ON INCIDENCE COLORING OF COMPLETE MULTIPARTITE AND SEMICUBIC BIPARTITE GRAPHS ${ }^{1}$

Robert Janczewski, Micha乇 Ma乇afiejski
Department of Algorithms and System Modelling
Faculty of Electronics, Telecommunications and Informatics
Gdańsk University of Technology, Poland
e-mail: skalar@eti.pg.gda.pl, michal@animima.org
AND
Anna Maeafiejska
Department of Probability Theory and Biomathematics
Faculty of Physics and Applied Mathematics Gdańsk University of Technology, Poland
e-mail: anna@animima.org

Abstract

In the paper, we show that the incidence chromatic number χ_{i} of a complete k-partite graph is at most $\Delta+2$ (i.e., proving the incidence coloring conjecture for these graphs) and it is equal to $\Delta+1$ if and only if the smallest part has only one vertex (i.e., $\Delta=n-1$). Formally, for a complete k-partite graph $G=K_{r_{1}, r_{2}, \ldots, r_{k}}$ with the size of the smallest part equal to $r_{1} \geq 1$ we have $$
\chi_{i}(G)= \begin{cases}\Delta(G)+1 & \text { if } r_{1}=1 \\ \Delta(G)+2 & \text { if } r_{1}>1\end{cases}
$$

In the paper we prove that the incidence 4 -coloring problem for semicubic bipartite graphs is $\mathcal{N} \mathcal{P}$-complete, thus we prove also the $\mathcal{N} \mathcal{P}$-completeness of $L(1,1)$-labeling problem for semicubic bipartite graphs. Moreover, we observe that the incidence 4 -coloring problem is $\mathcal{N} \mathcal{P}$-complete for cubic graphs, which was proved in the paper [12] (in terms of generalized dominating sets). Keywords: incidence coloring, complete multipartite graphs, semicubic graphs, subcubic graphs, $\mathcal{N} \mathcal{P}$-completeness, $L(1,1)$-labelling. 2010 Mathematics Subject Classification: 05C69, 05C05, 05 C 85.

[^0]
1. Introduction

In the following we consider connected simple graphs only, and use standard notations in graph theory. Let n be a positive integer and $G=(V, E)$ be any n vertex graph of the maximum degree ${ }^{2} \Delta(G)>0$. A pair $(u,\{u, v\})$ is an incidence of G if and only if $u, v \in V$ and $\{u, v\} \in E$. The set of all incidences of G will be denoted by $I(G)$. To shorten the notation, we will write $u v$ instead of ($u,\{u, v\}$). We will say that incidence $u v$ leads from u to v. We will say that incidences $u v \neq w x$ are adjacent in G if and only if one of the following holds: (1) $u=w$; (2) $u=x$ and $v=w$; (3) $(u \neq x$ and $v=w)$ or $(u=x$ and $v \neq w)$, which is equivalent to $u=x$ or $u=w$ or $v=w$. Obviously, if $u v$ is adjacent to $w x$, then $v \neq x$.

A function $c: I(G) \rightarrow \mathbb{N}$ is an incidence coloring of G if and only if $c(u v) \neq$ $c(w x)$ for all adjacent incidences $u v$ and $w x$. The incidence coloring number of G, denoted by $\chi_{i}(G)$, is the smallest integer k such that there is an incidence coloring c of G using exactly k colors. By the incidence k-coloring, we mean an incidence coloring c of G with k colors (i.e., $k=|c(I(G))|)$, and by the incidence k-coloring problem we mean a decision problem of the existence of the incidence k-coloring in a graph G.

The notion of the incidence coloring was introduced in [3]. In [10] the author observed that the problem of incidence graph coloring is a special case of the star arboricity problem, i.e., the problem of partitioning of a set of arcs of a symmetric digraph into the smallest number of forests of directed stars. That problem was studied in $[1,2,10]$.

The following bounds are well-known (see [3, 17]).
Proposition 1. For every graph G of order $n \geq 2$ and $\Delta(G)>0$ there is

$$
\Delta(G)+1 \leq \chi_{i}(G) \leq n
$$

The upper bound $\chi_{i}(G) \leq 2 \Delta(G)$ for every graph G has been proved in [3]. This bound has been improved in [10], where the author proved that $\chi_{i}(G) \leq$ $\Delta(G)+O(\log \Delta(G))$ for every graph G.

