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Abstract

In the paper, we show that the incidence chromatic number χi of a
complete k-partite graph is at most ∆+2 (i.e., proving the incidence coloring

conjecture for these graphs) and it is equal to ