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Abstract

The Fan-Raspaud Conjecture states that every bridgeless cubic graph has
three 1-factors with empty intersection. A weaker one than this conjecture is
that every bridgeless cubic graph has two 1-factors and one join with empty
intersection. Both of these two conjectures can be related to conjectures on
Fano-flows. In this paper, we show that these two conjectures are equivalent
to some statements on cores and weak cores of a bridgeless cubic graph.
In particular, we prove that the Fan-Raspaud Conjecture is equivalent to a
conjecture proposed in [E. Steffen, 1-factor and cycle covers of cubic graphs,
J. Graph Theory 78 (2015) 195–206]. Furthermore, we disprove a conjecture
proposed in [G. Mazzuoccolo, New conjectures on perfect matchings in cubic

graphs, Electron. Notes Discrete Math. 40 (2013) 235–238] and we propose
a new version of it under a stronger connectivity assumption. The weak
oddness of a cubic graph G is the minimum number of odd components
(i.e., with an odd number of vertices) in the complement of a join of G. We
obtain an upper bound of weak oddness in terms of weak cores, and thus an
upper bound of oddness in terms of cores as a by-product.
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1. Introduction

We study 1-factors (i.e., perfect matchings) in cubic graphs. If G is a graph, then
V (G) and E(G) denote its vertex set and edge set, respectively. In 1994, the
following statement was conjectured to be true by Fan and Raspaud.

Conjecture 1 [1]. Every bridgeless cubic graph has three 1-factors M1,M2,M3

such that M1 ∩M2 ∩M3 = ∅.

We remark that Conjecture 1 is implied by the celebrated Berge-Fulkerson
Conjecture [2], which states that every bridgeless cubic graph has six 1-factors
such that each edge is contained in precisely two of them.

(0,1,1)

(1,0,1)(1,0,0)

(0,0,1)(1,1,1) (1,1,0)

(0,1,0)

Figure 1. Fano plane F7.

The study of Conjecture 1 leads to a deep analysis of Fano-flows on graphs.
Consider the Fano plane F7 with the points labeled with the seven non-zero
elements of Z3

2
as drawn in Figure 1. Clearly, if a cubic graph has a nowhere-zero

Z
3
2
-flow, then for every vertex the flow values on its incident edges are pairwise

different and they lie on a line of the Fano plane. Thus, every bridgeless cubic
graph has a nowhere-zero Fano-flow by Jaeger’s 8-flow Theorem [3]. However, it
is possible that not all combinations of three elements of Z3

2
appear at a vertex of

G. For k ≤ 7, a k-line Fano-flow is a Fano-flow of G, where at most k lines of F7

appear as flow values at the vertices of G. Clearly, a 3-edge-colorable cubic graph
has a 1-line Fano-flow. Máčajová and Škoviera [8] proved that each Fano-flow of
a bridgeless cubic class 2 graph needs all seven points and at least four lines of
the Fano plane. Furthermore, they proved that every bridgeless cubic graph has
a 6-line Fano-flow, and conjectured that 4 lines are sufficient.

Conjecture 2 [8]. Every bridgeless cubic graph has a 4-line Fano-flow.

A natural relaxation of Conjecture 2 is the following conjecture.

Conjecture 3 [8]. Every bridgeless cubic graph has a 5-line Fano-flow.
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Let H be a graph. If either X ⊆ V (H) or X ⊆ E(H), then H[X] denotes
the subgraph of H induced by X. A join of H is a set J of edges such that the
degree of every vertex have the same parity in H and H[J ]. If no confusion can
arise, we use J instead of H[J ].

Conjectures 2 and 3 have surprisingly counterparts in terms of 1-factors.
Máčajová and Škoviera [8] proved that Conjecture 2 is equivalent to Conjecture
1. Analogously, one can easily obtain the equivalence between Conjecture 3 and
Conjecture 4, and the one between 6-line Fano-flow theorem and Proposition 5.

