence G is matching-covered
and there are at least three different perfect matchings in G. Thus the perfect
matching polytope P (G) has at least three vertices. In particular, we have

Proposition 3. Let G be a 2-connected cubic graph. Then the core xc =
(

1
3 ,

1
3 ,

. . . , 13
)

lies in P (G).

Proof. Clearly, xc satisfies (1) and (2) of Lemma 2. It suffices to verify (3). For
a subset A ⊆ V (G) with odd cardinality, the degree sum of the vertices in A
is 3|A| = 2|E(G[A])| + |δ(A)|, where G[A] is the subgraph of G induced by A.
So |δ(A)| is odd. If |δ(A)| = 1, then the only edge of δ(A) is a cut edge of G,
contradicting the assumption that G is 2-connected. Therefore |δ(A)| ≥ 3 and
thus

∑

e∈δ(A) x
c
e =

1
3 |δ(A)| ≥ 1. That is, the point xc satisfies (3), as required.

The following characterization of the dimension of perfect matching polytope
found by Edmonds, Lovász, and Pulleyblank (see [4] or Theorem 7.6.6 of [7]) is
used in the proof of the main results.

Lemma 4. For every matching-covered graph G, the dimension of perfect match-

ing polytope P (G) is d(P (G)) = m− n+ 1− b, where m,n, b are the numbers of

edges, vertices, and bricks of G, respectively.

Here, a brick is a 3-connected and bicritical graph, where a graph G is bicrit-
ical if G − u − v has a perfect matching for any two distinct vertices u, v in G.
Clearly, a brick is non-bipartite and matching-covered. The number of bricks of
a matching-covered graph G is the number of bricks produced in a procedure of
‘tight cut decomposition’, see [4, 7].

With respect to the dimension, the following Carathéodory theorem is clas-
sical (Theorem 5.1 of [8]).

Lemma 5. For any V ⊆ R
m and x in the convex hull of V, there exist affinely

independent vectors x1, . . . , xk in V such that x is contained in the convex hull

of {x1, . . . , xk}.

We obtain an upper bound of the core index as follows.

Proposition 6. For every 2-connected cubic graph G, ϕ(P (G)) ≤ d(P (G)) + 1.

Proof. Let V be the set of vertices in P (G). Then xc is contained in the convex
hull of V . By the Carathéodory theorem, xc is contained in the convex hull of
d(P (G)) + 1 affinely independent vectors. The assertion follows.



Core Index of Perfect Matching Polytope ... 193

3. Results on Core Index and Dimension

For convenience, we refer to the property specified in the Fan-Raspaud conjecture
as the 3PM-property. We start with some simple facts.

If ϕ(P (G)) = k, then there are vertices x1, x2, . . . , xk of P (G) whose convex
hull contains the core xc, i.e.,

xc = c1x
1 + c2x

2 + · · ·+ ckx
k,

k
∑

i=1

ci = 1, ci > 0.(4)

Let Sc = {c1, c2, . . . , ck}, which stands for the convex combination representation
of the core xc in the convex hull of {x1, x2, . . . , xk}. Meanwhile, each ci ∈ Sc is
called a c-element. For a set S, by an h-combination X of S we mean a subset
X ⊆ S with |X| = h. Furthermore, for every edge e ∈ E(G), we have

c1x
1
e + c2x

2
e + · · ·+ ckx

k
e =

1

3
.(5)

Let M1,M2, . . . ,Mk be the perfect matchings corresponding to x1, x2, . . . , xk re-
spectively, and let M = {M1,M2, . . . ,Mk}. For an edge e ∈ E(G), let Me =
{Mi : x

i
e = 1, 1 ≤ i ≤ k} (⊆ M), which is the set of perfect matchings containing

the edge e. Then (5) is equivalent to

∑

Mi∈Me

ci =
1

3
.(6)

Conversely, a subset S of Sc with
∑

ci∈S
ci =

1
3 is not necessarily corresponding

to an edge. We now give a useful definition as follows.
A subset S of Sc is called an edge-combination if (1)

∑

ci∈S
ci =

1
3 ; (2) there

exists a 3-combination X of S such that
⋂

ci∈X

Mi 6= ∅ implies
⋂

ci∈S

Mi 6= ∅.