1.1. Motivation and our results

In [3] the authors conjectured that $\chi_{i}(G) \leq \Delta(G)+2$ holds for every graph G (incidence coloring conjecture, shortly ICC). This was disproved by Guiduli in [10] who showed that Paley graphs have incidence coloring number at least $\Delta+\Omega(\log \Delta)$. For the following classes of graphs the incidence coloring number is at most $\Delta+2$: trees and cycles [3], complete graphs [3] and complete bipartite

[^1]graphs [5] and [3] (proof corrected in [17]). In fact, for all of them the exact value is equal to $\Delta+1$ or $\Delta+2$ and the optimal coloring is constructed in polynomial time. In $[7]$ the authors proved that any partial 2 -tree (i.e., K_{4}-minor free graph) admits $\Delta+2$ incidence coloring, hence for all outerplanar graphs ICC holds. In [8] the authors proved that every planar graph with girth at least 11 or with girth at least 6 and maximum degree at least 5 has incidence coloring number at most $\Delta+2$. Recently, the conjecture was proved for pseudo-Halin graphs [11], some powers of cycles [15] and hypercubes [16].

In the paper [19] the authors claim that the incidence coloring conjecture holds for complete multipartite graphs, but the coloring presented in the proof of Theorem 3.1 in [19] is incorrect and presented without a full proof. In Section 2 we will show that the incidence coloring number of complete k-partite graphs is at most $\Delta+2$, and is equal to $\Delta+1$ if and only if the size of the smallest part equals 1. We present an $O\left(n^{2}\right)$-time algorithm giving an optimal coloring (i.e., with the minimum number of colors).

In [6] the authors proved that ICC holds for some subclasses of cubic graphs (e.g. Hamiltonian cubic graphs). In [18] the author proved that ICC holds for cubic graphs having a Hamiltonian path and for bridgeless cubic graphs of high girth. At last, in [14] the author proved that ICC holds for subcubic graphs. In [13] the authors proved $\mathcal{N} \mathcal{P}$-completeness of the incidence 4 -colorability of semicubic graphs (i.e., graphs with $\Delta=3$ and vertices of degree equal to 1 or 3). By the paper [12] we conclude that the incidence 4 -coloring problem is $\mathcal{N P}$ complete for cubic graphs. The complexity of this problem was unknown for (semicubic) bipartite graphs. In Section 3 we will show that incidence 4 -colorability of semicubic bipartite graphs is $\mathcal{N} \mathcal{P}$-complete.

2. Incidence Coloring of Complete Multipartite Graphs

In this section we present an algorithm (formula) giving a coloring of a multipartite graph using at most $\Delta+2$ colors.

In [19] the authors presented Theorem 3.1 claiming that the incidence coloring conjecture holds for complete multipartite graphs. The coloring σ presented in the proof of Theorem 3.1 is incorrect and in fact there is no proof that this coloring is a proper incidence coloring and uses at most $\Delta+2$ colors. In the coloring definition (3.2) [19] the authors use the formula $\sum_{m=0}^{t-1}\left(n_{m}+s\right)$, but n_{0} is undefined, so we believe it should be corrected to $m=1$. But in this case, following the notation from [19], for $k \geq 3$ let $t=k-1$ and $s=n_{t}$. Take any $j<t$, hence for $n_{j} \geq n_{t}$ we can put $i=s$, thus we get $\sigma\left(v_{s}^{j}, v_{s}^{j} v_{s}^{k-1}\right)=$ $\sum_{m=1}^{k-2}\left(n_{m}+s\right)=\sum_{m=1}^{k-1} n_{m}+(k-3) n_{k-1}=\Delta+(k-3) n_{k-1}>\Delta+2$, for $k \geq 6$ or $k=5$ and $n_{k-1}>1$.

In the following, we present a different coloring than the coloring σ from [19].
Let $G=K_{r_{1}, r_{2}, \ldots, r_{k}}$ be a complete k-partite graph with $V(G)=V_{1} \cup \cdots \cup V_{k}$, where integer $k \geq 1,\left|V_{i}\right|=r_{i}$, for each $i \in\{1, \ldots, k\}$, and all V_{i} are independent sets and pairwise disjoint.

Theorem 2. For any complete multipartite graph $G=K_{r_{1}, r_{2}, \ldots, r_{k}}$ with $k \geq 2$, there is

$$
\chi_{i}(G)=\Delta(G)+1 \text { if and only if } r_{1}=1,
$$

where $r_{1}=\min \left\{r_{1}, \ldots, r_{k}\right\}$.
Proof. (\Rightarrow) Let c be an incidence coloring of G that uses $\Delta+1$ colors. Suppose that $r_{1}>1$. Let $u \neq v$ be two vertices that belong to V_{1}. Then

