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Abstract

In this paper we shall show applications of the Fibonacci numbers in edge-
coloured trees. In particular we determine the successive extremal graphs in
the class of trees with respect to the number of (A, 2B)-edge colourings. We
show connections between these numbers and Fibonacci numbers as well as
the telephone numbers.
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1. Introduction and reliminary Results

For concepts not defined here see [3]. Let G be an undirected, connected and
simple graph with the vertex set V (G) and the edge set E(G). The order (number
of vertices) and the size (number of edges) of G will be denoted by n and m,
respectively. By G(m) we mean a graph of size m. Consequently, by P (m),
C(m), T (m) and S(m) we denote a path, a cycle, a tree and a star of size m,
respectively. In a tree a vertex of degree at least 3 is named a branch vertex,
a vertex of degree 1 is a leaf. A tripod is a tree with exactly three leaves. In
other words, every tripod has the unique branch vertex, i.e., the vertex being the
initial vertex of three elementary paths. Let m ≥ 3, p ≥ 1, t ≥ 1 be integers. By
T (m, p, t) we mean a tripod of size m and paths of lengths p, t and m−p− t with
the branch vertex as the initial vertex of these paths. These paths we denote
shortly by p-path, t-path and (m− p− t)-path, respectively.

http://dx.doi.org/10.7151/dmgt.1997


122 U. Bednarz and I. W loch

Let consider a star with the maximum degree ∆, ∆ ≥ 3. Let r ≥ 1 be an
integer. By Sr(m,∆) we denote a tree of size m,m ≥ 3, obtained from this star
by inserting new vertices of degree 2 into some edges of the star such that in
the resulting tree Sr(m,∆) a longest r-path, starting from the branch vertex,
has length r, r ≥ 1. In particular, S1(m,∆) is isomorphic to the star S(m) and
Sr(m, 3) is isomorphic to the tripod T (m, r, t), for some t ≥ 1.

The nth Fibonacci number is defined by the second order linear recurrence
relation Fn = Fn−1 +Fn−2, for n ≥ 2, with F0 = F1 = 1. The nth Lucas number
is defined by the same linear recurrence relation Ln = Ln−1 + Ln−2 for n ≥ 2,
with different initial conditions L0 = 2 and L1 = 1. The Fibonacci numbers have
many interesting graph interpretations, see for example trailblazing results given
by Prodinger and Tichy in [5] and later results classfied in [4].

A new graph interpretation of the Fibonacci numbers was introduced recently
in [1] and it is related to a special edge colouring of a graph. We recall this inter-
pretation for the Fibonacci numbers; for the global case and more details see [1].

Let C = {A,B} be the set of two colours. A graph G is (A, 2B)-edge coloured

if for every maximal B-monochromatic subgraph H of G there is a partition of
H into edge disjoint paths of the length 2. Clearly, an (A, 2B)-edge colouring
always exists, since we have no restriction on the colour A.

Let L be a family of all distinct (A, 2B)-edge coloured graphs obtained by
(A, 2B)-colourings of a graph G. Then L =

{

G(1), G(2), . . . , G(r)
}

, r ≥ 1, where

G(p), 1 ≤ p ≤ r, denotes a graph obtained by an (A, 2B)-edge colouring of a graph
G. For an (A, 2B)-edge coloured graph G(p), 1 ≤ p ≤ r, by θ

(

G(p)
)

we denote

the number of all partitions of B-monochromatic subgraphs of G(p) into edge
disjoint paths of length 2. If G(p) is A-monochromatic then we put θG(p) = 1.
The number of all (A, 2B)-edge colourings is defined as the graph parameter as
follows

σ(A,2B)(G) =
r

∑

p=1

θ
(

G(p)
)

.

The parameter σ(A,2B)(G) was determined for paths and cycles. For trees the
lower bound and the upper bound of it were given. We recall these results. For
paths and cycles the following result was proved.