For instance, if the 3PM-property does not hold, then any 3-combination S of Sc

with
∑

ci∈S
ci =

1
3 is an edge-combination. Moreover, for any edge-combination

S of Sc, we have |S| ≥ 3 and
⋂

ci∈S
Mi 6= ∅, and thus S indeed corresponds to

an edge in
⋂

ci∈S
Mi. This is the intention of the term “edge-combination”. We

call the number of all the edge-combinations in Sc the edge-combination number

of Sc, denoted by E(Sc).

Lemma 7. If |E(G)| < E(Sc), then the 3PM property holds.

Proof. If the 3PM-property does not hold, then for each edge-combination S, we
have

⋂

ci∈S
Mi 6= ∅. Thus there exists an edge e contained in

⋂

ci∈S
Mi. So each
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edge-combination S corresponds to an edge e ∈
⋂

ci∈S
Mi. Furthermore, we claim

that an edge e ∈ E(G) cannot correspond to two different edge-combinations. In
fact, if e corresponds to two edge-combinations S and S′ with S 6= S′, then
e ∈

⋂

ci∈S
Mi and e ∈

⋂

ci∈S′ Mi, whence e ∈
⋂

ci∈S∪S′ Mi. By the definition of

edge-combination, we have
∑

ci∈S
ci =

1
3 and

∑

ci∈S′ ci =
1
3 . Hence

∑

Mi∈Me
ci ≥

∑

ci∈S∪S′ ci >
∑

ci∈S
ci = 1

3 , contradicting the equation (6). In this way, we
define an injection (one-to-one mapping) from the set of edge-combinations to
E(G). Therefore E(Sc) ≤ |E(G)|, contradicting the condition of the lemma.

Lemma 8. If the 3PM-property does not hold, then Sc = {c1, c2, . . . , ck} satisfies

the following:

(i) For any 3-combination X ⊆ Sc,
∑

ci∈X
ci ≤

1
3 ;

(ii) For any 3-combination X ⊆ Sc, there exists an edge-combination S ⊆ Sc

such that X ⊆ S;

(iii) Sc can be partitioned into three parts {S1, S2, S3} such that
∑

ci∈Sk
ci =

1
3

for k = 1, 2, 3.

Proof. Suppose that the 3PM-property does not hold. We show the three as-
sertions as follows.

(i) Suppose that for X = {ci1 , ci2 , ci3}, ci1 + ci2 + ci3 > 1
3 . Since Mi1 ∩Mi2 ∩

Mi3 6= ∅, there is an edge e ∈ Mi1 ∩Mi2 ∩Mi3 such that xce = c1x
1
e + c2x

2
e + · · ·+

ckx
k
e ≥ ci1x

i1
e + ci2x

i2
e + ci3x

i3
e = ci1 + ci2 + ci3 > 1

3 , a contradiction.

(ii) For any 3-combination X ⊆ Sc, since
⋂

ci∈X
Mi 6= ∅, there exists an

edge e in
⋂

ci∈X
Mi. Let S = {ci : Mi ∈ Me}. Then X ⊆ S and

∑

ci∈S
ci =

∑

Mi∈Me
ci =

1
3 , which implies that S is an edge-combination.

(iii) We take a vertex v in G and let e1, e2, e3 be the three edges incident with
this vertex v in G. Since no perfect matching Mi can contain two of e1, e2, e3, all
perfect matchings M1,M2, . . . ,Mk are partitioned into three disjoint sets, each
of which contains one of e1, e2, e3. Therefore Sc is partitioned into three parts
{S1, S2, S3} such that

∑

ci∈Sk
ci =

∑

Mi∈Mek

ci =
1
3 for k = 1, 2, 3.