Conjecture 4. Every bridgeless cubic graph has two 1-factors M1,M2 and a join

J such that M1 ∩M2 ∩ J = ∅.

Proposition 5. Every bridgeless cubic graph has a 1-factor M and two joins J1
and J2 such that M ∩ J1 ∩ J2 = ∅.

Let G be a bridgeless cubic graph. The oddness ω(G) of G is the minimum
number of odd circuits of a 2-factor of G. We define the weak oddness ω′(G) of
G as the minimum number of odd components, with respect to its order, of the
complement of a join. Clearly, ω′(G) ≤ ω(G). There was a long standing dis-
cussion on the question whether ω(G) = ω′(G) for all bridgeless cubic graphs G,
but, recently, Lukot’ka and Mazák [7] provide a negative answer by constructing
an example of a cubic graph having ω′(G) = 12 and ω(G) = 14.

Máčajová and Škoviera [9] proved Conjecture 1 for cubic graphs with oddness
at most 2. This implies the truth of Conjecture 4 for these graphs as well. A
proof of this particular result is given in [5] by Kaiser and Raspaud. However, it
is easy to see that ω′(G) = 2 if and only if ω(G) = 2, for each bridgeless cubic
graph G. Hence, the result of [9] is even true for graphs with weak oddness at
most 2.

Let J be a join of a cubic graph G. Thus every vertex has degree either 1 or
3 in J . A J-vertex is a vertex of degree 3 in J . Let n(J) denote the number of
J-vertices.

Let G be a cubic graph and S be a set of three joins J1, J2 and J3 of G. For
each i ∈ {0, . . . , 3}, let Ei(S) be the set of edges that are contained in precisely i

elements of S. When no confusion can arise, we write Ei instead of Ei(S). The
weak core of G with respect to S (or to J1, J2 and J3) is a subgraph Gc induced
by the union of sets E0, E2 and E3, that is, Gc = G[E0 ∪ E2 ∪ E3]. The weak
core Gc is further called an l-weak k-core, where precisely l elements of S are
not 1-factors and k = |E0|+

3

2

∑
3

i=1
n(Ji). The parameter k is the generalization

of the analogous definition for cores; our particular choice will be more clear in
the proof of Theorem 15. We define µ′

3
(G) = min{k : G has a weak k-core}. A

0-weak core is called a core as well. Define µ3(G) = min{k : G has a k-core}.
Clearly, µ′

3
(G) ≤ µ3(G). It is easy to see that a bridgeless cubic graph G is

3-edge-colorable if and only if µ′

3
(G) = 0.
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The core of a cubic graph was introduced by Steffen [11] working on perfect
matching covers, and the parameter µ3(G) was taken as a measurement on the
edge-uncolorability of class 2 cubic graphs. Weak cores are a natural generaliza-
tion of the definition of cores for covers with three joins. In this paper, we study
both cores and weak cores of cubic graphs.

A join J of G is simple if the subgraph induced by all the J-vertices contains
no circuit. Clearly, every 1-factor of G is a simple join, and every join of G

contains a simple join as a subset. A weak core Gc of G is simple if all the joins
with respect to Gc are simple. A weak core is cyclic if it is a cycle.

Conjecture 1 can be easily formulated as a conjecture on cores in bridgeless
cubic graphs.

Conjecture 6 [11]. Every bridgeless cubic graph has a cyclic core.

Steffen proposed the following seemingly weaker conjecture.

Conjecture 7 [11]. Every bridgeless cubic graph has a bipartite core.

It is clear that Conjecture 6 implies Conjecture 7 because all circuits in a
cyclic core are of even length. Here, we show that the converse implication is also
true, that is, Conjectures 6 and 7 are equivalent. Hence, our result furnishes a
new equivalent formulation for Fan-Raspaud Conjecture. We also show that the
condition on the cores can be further relaxed. We even show that the following
conjectures are equivalent to Fan-Raspaud Conjecture.