Theorem 1 [1]. Let m be an integer. Then

(1) σ(A,2B)(Pm) = Fm, for m ≥ 1,

(2) σ(A,2B)(Cm) = Lm, for m ≥ 3.

The following theorem was proved for trees.

Theorem 2 [1]. Let T (m) be a tree of size m,m ≥ 1. Then

Fm ≤ σ(A,2B)(T (m)) ≤ 1 +
∑

j≥1

(

m

2j

) j−1
∏

p=0

[2j − (2p + 1)].
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Moreover

T (m) = P (m), if σ(A,2B)(P (m)) = Fm

and

T (m) = S(m), if σ(A,2B)(S(m)) = 1 +
∑

j≥1

(

m

2j

) j−1
∏

p=0

[2j − (2p + 1)].

From the above theorem it follows that the path P (m) is the extremal graph
achieving the minimum value of the parameter σ(A,2B)(T (m)) and the star S(m)
is the extremal graph achieving the maximum value of this parameter in the class
of trees of size m.

In this paper we will determine successive extremal graphs in the class of
trees with respect to the parameter σ(A,2B)(T (m)). We consider the number of
(A, 2B)-edge colouring in trees T (m) with the restriction that T (m) ≇ P (m) and
next T (m) ≇ T (m, 2, 2) and also T (m) ≇ S(m).

For future investigations we use the following notation. Let e ∈ E(G) be
a fixed edge. If e is coloured by A then we write c(e) = A. If e is coloured
by B then there exists an edge coloured by B, say e′, adjacent to e. Then, for
indication of this fact, we will write c(e) = 2B. Moreover, the path e − e′ will
be named a 2B-path. Let σA(e)(G) (respectively σ2B(e)(G)) denote the number
of all (A, 2B)-edge colourings with c(e) = A (respectively c(e) = 2B). Then the
following formula gives the basic rule for determining the parameter σ(A,2B)(G).

Let e ∈ E(G) be a fixed edge. Then

σ(A,2B)(G) = σA(e)(G) + σ2B(e)(G).(1)

The following lemma gives the rule of replacing a subgraph of a given graph
G by the extremal graph with respect to the number of (A, 2B)-edge colourings
and extends the result given in [1].

Lemma 3 [1]. Let G = H ∪ T (l) ∪ {e} be a connected graph, where H is a

connected graph, T (l) is a tree of size l, l ≥ 1, and H and T (l) are vertex disjoint.

Assume that e = uv, where u ∈ V (H) and v ∈ V (T (l)). Then

(2) σ(A,2B)(H ∪ P (l) ∪ {e}) ≤ σ(A,2B)(G) ≤ σ(A,2B)(H ∪ S(l) ∪ {e}),

where the vertex v is identified with the center of the star S(l). Moreover, the

equality holds if T (l) ∼= P (l) or T (l) ∼= S(l).

Proof. The lower bound of the estimation (2) in the theorem was proved in [1].
Now we prove the upper bound. Let G = H ∪T (l)∪{e} be as in the statement of
the lemma. Let e = uv be the edge of the graph G such that the vertex u ∈ V (H)
and the vertex v ∈ V (T (l)). Consider two possibilities.
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1. c(e) = A. Hence σA(e)(G) = σ(A,2B)(H)σ(A,2B)(T (l)).

2. c(e) = 2B. Then, by the definition of an (A, 2B)-edge colouring, there exists
an edge e′ ∈ E(G) adjacent to e such that c(e′) = 2B and e′−e is the 2B-path of
length 2 in the B-monochromatic subgraph of G. It is clear that either e′ ∈ E(H)
or e′ ∈ E(T (l)). From these considerations we obtain

σ2B(e)(G) = σ2B(e)(H ∪ {e})σ(A,2B)(T (l)) + σ(A,2B)(H)σ2B(e)(T (l) ∪ {e}).

Therefore,

σ(A,2B)(G) = σA(e)(G) + σ2B(e)(G) = σ(A,2B)(H)σ(A,2B)(T (l))

+ σ2B(e)(H ∪ {e})σ(A,2B)(T (l)) + σ(A,2B)(H)σ2B(e)(T (l) ∪ {e}).