Our previous paper [9] shows the following.

Proposition 9. For a 2-connected cubic graph G with d(P (G)) ≤ 9, the 3PM-

property holds.

Now we present several improved results. Proposition 1 says that if ϕ(P (G))
≤ 6, then the 3PM-property holds. The following improvement is straightforward.

Proposition 10. For a 2-connected cubic graph G with ϕ(P (G)) ≤ 8, the 3PM-

property holds.
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Proof. Suppose that (4) holds for k = 8 and c1, c2, c3, c4 are the four largest
elements in Sc with c1 ≥ c2 ≥ c3 ≥ c4. Then c1+c2+c3+c4 ≥

1
2 . If c1+c2+c3 <

3
8 ,

then c3 < 1
8 and c4 ≥ 1

2 − (c1 + c2 + c3) >
1
8 , a contradiction to the assumption

that c3 ≥ c4. Therefore c1 + c2 + c3 ≥
3
8 > 1

3 , and thus the assertion follows from
(i) of Lemma 8.

This result is independent of the dimension of the perfect matching polytope.
In the results below, we have to combine the dimensional condition.

Lemma 11. For a 2-connected cubic graph G, if d(P (G)) = d, then |E(G)| ≤
6(d− 1).

Proof. Since G is cubic, we have 2|E(G)| = 3|V (G)|. Moreover, as a result of

the brick decompositions of graphs, G has at most |E(G)|−|V (G)|
2 = |E(G)|

6 bricks
(see Lemma 5.12 of [4]). Hence by the formula of dimension of perfect matching
polytope, we have d = m− n+ 1− b ≥ m− 2m

3 + 1− m
6 = m

6 + 1, which implies
that m ≤ 6(d− 1).

Theorem 12. For a 2-connected cubic graph G with d(P (G)) ≤ 14, if ϕ(P (G)) ≤
10, then the 3PM-property holds.

Proof. By Lemma 11 and d(P (G)) ≤ 14, we have |E(G)| ≤ 6(d − 1) ≤ 78.
Suppose, to the contrary, that the 3PM-property does not hold.

The case of ϕ(P (G)) ≤ 8 has been settled in Proposition 10. We consider
the case of ϕ(P (G)) = 9 now. In this case, the convex combination of (4) with
k = 9 holds. Suppose, without loss of generality, that c1 ≥ c2 ≥ · · · ≥ c9.
By Lemma 8(i), the sum of any three c-elements is at most 1

3 . On the other

hand, c1 + c2 + c3 ≥ 1
3

∑9
i=1 ci = 1

3 . It follows that c1 + c2 + c3 = 1
3 , and so

c4 + c5 + c6 = c7 + c8 + c9 = 1
3 . Therefore, c7 ≥ 1

9 and c6 ≤ 1
9 . Since c6 ≥ c7, we

have c6 = 1
9 , and so c4 = c5 = 1

9 . By the same way, we have c1 = c2 = c3 = 1
9 ,

and c7 = c8 = c9 = 1
9 . Hence every 3-combination of Sc is an edge-combination,

and so E(Sc) =
(

9
3

)

> 78 ≥ |E(G)|. This is a contradiction to Lemma 7.
We next consider the case of ϕ(P (G)) = 10 with convex combination repre-

sentation (4) with k = 10. By Lemma 8(i), the sum of any two c-elements is less
than 1

3 . We further observe that the sum of any five c-elements is greater than 1
3 .