- u is of degree Δ and c uses exactly $\Delta+1$ colors, so all incidences that lead to u must have the same color, say a;
- v is of degree Δ and c uses exactly $\Delta+1$ colors, so all incidences that lead to v must have the same color, say b;
- $a \neq b$ since u and v have identical neighborhoods;
- incidences that lead from u also lead to vertices that are adjacent to v, so colors of incidences leading from u must differ from b.
Hence c uses at least $\Delta+2$ colors: a, b and Δ other colors on incidences that lead from u, a contradiction.
(\Leftarrow) It follows immediately from Proposition 1 , since $\Delta(G)=|V(G)|-r_{1}$.
Theorem 3. For any complete multipartite graph $G=K_{r_{1}, r_{2}, \ldots, r_{k}}$ with $k \geq 2$, there is

$$
\chi_{i}(G) \leq \Delta(G)+2 .
$$

Proof. Let us assume that $1 \leq r_{1} \leq r_{2} \leq \cdots \leq r_{k}$ and $V(G)=V_{1} \cup \cdots \cup V_{k}$, $\left|V_{i}\right|=r_{i}$, and sets from $\left\{V_{i}\right\}_{i \in\{1, \ldots, k\}}$ are independent sets and pairwise disjoint. Let $n=|V(G)|$. It suffices to show that there is an incidence coloring of G that uses at most $\Delta+2$ colors. Before we do this, we have to introduce some notations.

Let $s_{i}: V_{i} \rightarrow\left\{1,2, \ldots, r_{i}\right\}$ be any numbering of vertices of V_{i} for $i \in\{1, \ldots, k\}$. Let $p: V(G) \rightarrow\{1,2, \ldots, k\}$ be a function such that $p(u)=i$ if and only if $u \in V_{i}$. Let

$$
V(G) \ni u \mapsto s(u)=r_{k}+1-s_{p(u)}(u) \in\left\{1,2, \ldots, r_{k}\right\}
$$

and

$$
\left\{1,2, \ldots, r_{k}\right\} \ni j \mapsto l(j)=\sum_{i=1}^{j-1}\left(\left|s^{-1}(\{i\})\right|-\left\lfloor\left|s^{-1}(\{i\})\right| / k\right\rfloor\right) \in \mathbb{N} \cup\{0\} .
$$

It is easy to see the following properties.
(1) $u=v$ if and only if $p(u)=p(v)$ and $s(u)=s(v)$;
(2) $1 \leq\left|s^{-1}(\{1\})\right| \leq\left|s^{-1}(\{2\})\right| \leq \cdots \leq\left|s^{-1}\left(\left\{r_{k}\right\}\right)\right|=k$;
(3) $\left|s^{-1}(\{i\})\right|=k$ if and only if $r_{k} \geq i \geq r_{k}-r_{1}+1$;
(4) $k+1-\left|s^{-1}(\{s(v)\})\right| \leq p(v) \leq k$.

Now we are ready to construct the required incidence coloring c. We define it in two steps. First, we define it on incidences $u v$ such that $s(u)=s(v)$:

$$
c(u v)= \begin{cases}\Delta+2 & \text { if } p(v)=k \\ k+1-p(v)+l(s(v)) & \text { if } p(u)>p(v)>k+1-\left|s^{-1}(\{s(v)\})\right| \\ k-p(v)+l(s(v)) & \text { if } p(u)<p(v)<k \\ \Delta+1 & \text { if } p(v)=k+1-\left|s^{-1}(\{s(v)\})\right| \neq k\end{cases}
$$

Next, we extend it to other incidences by the formula:

$$
c(u v)= \begin{cases}k+1-p(v)+l(s(v)) & \text { if } p(u)<p(v) \\ k-p(v)+l(s(v)) & \text { if } p(u)>p(v)\end{cases}
$$

Since $p(u) \neq p(v)$ for all incidences $u v$, the above formula determines the value of $c(u v)$ for all incidences of G. To complete the proof, it suffices to show that $c(I(G)) \subseteq\{1,2, \ldots, \Delta+2\}$ and c is an incidence coloring of G.

It is easy to see that $c \geq 1$. On the other hand, $\Delta=n-r_{1}=n-$ $\left|\left\{i:\left|s^{-1}(\{i\})\right|=k\right\}\right|=\sum_{i=1}^{r_{k}}\left(\left|s^{-1}(\{i\})\right|-\left\lfloor\left|s^{-1}(\{i\})\right| / k\right\rfloor\right)=\left|s^{-1}\left(\left\{r_{k}\right\}\right)\right|-1+$ $l\left(r_{k}\right) \geq\left|s^{-1}(\{s(v)\})\right|-1+l(s(v)) \geq k-p(v)+l(s(v))$, so $c \leq \Delta+2$. Moreover, $k-p(v)+l(s(v))=\Delta$ if and only if $s(v)=r_{k}$ and $p(v)=1$. As an easy consequence we get that $c^{-1}(\{\Delta+1\})$ and $c^{-1}(\{\Delta+2\})$ are independent sets.