From Theorem 2 we have that σ(A,2B)(T (l)) ≤ σ(A,2B)(S(l)), so

σ(A,2B)(G) ≤ σ(A,2B)(H)σ(A,2B)(S(l)) + σ2B(e)(H ∪ {e})σ(A,2B)(S(l))

+ σ(A,2B)(H)σ2B(e)(S(l) ∪ {e}) = σ(A,2B)(H ∪ S(l) ∪ {e}),

which ends the proof.

This lemma gives a tool for determining successive extremal graphs with
respect to the parameter σ(A,2B)(T (m)).

Let us consider the class of trees T (m) such that T (m) ≇ P (m). This
means that there exists at least one branch vertex in T (m). Assume that T =
{T (m, p, t); p ≥ 1, t ≥ 1,m ≥ 3} is the family of tripods. We recall some results
for tripods, given in [2], which will be useful in future investigations.

Theorem 4 [2]. Let m ≥ 3, p ≥ 1, t ≥ 1 be integers. Then for an arbitrary

T (m, p, t) ∈ T it holds

(3) σ(A,2B)(T (m, p, t)) = Fp+tFm−t−p + Fm−t−p−1 (Fp−1Ft + FpFt−1) .

From this theorem it immediately follows the next result.

Corollary 5 [2]. Let m ≥ 3, t ≥ 1 be integers. Then

(a) σ(A,2B)(T (m, 1, t)) = Ft+1Fm−t,

(b) σ(A,2B)(T (m, 1, 1)) = 2Fm−1.

Using the above results, the maximum and minimum values of the parameter
σ(A,2B)(T (m, p, t)) were proved.

Theorem 6 [2]. Let m ≥ 4, p ≥ 1, t ≥ 1 be integers. Then

Fm−1 + 2Fm−3 ≤ σ(A,2B)(T (m, p, t)) ≤ 2Fm−1.

Moreover, we have σ(A,2B)(T (m, p, t)) = 2Fm−1 if T (m, p, t) ∼= T (m, 1, 1) and

σ(A,2B)(T (m, p, t)) = Fm−1 + 2Fm−3 if T (m, p, t) ∼= T (m, 2, 2).
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In the following theorem the recurrence formula for counting the parameter
σ(A,2B)(T (m, p, t)) is presented.

Theorem 7 [2]. Let m ≥ 3, p ≥ 1, t ≥ 1 be integers. Then for an arbitrary

T (m, p, t) ∈ T and m− p− t ≥ 3 it holds

(4) σ(A,2B)(T (m, p, t)) = σ(A,2B)(T (m− 1, p, t)) + σ(A,2B)(T (m− 2, p, t)),

with the initial conditions

σ(A,2B)(T (p + t + 1, p, t)) = Fp+1Ft+1

and

σ(A,2B)(T (p + t + 2, p, t)) = Fp+1Ft+1 + Fp+t.

2. Lower Bounds for σ(A,2B)(T (m))

In this section we determine the successive minimum trees with respect to the
parameter σ(A,2B)(T (m)). To do this we use among others the following theorem.

Theorem 8 [2]. Let m ≥ 4, ∆ ≥ 4, r ≥ 1 be integers. Then for an arbitrary

T (m, p, t) ∈ T it holds

(5) σ(A,2B) (Sr(m,∆)) > σ(A,2B) (T (m, p, t)) .

Theorem 9. Let m ≥ 3 be an integer. Let T (m) ≇ P (m) and T (m) ≇ T (m, p, t)
for all p ≥ 1, t ≥ 1. Then

σ(A,2B)(T (m)) ≥ σ(A,2B)(T (m, p, t)) ≥ σ(A,2B)(P (m)).