This is because if there are five c-elements whose sum is less than or equal to 1
3 ,

then the sum of the remaining five c-elements is at least 2
3 , say ci1 + ci2 + · · ·+ ci5

≥ 2
3 , and thus the sum of the three largest members of {ci1 , ci2 , . . . , ci5} is greater

than 1
3 , contradicting Lemma 8(i). Therefore, each edge of G is covered by pre-

cisely three or four of the ten perfect matchings M1,M2, . . . ,M10.
By Lemma 8(iii), Sc can be partitioned into three parts each of which has

sum 1
3 . Note that the only partition {k1, k2, k3} of integer 10 is {3, 3, 4}, where

k1+k2+k3 = 10, and 3 ≤ ki ≤ 4. Hence the above partition of the ten c-elements
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is a {3, 3, 4}-partition. Therefore, we assume, without loss of generality, that
c1 + c2 + c3 = c4 + c5 + c6 = c7 + c8 + c9 + c10 =

1
3 .

By Lemma 8(i), we have c1 = c2 = · · · = c6 = 1
9 and c7, . . . , c10 ≤ 1

9 . In
this context, we choose a 3-combination X = {c1, c2, ci} where 7 ≤ i ≤ 10. If
X is an edge-combination, then ci =

1
9 . Otherwise, by Lemma 8(ii), X can be

extended to an edge-combination S with |S| = 4. Then there exists another cj
(7 ≤ j ≤ 10) such that ci + cj = 1

9 . We further claim that among c7, . . . , c10,
there is at most one such pair with ci+cj =

1
9 . Suppose without loss of generality

that c7 + c8 = c9 + c10 = 1
9 or c7 + c8 = c7 + c9 = 1

9 . The former contradicts
the assumption c7 + c8 + c9 + c10 =

1
3 , and the latter implies that c10 >

1
9 , also a

contradiction. Therefore, we obtain that c1 = c2 = · · · = c8 =
1
9 and c9+c10 =

1
9 .

We proceed to compute the edge-combination number E(Sc) as follows.

• There are
(

8
3

)

3-combinations {ci, cj , ck} chosen from {c1, c2, . . . , c8}, each
of which is an edge-combination.

• There are
(

8
2

)

4-combinations S = {ci, cj , c9, c10} such that {ci, cj} are
chosen from {c1, c2, . . . , c8}, each of which is an edge-combination.

To sum up, E(Sc) ≥
(

8
3

)

+
(

8
2

)

> 78 ≥ |E(G)|, contradicting Lemma 7.

Theorem 13. For a 2-connected cubic graph G with d(P (G)) ≤ 13, if ϕ(P (G)) ≤
11, then the 3PM-property holds.

Proof. We consider the case ϕ(P (G)) = 11 and representation (4) with k = 11.
By Lemma 11, d(P (G)) ≤ 13 implies |E(G)| ≤ 6(d − 1) ≤ 72. Suppose, to the
contrary, that the 3PM-property does not hold.

By Lemma 8(i), no two c-elements have sum 1
3 . Also, no six c-elements have

sum 1
3 , for otherwise the remaining five c-elements would have

∑

ci =
2
3 , and thus

there are three of them with
∑

ci >
1
3 , contradicting Lemma 8(i). Moreover, by

Lemma 8(iii), the 11 c-elements are divided into three sets, each of which has
sum 1

3 . Note that the only partitions {k1, k2, k3} of integer 11 are {3, 3, 5} and
{3, 4, 4}, where k1+k2+k3 = 11, 3 ≤ ki ≤ 5. We distinguish two cases as follows.

Case 1. There is a {3, 3, 5}-partition of Sc. By Lemma 8(i), the first six
c-elements are 1

9 and no other ci is greater than 1
9 . Therefore, we can sort all

c-elements in the form that c1 = c2 = · · · = c6 = 1
9 ≥ c7 ≥ c8 ≥ · · · ≥ c11 and

c7 + c8 + · · ·+ c11 =
1
3 . Note that there are at most two of {c7, c8, . . . , c11} being

1
9 (for otherwise c10 = c11 = 0). We have the following subcases.

Subcase 1.1. c7 = c8 =
1
9 and c9 + c10 + c11 =

1
9 . Let us see the edge-combin-

ation number.