Conjecture 8. Every bridgeless cubic graph has a triangle-free core.

Conjecture 9. Every bridgeless cubic graph has three 1-factors such that the

complement of their union is an acyclic graph.

Analogously, we formulate Conjecture 4 as a conjecture on 1-weak core.

Conjecture 10. Every bridgeless cubic graph has a cyclic 1-weak core.

We prove the equivalence between this conjecture and the statement that
every bridgeless cubic graph has a triangle-free simple 1-weak core.

In general, Fano-flows can be related to cyclic weak cores. Instead of the
k-line Fano-flow problem, we ask the following equivalent question.

Problem 11. What is the minimum k such that every bridgeless cubic graph
has a cyclic k-weak core?

As above, it was proved that k < 2 and conjectured that either k = 0 or
k = 1.
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We summarize all announced implications in Figure 2.
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Figure 2. Conjectures related to Fan-Raspaud Conjecture.

Section 2 studies properties of weak cores, and it shows that the weak oddness
of a bridgeless cubic graph is bounded in terms of its weak cores.

Finally, in the last section, we disprove the following stronger version of
Conjecture 9.

Conjecture 12 [10]. Every bridgeless cubic graph has two 1-factors such that

the complement of their union is an acyclic graph.

Even if we prove that previous conjecture is false in that general form, we
believe that it could be still true under stronger connectivity assumptions. In
particular, we recall that it was verified true for all snarks, hence cyclically 4-
edge-connected cubic graphs, of order at most 34 (see [10]).
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More precisely, we wonder if every 3-connected (cyclically 4-edge-connected)
cubic graph has two 1-factors such that the complement of their union is an
acyclic graph.

2. The Weak Core of a Cubic Graph

Let J1, J2 and J3 be three joins of a cubic graph G. We say that a vertex v of G
has type (x, y, z) if the three edges incident with v are covered x, y and z times by
{J1, J2, J3}, respectively. We denote by a, b, c, d, e, f, g the number of vertices of
type (3, 3, 3), (3, 2, 2), (3, 1, 1), (2, 2, 1), (1, 1, 1), (2, 1, 0), (3, 0, 0), respectively (see
also Figure 3). Clearly, every vertex has precisely one type. Note that vertices
of type (3, 3, 3), (3, 2, 2), (3, 1, 1) and (2, 2, 1) are Ji-vertices for some i.

1 1

e

0 1

f

0 0

g

1 2 3

3 3

a

2 2

b

3 3

1 1

c

2 2

d

3 1

Figure 3. Vertex types.

Proposition 13. Let G be a cubic graph, and J1, J2 and let J3 be three joins of

G. Then

|E0|+
3∑

i=1

n(Ji) = |E2|+ 2|E3|.

Proof. By type definitions, we have
∑

i n(Ji) = 3a + 2b + c + d, |E0| =
f
2
+ g,

|E2| = b+ d+ f
2
and |E3| =

3a
2
+ b

2
+ c

2
+ g

2
. Hence,

∑
i n(Ji) + |E0| = 3a+ 2b+

c+ d+ f
2
+ g = |E2|+ 2|E3| holds.

Proposition 14. If Gc is a weak core of a cubic graph G, then G[E0 ∪ E2] is
either an empty graph or a cycle.

Proof. By type definitions, it is easy to see that every vertex is incident with
either none or precisely two edges of E0 ∪E2. Therefore, G[E0 ∪E2] is either an
empty graph or a cycle.

Let H be a graph. We denote by |H|odd the number of odd components of
H, that is components with an odd number of vertices. If J is a join of H, then
J denotes the complement of J .
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Theorem 15. Let G be a bridgeless cubic graph and let Gc be a weak k-core with

respect to three joins J1, J2 and J3. Then
∑

3

i=1
|Ji|odd ≤ 2k.