Proof. The inequality σ(A,2B)(T (m, p, t)) ≥ σ(A,2B)(P (m)) immediately follows
from Theorem 2. Let T (m) ≇ P (m) and T (m) ≇ T (m, p, t) for all p ≥ 1, t ≥ 1.
We consider the following possibilities.

(1) T (m) has a unique branch vertex, say x. Since T (m) is not a tripod, so
degT (m) x ≥ 4. Then ∆(T (m)) = degT (m) x ≥ 4. Therefore, T (m) ∼= Sr(m,∆),
where r ≥ 1. Then by Theorem 8 it holds σ(A,2B) (Sr(m,∆)) > σ(A,2B) (T (m, p, t)),
and the inequality follows.

(2) T (m) has at least two branch vertices. Let u, v be two branch vertices and
let u−v be the path between u, v. Consequently, T (m) = T1(m1)∪T2(m2)∪{e},
where e ∈ E(T (m)) is an edge belonging to the path u−v and m1 +m2 + 1 = m.
Applying Lemma 3 we obtain that

σ(A,2B)(T (m)) ≥ σ(A,2B)(T (m1) ∪ P (m2) ∪ {e}) = σ(A,2B)(T (m1) ∪ P (m2 + 1).

If T (m1) ∪ P (m2 + 1) is isomorphic to Sr(m,∆), for some r ≥ 1, then the result
follows. If T (m1)∪P (m2 + 1) is not isomorphic to Sr(m,∆), then we repeat this
procedure until we obtain Sr(m,∆), and the result follows.
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From the above theorem we deduce that if we want to determine the se-
quence of trees of size m,m ≥ 3, such that the corresponding sequence of pa-
rameters σ(A,2B)(T (m)) is nondecreasing, we have to determine the sequence of
tripods for which the corresponding sequence of parameters σ(A,2B)(T (m, p, t))
is nondecreasing. In [2] the second minimum tree of size m with respect to
σ(A,2B)(T (m)) was described. Consequently, the second smallest value of the
parameter σ(A,2B)(T (m)) was given. We recall this result.

Theorem 10 [2]. Let T (m) ≇ P (m) be a tree of size m,m ≥ 5. Then

(6) σ(A,2B) (T (m)) ≥ Fm−1 + 2Fm−3.

Moreover, σ(A,2B) (T (m)) = Fm−1 + 2Fm−3 if T (m) ∼= T (m, 2, 2).

Let us consider the sequence bm defined by the linear recurrence relation
bm = 1 + bm−2 + bm−3 − bm−5, for m ≥ 5, with the initial conditions b0 = b1 =
b2 = 0, b3 = 1 and b4 = 1. This recurrence equation generates the sequence
0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, . . ., and from [8, 9] we know that bm is the
number of all nonisomorphic tripods T (m, p, t) of size m.

The following table includes all nonisomorphic tripods and their parameters
σ(A,2B)(T (m, p, t)) for m = 3, 4, 5, 6, 7.

m T (m, p, t) σ(A,2B)(T (m, p, t))
3 T (3, 1, 1) 4
4 T (4, 1, 1) 6
5 T (5, 1, 1) 10

T (5, 2, 2) 9
6 T (6, 1, 1) 16

T (6, 2, 2) 14
T (6, 3, 1) 15

7 T (7, 1, 1) 26
T (7, 2, 2) 23
T (7, 3, 1) 25
T (7, 4, 2) 24

Table 1

In the present paper we give the successive smallest values of the parameter
σ(A,2B)(T (m)).

Theorem 11. Let m ≥ 7, p ≥ 1, t ≥ 1 be integers and T (m, p, t) ≇ T (m, 2, 2).
Then

σ(A,2B)(T (m, p, t)) ≥ 2Fm−3 + 7Fm−5.

Moreover, the equality holds for T (m, p, t) ∼= T (m, 4, 2).
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Proof. Let m, p, t be as in the statement of the theorem. If p = t = 1, then by
Theorem 6 it immediately follows that

σ(A,2B)(T (m, 1, 1)) ≥ σ(A,2B)(T (m, 4, 2)).