• There are
(

8
3

)

3-combinations {ci, cj , ck} chosen from {c1, c2, . . . , c8}, each
of which is an edge-combination.

• There are
(

8
2

)

5-combinations {ci, cj , c9, c10, c11} such that {ci, cj} are chosen
from {c1, c2, . . . , c8}, each of which is an edge-combination.



Core Index of Perfect Matching Polytope ... 197

Therefore, E(Sc) ≥
(

8
3

)

+
(

8
2

)

> 72 ≥ |E(G)|, a contradiction to Lemma 7.

Subcase 1.2. c7 = 1
9 , c8, c9, c10, c11 < 1

9 , and c8 + c9 + c10 + c11 = 2
9 . We

choose a 3-combination X = {ci, cj , ck}, where 1 ≤ i, j ≤ 7 and 8 ≤ k ≤ 11.
By Lemma 8(ii), X can be extended to an edge-combination S. If |S| = 5, then
S \ X ⊂ {c8, c9, c10, c11} and the sum of ck and the two elements in S \ X is
1
9 . So the remaining one of c8, c9, c10, c11 equals 1

9 , a contradiction. Therefore,
|S| = 4 and there exists cr(k) (8 ≤ r(k) ≤ 11) such that S = {ci, cj , ck, cr(k)}.
Without loss of generality, we may assume that 9 6= r(8). We obtain the following
computation.

• There are
(

7
3

)

3-combinations {ci, cj , ck} chosen from {c1, c2, . . . , c7}, each
of which is an edge-combination.

• There are
(

7
2

)

4-combinations {ci, cj , c8, cr(8)} and
(

7
2

)

4-combinations {ci, cj ,
c9, cr(9)} with {ci, cj} chosen from {c1, c2, . . . , c7}, each of which is an edge-
combination.

Therefore, E(Sc) ≥
(

7
3

)

+ 2
(

7
2

)

> 72 ≥ |E(G)|, a contradiction to Lemma 7.

Subcase 1.3. ci <
1
9 for 7 ≤ i ≤ 11. As in the previous subcase, we choose

a 3-combination X = {c1, c2, ci}, where 7 ≤ i ≤ 11. By Lemma 8(ii), X can
be extended to an edge-combination S. We can assert that |S| = 4. In fact, if
|S| = 5, say S = {c1, c2, c7, c8, c9}, then c7+c8+c9 =

1
9 and so c10+c11 =

2
9 . Thus

max{c10, c11} ≥ 1
9 , a contradiction. Hence there exists another cj (7 ≤ j ≤ 11)

such that S = {c1, c2, ci, cj} and ci + cj =
1
9 .

Now we consider a graph F with vertex set {c7, c8, c9, c10, c11}, two vertices
ci and cj being adjacent if and only if ci + cj = 1

9 . Then no two edges in F
are nonadjacent, for otherwise the vertex not incident to these edges would have
ci =

1
9 , a contradiction. This implies that F is a star on 5 vertices. Suppose c11

is the center of the star. We calculate the edge-combination number as follows.
• There are

(

6
3

)

3-combinations {ci, cj , ck} chosen from {c1, c2, . . . , c6}, each
of which is an edge-combination.

• There are
(

6
2

)(

4
1

)

4-combinations {ci, cj , ck, c11} such that {ci, cj} are chosen
from {c1, c2, . . . , c6} and ck is chosen from {c7, c8, c9, c10}, each of which is an
edge-combination.

To sum up, E(Sc) ≥
(

6
3

)

+
(

6
2

)(

4
1

)

> 72 ≥ |E(G)|, a contradiction to Lemma 7.
This completes the proof of Case 1.

Case 2. There is a {3, 4, 4}-partition of Sc. So we may assume that

c1 + c2 + c3 = c4 + c5 + c6 + c7 = c8 + c9 + c10 + c11 =
1

3
.