Proof. Each component of the complement of Ji is either an isolated vertex or
a circuit. Any odd circuit of Ji contains either one edge from E0 or a Jk-vertex
with k 6= i. We call an odd circuit of Ji bad if it has no Jk-vertex for k 6= i.
In what follows, we distinguish elements of E0 according to their behavior with
respect to bad circuits. We define

Xi= {e : e is the unique edge in C∩E0 and C is a bad circuit of Ji}, for i = 1, 2, 3;

Yi = {e : e ∈ E0 \Xi and e ∈ C ∩E0 and C is a bad circuit of Ji}, for i = 1, 2, 3.

Set x = |X1|+ |X2|+ |X3| and y = |Y1|+ |Y2|+ |Y3|.
Since Xi ∩ Yi = ∅, it follows that

(1) x+ y ≤ 3|E0|.

Moreover, if e ∈ Xi, then e 6∈ Xj , and e 6∈ Xk for j, k 6= i, that is

(2) x ≤ |E0|.

Combining equations (1) and (2) implies

(3) x+
y

2
≤ 2|E0|.

Now, we are in position to prove our assertion. Since in an odd circuit of
Ji there is either a Jk-vertex (k 6= i) or an edge of Xi or two edges of Yi, the
following relation holds:

|Ji|odd ≤ |Xi|+
|Yi|

2
+

3∑

i=1

n(Ji).

Therefore, by summing up for all three joins we deduce

3∑

i=1

|Ji|odd ≤ x+
y

2
+ 3

3∑

i=1

n(Ji) ≤ 2|E0|+ 3
3∑

i=1

n(Ji) = 2k,

where the last inequality directly follows from (3).

Corollary 16. If G is a bridgeless cubic graph, then ω′(G) ≤ 2

3
µ′

3
(G).

Proof. Let Gc be a weak µ′

3
(G)-core of G with respect to three joins J1, J2

and J3. By Theorem 15, we have |J1|odd + |J2|odd + |J3|odd ≤ 2µ′

3
(G). By the

minimality of the weak oddness ω′(G) it follows that ω′(G) ≤ 2

3
µ′

3
(G).
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The following results were already obtained in [4], but now it turns out that
they are just a particular case of our previous theorem. This shows that the
definition of weak k-core is the right generation of k-core.

Theorem 17 [4]. Let G be a bridgeless cubic graph and let Gc be a k-core with

respect to three 1-factors M1,M2 and M3. Then
∑

3

i=1
|Mi|odd ≤ 2k.

Corollary 18 [4]. If G is a bridgeless cubic graph, then ω(G) ≤ 2

3
µ3(G).

Proof. Let Gc be a µ3(G)-core of G with respect to three 1-factors M1,M2 and
M3. By Theorem 17, we have |M1|odd + |M2|odd + |M3|odd ≤ 2µ3(G). By the
minimality of ω(G), it follows that ω(G) ≤ 2

3
µ3(G).

3. Equivalent Statements

Let G1 and G2 be two bridgeless graphs, e1 and e2 be two edges such that
e1 = u1v1 ∈ E(G1) and e2 = u2v2 ∈ E(G2). The 2-cut connection on {e1, e2} is
a graph operation that consists of deleting edges e1 and e2 and adding two new
edges u1u2 and v1v2. Clearly, the graph obtained from G1 and G2 by applying
2-cut connection is also bridgeless.

Theorem 19. The following four statements are equivalent.

(1) (Conjecture 3) Every bridgeless cubic graph has a 5-line Fano-flow.

(2) (Conjecture 4) Every bridgeless cubic graph has a join J and two 1-factors
M1 and M2 such that J ∩M1 ∩M2 = ∅.

(3) Every bridgeless cubic graph has a cyclic 1-weak core.

(4) Every bridgeless cubic graph has a triangle-free simple 1-weak core.