Suppose that c is not an incidence coloring of G. Then $c(u v)=c(w x) \leq \Delta$ for some adjacent incidences $u v, w x$. Without loss of generality we assume $s(x) \geq$ $s(v)$. There are several cases to consider.

- $s(x) \geq s(v)+2$ and $\left|s^{-1}(\{s(v)+1\})\right|=k$.

Then $c(w x) \geq k-p(x)+l(s(x)) \geq l(s(x)) \geq l(s(v)+2) \geq\left|s^{-1}(\{s(v)\})\right|+$ $\left|s^{-1}(\{s(v)+1\})\right|-2+l(s(v)) \geq\left|s^{-1}(\{s(v)\})\right|+l(s(v))$. By (4) we have $\left|s^{-1}(\{s(v)\})\right|$ $+l(s(v)) \geq k+1-p(v)+l(s(v)) \geq c(u v)$. Since $c(w x)=c(u v)$, we get $p(x)=k$ and $c(w x)=k-p(x)+l(s(x))$, a contradiction.

- $s(x) \geq s(v)+2$ and $\left|s^{-1}(\{s(v)+1\})\right|<k$.

Then $\left|s^{-1}(\{s(v)\})\right|<k$ and $c(w x) \geq k-p(x)+l(s(x)) \geq l(s(x)) \geq l(s(v)+2)=$ $\left|s^{-1}(\{s(v)\})\right|+\left|s^{-1}(\{s(v)+1\})\right|+l(s(v))>\left|s^{-1}(\{s(v)\})\right|+l(s(v)) \geq k+1-$ $p(v)+l(s(v)) \geq c(u v)$, a contradiction.

- $s(x)=s(v)+1$ and $c(u v)=k-p(v)+l(s(v))$.

Then $c(w x) \geq k-p(x)+l(s(x)) \geq l(s(x))=l(s(v)+1) \geq\left|s^{-1}(\{s(v)\})\right|-$ $1+l(s(v)) \geq k-p(v)+l(s(v))=c(u v)$. These inequalities must be equalities since $c(w x)=c(u v)$. This gives $p(x)=k$ and $c(w x)=k-p(x)+l(s(x))$, a contradiction.

- $s(x)=s(v)+1$ and $c(u v)=k+1-p(v)+l(s(v))$ and $\left|s^{-1}(\{s(v)\})\right|=k$.

Then $p(v) \geq 2$ and $c(w x) \geq k-p(x)+l(s(x)) \geq l(s(x))=l(s(v)+1)=$ $\left|s^{-1}(\{s(v)\})\right|-1+l(s(v))=k-1+l(s(v)) \geq k+1-p(v)+l(s(v))=c(u v)$. These inequalities must be equalities since $c(w x)=c(u v)$. This gives $p(x)=k$ and $c(w x)=k-p(x)+l(s(x))$, a contradiction.

- $s(x)=s(v)+1$ and $c(u v)=k+1-p(v)+l(s(v))$ and $\left|s^{-1}(\{s(v)\})\right|<k$.

Then $c(w x) \geq k-p(x)+l(s(x)) \geq l(s(x))=l(s(v)+1)=\left|s^{-1}(\{s(v)\})\right|+$ $l(s(v)) \geq k+1-p(v)+l(s(v))=c(u v)$. These inequalities must be equalities since $c(w x)=c(u v)$. This gives $p(x)=k$ and $c(w x)=k-p(x)+l(s(x))$, a contradiction.