We first observe that min {c1, c2, c3} ≥ max{c4, c5, . . . , c11}. If not, say c4 > c3,
then c1 + c2 + c4 > 1

3 , contradicting Lemma 8(i). So max{c4, c5, . . . , c11} ≤ 1
9 .

Moreover, if max{c4, c5, . . . , c11} = 1
9 , then in addition to c1 = c2 = c3 = 1

9 ,
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each of {c4, c5, c6, c7} and {c8, c9, c10, c11} has at most two elements being 1
9 . We

distinguish the following subcases.

Subcase 2.1. Each of {c4, c5, c6, c7} and {c8, c9, c10, c11} has exactly two ele-
ments being 1

9 . We may assume that c4 = c5 =
1
9 and c6+c7 =

1
9 , and c8 = c9 =

1
9

and c10 + c11 = 1
9 . Similar to Subcase 1.2, there are

(

7
3

)

edge-combinations {ci,

cj , ck} chosen from {c1, c2, c3, c4, c5, c8, c9}. There are 2
(

7
2

)

edge-combinations {ci,
cj , c6, cr(6)} and {ci, cj , c10, cr(10)}, where 10 6= r(6), and {ci, cj} are chosen from

{c1, c2, c3, c4, c5, c8, c9}. Therefore, E(S
c) ≥

(

7
3

)

+2
(

7
2

)

> 72 ≥ |E(G)|, as required.

Subcase 2.2. {c4, c5, c6, c7} has only one element being 1
9 , say c4 = 1

9 . Then
c5 + c6 + c7 = 2

9 . Assume that 1
9 > c5 ≥ c6 ≥ c7. Then c1 + c2 + ci < 1

3 for
5 ≤ i ≤ 7. By Lemma 8(ii), {c1, c2, ci} can be extended to an edge-combination
S with |S| = 4 (if |S| = 5, then we can get a {3, 3, 5}-partition of Sc, which
reduces to Case 1). Note that ci + ck > 1

9 for 5 ≤ i, k ≤ 7. There is a cj
with j > 7 such that S = {c1, c2, ci, cj} and ci + cj = 1

9 . Thus we can define a
mapping from {ci : 5 ≤ i ≤ 7} to {cj : 8 ≤ j ≤ 11} with ci + cj = 1

9 . In this
respect, we claim that it is impossible that {c8, c9, c10, c11} has only one element
being 1

9 . To see this, assume that c8 = 1
9 and c9 + c10 + c11 = 2

9 . Then we can
also define a mapping from {cj : 9 ≤ j ≤ 11} to {ci : 5 ≤ i ≤ 7} as above.
Hence we obtain a bijection between {c5, c6, c7} and {c9, c10, c11}. Consequently,
c5+c6+c7+c9+c10+c11 =

1
9+

1
9+

1
9 = 1

3 and so c4+c8 =
1
3 , which is impossible.

Therefore, {c8, c9, c10, c11} has exactly two elements being 1
9 , say c8 = c9 = 1

9 ,
and so c10 + c11 =

1
9 .

As stated in Subcase 1.3, we may define a graph F with vertex set {c5, c6, c7,
c10, c11}, two vertices ci and cj being adjacent if and only if ci + cj = 1

9 . Then
F is a star on 5 vertices. By the same calculation as in Subcase 1.3, we obtain
E(Sc) ≥

(

6
3

)

+
(

6
2

)(

4
1

)

> 72 ≥ |E(G)|, a contradiction to Lemma 7.