Let p = 2 and t = 1. Then σ(A,2B)(T (m, 2, 1)) = 3Fm−2 by Corollary 5. We
shall show that 3Fm−2 ≥ 2Fm−3 + 7Fm−5. Using the well-known identities for
Fibonacci numbers we have

3Fm−2 − 2Fm−3 − 7Fm−5 = 3Fm−3 + 3Fm−4 − 2Fm−3 − 7Fm−5

= Fm−3 + 3Fm−4 − 7Fm−5 = Fm−4 + Fm−5 + 3Fm−5 + 3Fm−6 − 7Fm−5

= Fm−5 + Fm−6 + 3Fm−6 − 3Fm−5 = 4Fm−6 − 2Fm−5

= 4Fm−6 − 2Fm−6 − 2Fm−7 = 2Fm−6 − 2Fm−7 > 0.

Since p 6= 2 and t 6= 2 simultaneously, we assume that p ≥ 2, t ≥ 3. If m = 7
then the result follows by Table 1. Assume that m ≥ 8. Let us consider a tri-
pod T (m, p, t) and suppose that σ(A,2B)(T (m, p, t)) ≥ σ(A,2B)(T (n, 4, 2)) for all
n < m. Since m ≥ 8, we can assume, without lost of the generality, that m−p−t ≥
3. By Theorem 7 and by induction hypothesis we have

σ(A,2B)(T (m, p, t)) = σ(A,2B)(T (m− 1, p, t)) + σ(A,2B)(T (m− 2, p, t))

≥ σ(A,2B)(T (m− 1, 4, 2)) + σ(A,2B)(T (m− 2, 4, 2)) = σ(A,2B)(T (m, 4, 2)),

and the result follows.

From the above theorem and by Theorem 9 we receive the third smallest
value of the parameter σ(A,2B)(T (m)) in the class of trees.

Corollary 12. Let m ≥ 7 be an integer and T (m) ≇ P (m), and T (m) ≇

T (m, 2, 2). Then

σ(A,2B)(T (m)) ≥ 2Fm−3 + 7Fm−5.

Moreover, the equality holds for T (m) ∼= T (m, 4, 2).

Using the same method as in Theorem 11 we can give successive values of
the parameter σ(A,2B)(T (m)).

Theorem 13. Let T (m) ≇ P (m), T (m) ≇ T (m, 2, 2) and T (m) ≇ T (m, 4, 2) for

m = 12, 13. Then

σ(A,2B)(T (m)) ≥ 12Fm−6 + 3Fm−3.

Moreover, the equality holds for T (m) ∼= T (m, 5, 2).
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Theorem 14. Let T (m) ≇ P (m), T (m) ≇ T (m, 2, 2), T (m) ≇ T (m, 4, 2) and

T (m) ≇ T (m, 5, 2) for m = 12, 13. Then

σ(A,2B)(T (m)) ≥ 5Fm−4 + Fm−2.

Moreover, the equality holds for T (m) ∼= T (m, 3, 2).

As it was proved in Theorem 6, the tripod T (m, 1, 1) is extremal in the class
T with respect to the parameter σ(A,2B)(T (m, p, t)). The next theorem gives the
second largest value of the parameter σ(A,2B)(T (m)) if T (m) ∈ T .

Theorem 15. Let T (m) ≇ S(m) and T (m) ≇ T (m, 1, 1) for m ≥ 7. Then

σ(A,2B)(T (m)) ≥ 5Fm−3.

Moreover, the equality holds for T (m) ∼= T (m, 3, 1).