Proof. The equivalence of statements (1) and (2) is proved in [6] (Theorem 3.1).
(2) → (3): By Proposition 14, the 1-weak core with respect to M1,M2 and

J is cyclic. Therefore, statement (2) implies statement (3).
(3) → (4): Suppose to the contrary that there is a bridgeless cubic graph G

that has no triangle-free simple 1-weak core. Let Gc be a cyclic 1-weak core of G
with respect to two 1-factors M1,M2 and a join J such that E(Gc) is minimum.
We claim that Gc is simple. Otherwise, J is not simple, that is, G contains a
circuit C such that each vertex of C is a J-vertex. Recall that Gc is cyclic, by
type definitions according to M1,M2 and J , every vertex of C has type (2, 2, 1).
Let J1 be the new join obtained from join J by removing all the edges of C. Thus
J1 is also a join of G. The 1-weak core with respect to M1,M2 and J1 is cyclic
and has fewer edges than Gc, a contradiction. This completes the proof of the
claim.

By our supposition and the previous claim, Gc has a triangle [xyz]. It follows
that two of vertices x, y and z have type (2, 1, 0) and the last one has type (2, 2, 1),
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which is the only possible case. Without loss of generality we assume that z is
of type (2, 2, 1). Set J2 = J ∪ {xy} \ {xz, yz}. Clearly, J2 is a join of G. Now the
1-weak core with respect to M1,M2 and J2 is cyclic and has fewer edges than Gc,
a contradiction. Therefore, statement (3) implies statement (4).

(4) → (2): Let G be a bridgeless cubic graph with edge set {e1, . . . , em}. Take
m copies T1, . . . , Tm of the complete graph K4. For each i ∈ {1, . . . ,m}, apply the
2-cut connection on ei and an edge of Ti, and let e′i and e′′i be the two added new
edges. The resulting graph G′ is bridgeless and cubic. By (3), G′ has a triangle-
free simple 1-weak core H. Let H be with respect to two 1-factors M1,M2 and
a simple join J . For every join F of G′, since F contains either both of e′i and
e′′i or none of them for each i ∈ {1, . . . ,m}, let con(F ) = {e : e = ei ∈ E(G), and
e′i, e

′′

i ∈ F}. Clearly, con(F ) is a join of G and in particular, con(F ) is a 1-factor
of G if F is a 1-factor of G′. We claim that con(M1) ∩ con(M2) ∩ con(J) = ∅
and hence, statement (1) holds. Suppose to the contrary that G has an edge
e1 contained in all of con(M1), con(M2) and con(J). It follows that e′

1
, e′′

1
∈

M1 ∩M2 ∩ J , and hence one can easily deduce that in copy T1, the 1-weak core
H contains either a triangle or a circuit of length 4 whose vertices are J-vertices,
a contradiction. Therefore, statement (3) implies statement (1).

Theorem 20. The following five statements are equivalent.

(1) (Conjecture 2) Every bridgeless cubic graph has a 4-line Fano-flow.

(2) (Conjecture 1) Every bridgeless cubic graph has three 1-factors M1,M2,M3

such that M1 ∩M2 ∩M3 = ∅.

(3) (Conjecture 7) Every bridgeless cubic graph has a bipartite core.

(4) (Conjecture 8) Every bridgeless cubic graph has a triangle-free core.

(5) (Conjecture 9) Every bridgeless cubic graph has three 1-factors such that the

complement of their union is an acyclic graph.

Proof. The equivalence of statements (1) and (2) is proved in [6] (Theorem 3.1).
If statement (2) holds, then by Proposition 14, the core Gc of a bridgeless

cubic graph G with respect to M1,M2,M3 is cyclic. More precisely, each circuit
in Gc contains edges from E0 and E2 alternate in cyclic order. Hence, the core
Gc is bipartite and triangle-free, and G[E0] is an acyclic graph. Hence statement
(2) implies all of the statements (3), (4) and (5).