Subcase 2.3. max {c4, c5, . . . , c11} < 1
9 . For this, we cannot assure {c1, c2, c3}

has some element being 1
9 . We may assume that c1 ≥ c2 ≥ c3 ≥ c4 ≥ c5 ≥ c6 ≥ c7,

c8 ≥ c9 ≥ c10 ≥ c11, and c4 ≥ c8. We show that c3 = c4. In fact, if c3 > c4, then
c1+c2+c4 <

1
3 , and so there is an i with 5 ≤ i ≤ 11 such that c1+c2+c4+ci =

1
3

(by Lemma 8(ii)). Noting c3 ≤ 1
9 , we have c1 + c2 ≥ 2

9 . This implies that
c4 + ci ≤

1
9 , and thus c8 + ci ≤

1
9 . Consequently, there would be cj and ck (4 ≤ j,

k ≤ 11) such that cj + ck ≥ 2
9 . Then one of them is at least 1

9 , contradicting
our assumption. By the same argument, we can show that c4 = c5, and further
c3 = c4 = c5 = c6 = c7 = c8 = c9 = c10 = c11 =

1
12 .

Furthermore, we claim that c2 = c3. In fact, if c1 ≥ c2 > c3, then c2 ≤
1
2

(

1
3 − 1

12

)

= 1
8 , and so c2 + c3 + c4 ≤ 1

8 + 1
6 = 7

24 < 1
3 . By Lemma 8(ii), there is

an i (i ≥ 5) such that c2 + c3 + c4 + ci =
1
3 . But this contradicts the fact that

c2 + c3 + c4 + ci >
4
12 = 1

3 . Therefore, c2 = c3 = · · · = c11 = 1
12 which implies

c1 =
1
6 .
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From this, we consider the edge-combination number E(Sc) as follows.

• There are
(

10
3

)

3-combinations {ci, cj , ck} with ci = cj = ck = 1
12 , apart

from c1 = 1
6 , at most

(

4
3

)

of which correspond to a common edge-combination
{

1
12 ,

1
12 ,

1
12 ,

1
12

}

.

• There are
(

10
2

)

3-combinations {c1, ci, cj} with c1 = 1
6 and ci = cj = 1

12 ,
each of which corresponds to an edge-combination {1

6 ,
1
12 ,

1
12}.

To summarize, E(Sc) ≥
(

10
3

)

/4 +
(

10
2

)

> 72 ≥ |E(G)|, a contradiction to
Lemma 7. This completes the proof.

As a consequence, if d(P (G)) ≤ 10 (whence ϕ(P (G)) ≤ 11), then the 3PM-
property holds. This includes our previous result (Proposition 9).

4. Bricks

Recall that a brick is 3-connected and bicritical. Relative to Theorem 12 and 13,
we can get better results for cubic bricks.

Lemma 14. For a cubic brick G, if d(P (G)) = d, then |E(G)| = 3d.

Proof. Since G is cubic, 2|E(G)| = 3|V (G)|. Since G is a brick, b = 1. By
Lemma 4, d = m− n+ 1− b = m− 2m

3 = m
3 , which implies |E(G)| = 3d.

Theorem 15. For a cubic brick G with d(P (G)) ≤ 24, if ϕ(P (G)) ≤ 11, then
the 3PM-property holds.

Proof. Recalling the proofs of Theorems 12 and 13, we note that when ϕ(P (G))
≤ 11, as long as |E(G)| ≤ 72, all these proofs are valid. Now for a brick G, if
d(P (G)) ≤ 24, then |E(G)| = 3d ≤ 72, as we needed in the proofs.

Theorem 16. For a cubic brick G with d(P (G)) ≤ 18, if ϕ(P (G)) ≤ 12, then
the 3PM-property holds.

Proof. By Lemma 14, |E(G)| = 3d ≤ 54. By Theorem 15, we need only consider
the case ϕ(P (G)) = 12. Then the equations (4) and (5) hold for k = 12. Suppose,
to the contrary, that the 3PM-property does not hold.

By Lemma 8(i), each edge-combination contains from three to six c-elements
of c1, c2, . . . , c12. Moreover, by Lemma 8(iii), the 12 c-elements are divided into
three sets, each of which has sum 1

3 . Note that the only partitions {k1, k2, k3}
of integer 12, where k1 + k2 + k3 = 12, 3 ≤ ki ≤ 6, are {3, 3, 6}, {3, 4, 5}, and
{4, 4, 4}. So we consider three cases as follows.