From the above considerations we have the following observation. Let αi(m)
be the ith minimum tree with respect to the parameter σ(A,2B)(T (m)) of size
m. Then α1(m) ∼= P (m), α2(m) ∼= T (m, 2, 2), α3(m) ∼= T (m, 4, 2), αk(m) ∼=
T (m, 5, 2), αk+1(m) ∼= T (m, 3, 2), αi(m) ∈ T for i = 4, . . . , bm−1, αbm(m) ∼=
T (m, 3, 1), and αbm+1

(m) ∼= T (m, 1, 1).
For i = 4, . . . , bm−1 and for i ≥ bm+2, the problem of finding trees αi(m) is

open. Consequently, the initial words of the nondecreasing sequence of the param-
eter σ(A,2B)(T (m)) have the form Fm, Fm−1+2Fm−3, 2Fm−3+7Fm−5, . . . , 12Fm−6+
3Fm−3, 5Fm−4 + Fm−2, . . . , 5Fm−3, 2Fm−1, . . ..

3. Telephone Numbers in Upper Bounds of σ(A,2B)(T (m))

In this section we study the upper bound of the parameter σ(A,2B)(T (m)). From
Theorem 2 proved in [1] we have that the maximum value of the parameter
σ(A,2B)(T (m)) is realized in the star S(m) and

σ(A,2B)(S(m)) = 1 +
∑

j≥1

(

m

2j

) j−1
∏

p=0

[2j − (2p + 1)].

In this section we shall show that the bound obtained in [1] is realized by the
telephone numbers.

The telephone numbers (or involution numbers) are integers which satisfy
the recurrence relation t(n) = t(n − 1) + (n − 1)t(n − 2), for n ≥ 2, starting
from t(0) = t(1) = 1. These numbers were studied firstly by Rothe in 1800, who
introduced a recurrence equation for them. The telephone numbers have many
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combinatorial interpretations. One of them counts the numbers of connections
patterns in a telephone system with n subscribes, see [6]. For this reason the
numbers t(n) are named as the telephone numbers.

These numbers have also a graph interpretation known as the Hosoya index
of the n-vertex complete graph Kn. We recall that the Hosoya index of the graph
G is the number of all matchings of a graph G and it is usually denoted by Z(G).
Then Z(Kn) = t(n) for n ≥ 1, see [7].

We show that the telephone numbers have a graph interpretation related to
the number of all (A, 2B)-edge colourings of the star.

Theorem 16. Let m ≥ 1 be an integer. Then

σ(A,2B)(S(m)) = t(m).

Proof. We use the induction on m. If m = 1, 2 then S(m) is isomorphic to P (m)
and it is obvious that σ(A,2B)(P (1)) = 1 = t(1) and σ(A,2B)(P (2)) = 2 = t(2).

Let m ≥ 3 and suppose that for n < m it holds σ(A,2B)(S(n)) = t(n). We
shall show that the theorem is true for m. Let e ∈ E(S(m)) be a fixed edge. We
distinguish two possibilities.

1. c(e) = A. Then all remaining edges are coloured either by colour A or B. This
means that S(m) \ e ∼= S(m− 1) and by the induction hypothesis σA(e)(S(m)) =
t(m− 1).

2. c(e) = 2B. Then there is an edge e′ ∈ E(S(m)\e) such that c(e′) = 2B. Since
all edges in a star S(m) are adjacent, so the edge e′ can be chosen in m− 1 ways.
Moreover, E(S(m) \ {e, e′}) ∼= S(m − 2) and using the induction hypothesis we
obtain that σ2B(e)(S(m)) = (m− 1)t(m− 2).

By the rule (1) we have

σ(A,2B)(S(m)) = t(m− 1) + (m− 1)t(m− 2) = t(m),

which completes the proof.

From the above and by Theorem 2 we obtain the new direct formula for the
telephone numbers t(m) given next.

Corollary 17. Let m ≥ 1 be an integer. Then

t(m) = 1 +
∑

j≥1

(

m

2j

) j−1
∏

p=0

[2j − (2p + 1)].

From the above considerations we obtain the next result as follows.
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Corollary 18. Let m ≥ 1 be an integer. Then

σ(A,2B)(T (m)) ≤ 1 +
∑

j≥1

(

m

2j

) j−1
∏

p=0

[2j − (2p + 1)].

The telephone numbers play an important role also in finding the second
largest value of the parameter σ(A,2B)(T (m)).