- $s(x)=s(v)$.
$s(x)=s(v)$ implies $p(x) \neq p(v)$. Without loss of generality we assume that $p(x)>p(v)$. Then $c(w x) \leq k+1-p(x)+l(s(x)) \leq k-p(v)+l(s(v))=c(u v)$, which gives $c(w x)=k+1-p(x)+l(s(x)), c(u v)=k-p(v)+l(s(v))$ and $p(x)=p(v)+1$. There are 4 subcases to consider.
(a) $s(u)=s(v), p(u)<p(v)$ and $s(w)=s(x), p(w)>p(x)$. Then $p(w)>p(x)>$ $p(v)>p(u)$, which shows that $u \neq x, u \neq w$ and $v \neq w$, a contradiction.
(b) $s(u)=s(v), p(u)<p(v)$ and $s(w) \neq s(x), p(w)<p(x)$. Then $p(u)<p(x)$, $s(u) \neq s(w)$ and $s(v) \neq s(w)$, which shows that $u \neq x, u \neq w$ and $v \neq w$, a contradiction.
(c) $s(u) \neq s(v), p(u)>p(v)$ and $s(w)=s(x), p(w)>p(x)$. Then $s(u) \neq s(x)$, $s(u) \neq s(w)$ and $p(w)>p(v)$, which shows that $u \neq x, u \neq w$ and $v \neq w$, a contradiction.
(d) $s(u) \neq s(v), p(u)>p(v)$ and $s(w) \neq s(x), p(w)<p(x)$. Then $s(u) \neq$ $s(x)$ which shows that $u \neq x$. If $u=w$, then $p(v)<p(u)=p(w)<p(x)=$ $p(v)+1$, which is impossible. Then $v=w$ and $s(x) \neq s(w)=s(v)=s(x)$, a contradiction.

Corollary 4. Let $G=K_{r_{1}, r_{2}, \ldots, r_{k}}$ be a complete k-partite graph with $k \geq 2$ and let $r_{1}=\min \left\{r_{1}, \ldots, r_{k}\right\}$. Then

$$
\chi_{i}(G)= \begin{cases}\Delta(G)+1 & \text { if } r_{1}=1 \\ \Delta(G)+2 & \text { if } r_{1}>1\end{cases}
$$

3. $\mathcal{N} \mathcal{P}$-Completeness of the Incidence 4 -Coloring of Semicubic Bipartite Graphs

In this section we discuss the complexity results of the incidence 4 -coloring problems and prove that the incidence 4 -coloring problem for semicubic bipartite graphs is $\mathcal{N} \mathcal{P}$-complete. By semicubic graphs we mean graphs with $\Delta=3$ and vertices of degree equal to 1 or 3 .

Theorem 5 [13]. The incidence 4 -coloring problem for semicubic graphs is $\mathcal{N P}$ complete.

In fact, the authors observed in [13] that for semicubic graphs the problem of 2 -distance coloring (i.e., a proper vertex coloring such that all vertices having a common neighbour are of distinct colors) is equivalent to the incidence 4 -coloring problem. Indeed, for any incidence 4 -coloring of a semicubic graph, the colors of incidences leading to a common vertex (say v) are equal (say a), hence we can assign the color a to the vertex v. Thus from the definition of adjacent incidences we get a proper 2 -distance vertex coloring.

Proposition 6 [13]. For semicubic graphs the incidence 4-coloring problem is equivalent to the 2 -distance 4 -coloring problem.

By an $L(p, q)$-labelling [4] we mean an assignment of nonnegative integers to the vertices of a graph such that adjacent vertices are labelled using colors at least p apart, and vertices having a common neighbour are labelled using colors at least q apart. By [4] any 2-distance vertex coloring of a graph is the same as its $L(1,1)$-labelling, thus we have the following result.

Proposition 7. For semicubic graphs the incidence 4-coloring problem is equivalent to the $L(1,1)$-labelling problem with 4 colors.

In [12] the authors introduced the concept of generalized dominating sets as follows. For a given graph $G=(V, E)$ and two subsets σ and ρ of nonnegative integers, by a (σ, ρ)-set we mean any subset $S \subset V$ such that for any $v \in S$ we have $|N(v) \cap S| \in \sigma$ and for any $v \notin S$ there is $|N(v) \cap S| \in \rho$. By a (k, σ, ρ)-partition of V we mean a partition $V_{1} \cup \cdots \cup V_{k}=V$ such that each V_{i} is the (σ, ρ)-set, for $i=1,2, \ldots, k$. In [4] the author observed that any ($k,\{0\},\{0,1\}$)-partition is equivalent to an $L(1,1)$-labelling with k colors, thus we get the following.

Proposition 8. For semicubic graphs the incidence 4-coloring problem is equivalent to the $(4,\{0\},\{0,1\})$-partition problem.

In [12] the authors proved that the $(4,\{0\},\{0,1\})$-partition problem is $\mathcal{N} \mathcal{P}$ complete for cubic graphs, thus by Proposition 8 we have the following theorem.

Theorem 9. The incidence 4 -coloring problem of cubic graphs is $\mathcal{N} \mathcal{P}$-complete.
In the following, we use the $\overline{\mathrm{X} 3 \mathrm{C}}$ problem, which is $\mathcal{N} \mathcal{P}$-complete [9].