Case 1. There is a {3, 3, 6}-partition of Sc. By Lemma 8(i), there are six
c-elements being 1

9 and no other ci is greater than 1
9 . So we may assume that
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c1 = c2 = · · · = c6 =
1
9 , c7 + c8 + · · ·+ c12 =

1
3 , and

1
9 ≥ c7 ≥ · · · ≥ c12. Similarly

to Case 1 in the proof of Theorem 13, we have the following subcases.

Subcase 1.1. c7 = c8 = 1
9 and c9 + c10 + c11 + c12 = 1

9 . Since each 3-
combination {ci, cj , ck} taken from {c1, c2, . . . , c8} is an edge-combination, we
have E(Sc) ≥

(

8
3

)

> 54 ≥ |E(G)|, contradicting Lemma 7.

Subcase 1.2. c7 = 1
9 and c8 + c9 + c10 + c11 + c12 = 2

9 . Then there are
(

7
3

)

3-combinations {ci, cj , ck} taken from {c1, c2, . . . , c7}, each of which is an edge-
combination. For each {ci, cj} chosen from {c1, c2, . . . , c7}, ci + cj + c8 < 1

3 . By
Lemma 8(ii), {ci, cj , c8} can be extended to an edge-combination. Therefore,
E(Sc) ≥

(

7
3

)

+
(

7
2

)

> 54 ≥ |E(G)|, as required.

Subcase 1.3. ci <
1
9 for 7 ≤ i ≤ 12 and c7 ≥ c8 ≥ · · · ≥ c12. For a pair of given

i, j (1 ≤ i, j ≤ 6), ci+cj+ck < 1
3 for any k with 7 ≤ k ≤ 12, and so {ci, cj , ck} can

be extended to an edge-combination Sk. Note that Sk\{ci, cj} ⊆ {c7, c8, . . . , c12}.
It is impossible that |Sk| = 6, for otherwise there would be a cl ≥

1
9 for 7 ≤ l ≤ 12.

So 4 ≤ |Sk| ≤ 5.

If there is an Sk with |Sk| = 5, then the sum of the three c-elements of
Sk \{ci, cj} is 1

9 and the sum of the remaining three c-elements in {c7, c8, . . . , c12}
is 2

9 , say ck1 + ck2 + ck3 = 2
9 . Since the sum of any two c-elements of ck1 , ck2 , ck3

is more than 1
9 , Sk1 , Sk2 , and Sk3 are different. If each Sk has exactly four c-

elements, say Sk = {ci, cj , ck, cr(k)}, then there are at least three different Sk’s.

Now we evaluate the number of edge-combinations. There are
(

6
3

)

3-combin-
ations taken from {c1, c2, . . . , c6}, each of which is an edge-combination. More-
over, each 2-combination {ci, cj} taken from {c1, c2, . . . , c6} corresponds to at
least three edge-combinations. Therefore, we have E(Sc) ≥

(

6
3

)

+ 3
(

6
2

)

> 54 ≥
|E(G)|, as needed.

Case 2. There is a {4, 4, 4}-partition of Sc. Then every edge-combination has
cardinality 4. In this context, there are

(

12
3

)

3-combinations {ci, cj , ck}, at most
(

4
3

)

of which correspond to a common edge-combination. Therefore, E(Sc) ≥
(

12
3

)

/4 > 54 ≥ |E(G)|, as needed.

Case 3. Every 3-partition of Sc is a {3, 4, 5}-partition. Then for any vertex v
of G, the three edges of G incident with v lie in exactly three, four, and five perfect
matchings of M1,M2, . . . ,M12, respectively. Let N1, N2, N3 be the sets of edges
which lie in exactly three, four, and five perfect matchings of M1,M2, . . . ,M12,
respectively. Then we see that N1, N2, and N3 are three pairwise disjoint perfect
matchings of G, a contradiction to the assumption that 3PM-property fails. This
completes the proof.
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