Let P (m1,m −m1 − 1) be a 2-palm of size m,m ≥ 5, and diameter 3 with
two support vertices x, y ∈ V (P (m1,m − m1 − 1)). Suppose that the support
vertex x is adjacent to m1 leaves. Then the vertex y is adjacent to m −m1 − 1
leaves.

Theorem 19. Let m ≥ 5,m1 ≥ 2 be integers and let m1 ≥ m−m1 − 1. Then

σ(A,2B)(P (m1,m−m1 − 1)) = t(m−m1 − 1)t(m1 + 1)

+ (m−m1 − 1)t(m−m1 − 2)t(m1).

Proof. Let m,m1 be as in the statement of theorem. Let P (m1,m − m1 − 1)
be a 2-palm of size m. Assume that m1 ≥ m −m1 − 1. Let e = xy ∈ E(P (m −
1,m − m1 − 1)), where x, y are support vertices adjacent to m1 or m − m1 − 1
leaves, respectively. We distinguish the following possibilities

1. c(e) = A. Then σA(e)(P (m1,m−m1 − 1)) = t(m1)t(m−m1 − 1).

2. c(e) = 2B. Then there exists an edge e′ ∈ E(P (m1,m −m1 − 1)) such that
{e, e′} belongs to a partition of 2B-monochromatic subgraph of P (m1,m−m1−1)
and c(e′) = 2B. Therefore e′ ∈ E(S(m1)) and it can be chosen in m1 ways or
e′ ∈ E(S(m −m1 − 1)) and can be chosen in m −m1 − 1 ways. From that and
Theorem 16 we obtain

σ2B(e)(P (m1,m−m1 − 1)) = m1t(m1 − 1)t(m−m1 − 1)

+ (m1 −m− 1)t(m−m1 − 2)t(m1).

Using the rule (1) and the recurrence relation of telephone numbers by simple
calculations we get

σ(A,2B)(P (m1,m−m1−1)) = t(m1)t(m−m1− 1) + m1t(m1− 1)t(m−m1−1)

+ (m1 −m− 1)t(m−m1 − 2)t(m1)

= t(m−m1 − 1)[t(m1) + m1t(m1 − 1)]

+ (m−m1 − 1)t(m−m1 − 2)t(m1)

= t(m−m1 − 1)t(m1 + 1)

+ (m−m1 − 1)t(m−m1 − 2)t(m1),

which ends the proof.
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The next lemma shows the behavior of the parameter σ(A,2B)(P (m1,m −
m1−1)) after moving an edge adjacent to a support vertex to the second support
vertex.

Lemma 20. Let m ≥ 5,m1 ≥ 2 be integers and m1 ≥ m−m1 − 1. Then

σ(A,2B)(P (m1 + 1,m−m1 − 2)) > σ(A,2B)(P (m1,m−m1 − 1)).

Proof. Let m,m1 be as in the statement of lemma. Let P (m1 + 1,m−m1 − 2)
and P (m1,m−m1 − 1) be 2-palms of size m. We will show that

σ(A,2B)(P (m1 + 1,m−m1 − 2)) − σ(A,2B)(P (m1,m−m1 − 1)) > 0.

Applying Theorem 19 and the definition of the telephone numbers we obtain

σ(A,2B)(P (m1 + 1,m−m1 − 2)) − σ(A,2B)(P (m1,m−m1 − 1))

= t(m−m1 − 2)t(m1 + 2) + (m−m1 − 2)t(m−m1 − 3)t(m1 + 1)

− t(m−m1 − 1)t(m1 + 1) − (m−m1 − 1)t(m−m1 − 2)t(m1)

= t(m−m1 − 2)[t(m1 + 1) + (m1 + 1)t(m1)]

+ t(m1 + 1)[(m−m1 − 2)t(m−m1 − 3) − t(m−m1 − 1)]

− (m−m1 − 1)t(m−m1 − 2)t(m1).