X3C

Instance: A subcubic bipartite graph $G=(V \cup M, E)$ without pendant vertices, such that $|V|=3 q$ and for every vertex $m \in M$ we have $\operatorname{deg}(m)=3$ and m is adjacent to three vertices from V.
Question: Is there a subset $M^{\prime} \subset M$ of cardinality $\left|M^{\prime}\right|=q$ dominating all vertices in V ?

Theorem 10. The incidence 4 -coloring problem for semicubic bipartite graphs is $\mathcal{N} \mathcal{P}$-complete.

Proof. The proof proceeds by the reduction from the problem $\overline{\mathrm{X} 3 \mathrm{C}}$. Let $G=$ $(V \cup M, E)$ be a subcubic bipartite graph such that $|V|=3 q$ and for every vertex $m \in M$ we have $\operatorname{deg}(m)=3$ and m is adjacent to exactly three vertices from V. We construct a semicubic bipartite graph G^{*} such that there is a subset $M^{\prime} \subset M$ of cardinality $\left|M^{\prime}\right|=q$ dominating all vertices in V if and only if there is a 2-distance 4 -coloring of graph G^{*}, which by Proposition 6 is equivalent to the existence of an incidence 4 -coloring of graph G^{*}.

Let n_{2} and n_{3} be the number of vertices in V of degree 2 and 3 , respectively. Let us consider graphs H and H_{i} (for $i=2,3, \ldots$), shown in Figures 1, 2 and 3. Let H be a graph shown in Figure 1 (on the left-hand side) consisting of white vertices only (i.e., without vertices x and y) and edges between them.

Figure 1. An auxiliary graph $H(x, y \notin V(H))$.
Let H_{2} be a graph shown in Figure 2 (on the left-hand side) consisting of two isomorphic and disjoint copies of graph H with attached two white vertices, i.e., vertex y and its pendant neighbour. We assume that two vertices x_{1} and x_{2} do not belong to H_{2}. Let H_{2}^{*} be a graph shown in Figure 4, i.e., the graph H_{2} with attached two vertices x_{1} and x_{2}.

Figure 2. An auxiliary graph $H_{2}\left(x_{1}, x_{2} \notin V\left(H_{2}\right)\right)$.

For each integer $i \geq 2$, let H_{i+1} be a graph shown in Figure 3 and constructed as follows: Take an isomorphic copy of graph H_{i}^{*}, i.e., the graph H_{i} with attached pendant vertices $x_{1}^{\prime}, \ldots, x_{i}^{\prime}$ (shown on the left-hand side in Figure 3) and add two disjoint isomorphic copies of graph H_{2} with attached two pendant vertices to each of them (in the manner as shown in Figure 2). Further, as shown in Figure 3, identify the vertex x_{i}^{\prime} with two joined pendant vertices, and label by x_{i} and x_{i+1} the two others. Then, relabel x_{k}^{\prime} with x_{k} for each $k \in\{1, \ldots, i-1\}$. We assume that $x_{1}, \ldots, x_{i+1} \notin V\left(H_{i+1}\right)$.

Let H_{i+1}^{*} be a graph obtained from the graph H_{i+1} by attaching pendant vertices x_{1}, \ldots, x_{i+1}, as shown in Figure 3 (on the right-hand side). For each integer $i \geq 2$, the graph H_{i}^{*} is bipartite and the vertices x_{1}, \ldots, x_{i} are in the same partition. Moreover, the graph H_{i}^{*} is semicubic and 2-distance 4-colorable.

Figure 3. The iterative construction of auxiliary graphs H_{i+1} and H_{i+1}^{*} (for $i=2,3, \ldots$).
Observation 11. For every graph $H_{i}^{*}(i \geq 2)$, in every 2-distance 4-coloring of graph H_{i}^{*} the colors assigned to vertices x_{1}, \ldots, x_{i} are equal.

Proof. Let $i=2$ and let c be any 2-distance 4 -coloring of graph H_{2}^{*}. The graph H_{2}^{*} contains as a subgraph two copies of graph H. By a simple analysis, we leave it to the reader, we can prove that $c\left(x_{1}\right)=c(y)$ and analogously $c(y)=c\left(x_{2}\right)$. By induction, the thesis follows for every $i \geq 2$.

Observation 12. For every graph $H_{i}^{*}(i \geq 2)$, if we precolor vertices x_{1}, \ldots, x_{i} with one color, say 1 , and the neighbors of x_{1}, \ldots, x_{i} with arbitrary colors from the set $\{2,3,4\}$, then we can extend this precoloring to a 2 -distance 4 -coloring of the whole graph H_{i}^{*}.