Let G be a bridgeless cubic graph with edge set {e1, . . . , em}. Take m copies
T1, . . . , Tm of the complete graph K4. For each i ∈ {1, . . . ,m}, apply 2-cut
connection on ei and an edge of Ti, and let e′i and e′′i be the two added new edges.
Let G′ be the resulting graph, which is bridgeless and cubic. Let H be a core of
G′ with respect to three 1-factors M1,M2,M3. For every 1-factor F of G′, since F
contains either both of e′i and e′′i or none of them for each i ∈ {1, . . . ,m}, we can
let con(F ) = {e : e = ei ∈ E(G), and e′i, e

′′

i ∈ F}. Clearly, con(F ) is a 1-factor
of G. We claim that if H is either bipartite or triangle-free or if the complement
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of the union of M1,M2,M3 is acyclic, then con(M1), con(M2) and con(M3) have
empty intersection. This claim completes the proof. Suppose to the contrary
that G has an edge e1 such that e1 ∈ con(M1) ∩ con(M2) ∩ con(M3). It follows
that e′

1
, e′′

1
∈ M1 ∩ M2 ∩ M3. Hence in copy T1, core H contains triangles and

G[E0] contains a circuit of length 4, a contradiction with the supposition of our
claim.

4. Counterexample to Conjecture 12

If the Fan-Raspaud Conjecture is true, then every bridgeless cubic graph has
two 1-factors, say M1 and M2, with no odd edge-cut in their intersection; in
particular, the complement of M1 ∪ M2 is a bipartite graph which is the union
of paths and even circuits. One could asks if even circuits could be forbidden in
such bipartite graph. It is verified to be true for all snarks of order at most 34
and proposed as a conjecture in [10].

Here, we disprove Conjecture 12 in its present formulation by using the same
technique already used in the proof of Theorem 19.

Let P be the Petersen graph and let {e1, . . . , e15} be its edge-set. Take 15
copies T1, . . . , T15 of the complete graph K4. For each i ∈ {1, . . . , 15}, apply a
2-cut connection on ei and an arbitrary edge of Ti. Denote by G the obtained
graph. Let M1 and M2 be two 1-factors of G, and let con(M1) and con(M2) be
the two corresponding 1-factors of P , respectively. Since every pair of 1-factors
of P has exactly an edge in common, without loss of generality we can assume
{e1} = con(M1) ∩ con(M2). Hence, T1 has an edge covered twice and a 4-circuit
uncovered, that is the complement of M1 ∪M2 is not acyclic.

We would like to stress that the graph G has a lot of 2-edge-cuts, so we
wonder if an analogous version of Conjecture 12 could hold true for 3-connected
or cyclically 4-edge-connected cubic graphs.

Acknowledgement

The results of the present paper have been partially obtained while the third au-
thor was visiting Paderborn University. The first author is supported by Deutsche
Forschungsgemeinschaft (DFG) grant STE 792/2-1. Research of the third author
is performed within the project PRIN 2012 “Strutture Geometriche, Combinato-
ria e loro Applicazioni” of the Italian Ministry MIUR.

References

[1] G.H. Fan and A. Raspaud, Fulkerson’s conjecture and circuit covers , J. Combin.
Theory Ser. B 61 (1994) 133–138.
doi:10.1006/jctb.1994.1039

http://dx.doi.org/10.1006/jctb.1994.1039


Cores, Joins and the Fano-Flow Conjectures 175

[2] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Program. 1
(1971) 168–194.
doi:10.1007/BF01584085

[3] F. Jaeger, Flows and generalized coloring theorems in graphs , J. Combin. Theory
Ser. B 26 (1979) 205–216.
doi:10.1016/0095-8956(79)90057-1

[4] L. Jin and E. Steffen, Petersen cores and the oddness of cubic graphs , J. Graph
Theory 84 (2017) 109–120.
doi:10.1002/jgt.22014

[5] T. Kaiser and A. Raspaud, Perfect matchings with restricted intersection in cubic

graphs , European J. Combin. 31 (2010) 1307–1315.
doi:10.1016/j.ejc.2009.11.007
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