After some calculations and applying once again the definition of the telephone
numbers we get

σ(A,2B)(P (m1 + 1,m−m1 − 2)) − σ(A,2B)(P (m1,m−m1 − 1))

= t(m1 + 1)[t(m−m1 − 2) + (m−m1 − 2)t(m−m1 − 3) − t(m−m1 − 1)]

+ t(m1)t(m−m1 − 2)[m1 + 1 −m + m1 + 1]

= t(m1 + 1)[t(m−m1−1) − t(m−m1−1)] + t(m1)t(m−m1−2)[2m1 + 2−m].

Observe that t(m1)t(m − m1 − 2)[2m1 + 2 − m] > 0, by the assumption that
2m1 ≥ m− 1. Hence this completes the proof.

Now we can give the second largest value of the parameter σ(A,2B)(T (m)).

Theorem 21. Let T (m) be a tree of size m,m ≥ 5, and T (m) ≇ S(m). Then

σ(A,2B)(T (m)) ≤ σ(A,2B)(P (m− 2, 1)).

Proof. Let T (m) be a tree of size m,m ≥ 5, such that T (m) ≇ S(m). Since T (m)
is not isomorphic to the star S(m), there exist at least two vertices x, y ∈ V (T (m))
which are not leaves. Let e = xy ∈ E(T (m)) and x, y are not leaves. Then
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T (m) = T (m1)∪{e}∪T (m2), where Ti(mi), for i = 1, 2, are trees of size mi and
x ∈ V (T (m1)), y ∈ V (T (m2)).

Applying Lemma 3 we obtain

σ(A,2B)(T (m)) = σ(A,2B)(T (m1) ∪ {e} ∪ T (m2)) ≤ σ(A,2B)(S(m1) ∪ {e} ∪ S(m2)),

where the vertex x is the center of the star S(m1) and the vertex y is the center
of the star S(m2).

If m1 = 1 or m2 = 1, then S(m1) ∪ {e} ∪ S(m2) ∼= P (m − 2, 1) and the
theorem is proved.

Let m1 > 1 and m2 > 1 and, without loos of the generality, suppose that
m1 ≥ m2. Then S(m1) ∪ {e} ∪ S(m2) is isomorphic to the 2-palm P (m1,m2) ∼=
P (m1,m−m1 − 1). Applying Lemma 20 we obtain

σ(A,2B)(T (m)) = σ(A,2B)(P (m1,m−m1 − 1)) < σ(A,2B)(P (m1 + 1,m−m1 − 2)).

If m−m1 − 2 = 1, then P (m1 + 1,m−m1 − 2) is isomorphic to P (m− 2, 1) and
the result follows.

If P (m1 + 1,m − m1 − 2) is not isomorphic to P (m − 2, 1), then we apply
Lemma 20 until we obtain the 2-palm P (m− 2, 1), which ends the proof.

Corollary 22. Let m ≥ 5 be an integer and T (m) ≇ S(m). Then

σ(A,2B)(T (m)) ≤ t(m− 1) + t(m− 2),

with the initial conditions t(3) = 4, t(4) = 10.

Proof. By Theorem 21 it sufficies to determine the number σ(A,2B)(P (m−2, 1)).
Using Theorem 19 and the definition of the telephone numbers we obtain that

σ(A,2B)(P (m− 2, 1)) = t(1)t(m− 1) + t(0)t(m− 2) = t(m− 1) + t(m− 2).

Let βi(m) be the ith maximum tree of size m with respect to the parameter
σ(A,2B)(T (m)). Then β1(m) ∼= S(m), β2(m) ∼= P (m − 2, 1) and β3(m) ∼= P (m −
3, 2), . . ..

For i ≥ 4 the problem of finding βi(m) is open. Consequently, the initial
words of nonincreasing sequence of the parameter σ(A,2B)(T (m)) using the tele-
phone numbers have the form t(m), t(m−1)+ t(m−2), 2t(m−2)+2t(m−3), . . ..
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