Proof. Let $i=2$ and let v_{1} and v_{2} be vertices neighboring in the graph H_{2}^{*} with vertices x_{1} and x_{2}, respectively. Let w_{1} be a neighbor of the interior vertex y (see Figure 2) that is at distance 2 from v_{1}, and, analogously, let w_{2} be a neighbor of y at distance 2 from w_{2}, which is shown in Figure 4.

Now, without loss of generality, let us assume that we precolor vertices x_{1} and x_{2} with color 1 , and v_{1} with color 2 , and v_{2} with color p, that may equal
either 2 or 3 . In both cases, we color the vertex w_{1} with 3 and the vertex w_{2} with color 4, what is extendible to the whole graph H_{2}^{*}, which we leave to the reader. By induction, we have the thesis for every integer $i \geq 2$.

Figure 4. Graph H_{2}^{*}.
Let us consider graphs A_{2} and A_{3}, shown in Figures 5 and 6. By a detailed (but simple) analysis of graphs A_{2} and A_{3} we have the following results.

Figure 5. Graph A_{2}.

Figure 6. Graph A_{3}.

Observation 13. (i) In every 2-distance 4-coloring of the graph A_{2} the colors assigned to vertices a and b are different and one of them is equal to the color of vertex u.
(ii) Any precoloring of vertices $\{a, b, u\}$ of the graph A_{2}, where the colors assigned to vertices a and b are different, and either a or b has the same color as u, we can extend to a 2-distance 4-coloring of the graph A_{2}.

Observation 14. (i) In every 2-distance 4-coloring of the graph A_{3} the colors assigned to vertices a, b and c are different and one of them is equal to the color of vertex u.
(ii) Any precoloring of vertices $\{a, b, c, u\}$ of the graph A_{3}, where the colors assigned to vertices a, b, c are different, and either a, b or c has the same color as u, we can extend to a 2-distance 4-coloring of graph A_{3}.

We will transform (in polynomial time) the graph G into G^{*} in four steps:

1. each vertex $v \in V$ of degree 2 and neighbors $m_{1}, m_{2} \in M$ replace with a graph $A_{2}(v)$ (isomorphic to A_{2}) and add two edges $\left\{m_{1}, a\right\}$ and $\left\{m_{2}, b\right\}$,
2. each vertex $v \in V$ of degree 3 and neighbors $m_{1}, m_{2}, m_{3} \in M$ replace with a graph $A_{3}(v)$ (isomorphic to A_{3}) and add three edges $\left\{m_{1}, a\right\},\left\{m_{2}, b\right\}$ and $\left\{m_{3}, c\right\}$; graphs of both types $\left(A_{2}(v)\right.$ or $\left.A_{3}(v)\right)$ we call further A-graphs,
3. each vertex $m \in M$ replace with a graph $H_{3}^{*}(m)$ (isomorphic to H_{3}^{*}) and identify three neighbors of m (in an A-graph) with vertices $x_{1}, x_{2}, x_{3} \in$ $V\left(H_{3}^{*}(m)\right)$,
4. attach a graph H_{p}^{*}, where $p=2 n_{3}+n_{2}$ and uniquely identify the pendant vertices $x_{1}, \ldots, x_{p} \in V\left(H_{p}^{*}\right)$ with vertices u and w in all A-graphs.

It is easy to observe that the graph G^{*} is a semicubic bipartite graph. By Observation 11 and Observations 13(i) and 14(i) we have the following.

Observation 15. In every 2-distance 4-coloring of the graph G^{*} the same color (say 1) is assigned to vertices u and w in all A-graphs, and in every A-graph there is exactly one vertex of a, b, c colored with 1 .
(\Rightarrow) Suppose, $M^{\prime} \subset M$ dominates all vertices in V and $\left|M^{\prime}\right|=q$. We construct a 2 -distance 4-coloring of graph the G^{*} as follows: (1) for every $m \in M^{\prime}$ color with 1 vertices x_{1}, x_{2}, x_{3} from the graph $H_{3}^{*}(m),(2)$ color with 1 vertices u and w in all A-graphs. Let us notice that after removing set of vertices M^{\prime} from the graph G, each vertex from V in the result graph is of degree 1 or 2 , thus (3) for every $m \in M \backslash M^{\prime}$ we can color vertices x_{1}, x_{2}, x_{3} from the graph $H_{3}^{*}(m)$ with either 2, 3 or 4 (by Brooks theorem). By Observation 12 and Observations 13(ii) and 14 (ii) we can extend this precoloring to the 2 -distance 4 -coloring of the whole graph G^{*}.
(\Leftarrow) Let c be any 2-distance 4-coloring of the graph G^{*}. By Observation 15 the colors assigned to vertices u and w in all A-graphs are equal (say 1). Moreover, by Observation 15 there is exactly one vertex from $\{a, b\}$ in every graph $A_{2}(v)$ and exactly one vertex from $\{a, b, c\}$ in every graph $A_{3}(v)$ colored with 1 , thus the set of all vertices $m \in M$ such that the corresponding graph $H_{3}^{*}(m)$ has vertices x_{1}, x_{2}, x_{3} colored with 1 , is the solution to the $\overline{\mathrm{X} 3 \mathrm{C}}$ problem.

By Proposition 7 we have the following.
Corollary 16. The $L(1,1)$-labelling problem with 4 colors for bipartite semicubic graphs is $\mathcal{N} \mathcal{P}$-complete.

The complexity of the incidence 4-coloring problem (and equivalently, the $L(1,1)$-labelling problem with 4 colors) for cubic bipartite graphs remains unknown.

References

[1] I. Algor and N. Alon, The star arboricity of graphs, Discrete Math. 75 (1989) 11-22. doi:10.1016/0012-365X(89)90073-3
[2] N. Alon, C. McDiarmid and B. Reed, Star arboricity, Combinatorica 12 (1992) 375-380. doi:10.1007/BF01305230
[3] R.A. Brualdi and J.Q. Massey, Incidence and strong edge colorings of graphs, Discrete Math. 122 (1993) 51-58. doi:10.1016/0012-365X(93)90286-3
[4] T. Calamoneri, The $L(h, k)$-labelling problem: an updated survey and annotated bibliography, Department of Computer Science, University of Rome (2014) 1-54, a manuscript.
[5] D.L. Chen, X.K. Liu and S.D. Wang, The incidence chromatic number and the incidence coloring conjecture of graphs, Math. Econ. 15 (1998) 47-51.
[6] D.L. Chen, P.C.B. Lam and W.C. Shiu, On incidence coloring for some cubic graphs, Discrete Math. 252 (2002) 259-266. doi:10.1016/S0012-365X(01)00457-5
[7] M.H. Dolama, E. Sopena and X. Zhu, Incidence coloring of k-degenerated graphs, Discrete Math. 283 (2004) 121-128. doi:10.1016/j.disc.2004.01.015
[8] M.H. Dolama and E. Sopena, On the maximum average degree and the incidence chromatic number of a graph, Discrete Math. Theor. Comput. Sci. 7 (2005) 203-216.
[9] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman \& Co., New York, 1979).
[10] B. Guiduli, On incidence coloring and star arboricity of graphs, Discrete Math. 163 (1997) 275-278. doi:10.1016/0012-365X(95)00342-T
[11] J. Guo, X. Meng and B. Su, Incidence coloring of pseudo-Halin graphs, Discrete Math. 312 (2012) 3276-3282. doi:10.1016/j.disc.2012.07.024
[12] P. Heggernes and J.A. Telle, Partitioning graphs into generalized dominating sets, Nordic J. Comput. 5 (1998) 128-143.
[13] X. Li and J. Tu, NP-completeness of 4-incidence colorability of semi-cubic graphs, Discrete Math. 308 (2008) 1334-1340.
doi:10.1016/j.disc.2007.03.076
[14] M. Maydanskiy, The incidence coloring conjecture for graphs of maximum degree 3, Discrete Math. 292 (2005) 131-141.
doi:10.1016/j.disc.2005.02.003
[15] K. Nakprasit and K. Nakprasit, Incidence colorings of the powers of cycles, Int. J. Pure Appl. Math. 76 (2012) 143-148.
[16] A.C. Shiau, T.-H. Shiau and Y.-L. Wang, Incidence coloring of Cartesian product graphs, Inform. Process. Lett. 115 (2015) 765-768. doi:10.1016/j.ipl.2015.05.002
[17] W.C. Shiu and P.K. Sun, Invalid proofs on incidence coloring, Discrete Math. 308 (2008) 6575-6580.
doi:10.1016/j.disc.2007.11.030
[18] J. Wu, Some results on the incidence coloring number of a graph, Discrete Math. 309 (2009) 3866-3870.
doi:10.1016/j.disc.2008.10.027
[19] X. Liu and Y. Li, The incidence chromatic number of some graph, Int. J. Math. Math. Sci. 5 (2005) 803-813.
doi:10.1155/IJMMS.2005.803
Received 8 March 2016
Revised 7 October 2016
Accepted 14 October 2016

[^0]: ${ }^{1}$ This project has been partially supported by Narodowe Centrum Nauki under contract DEC-2011/02/A/ST6/00201.

[^1]: ${ }^{2}$ We sometimes write Δ instead of $\Delta(G)$ whenever G is clear from the context.

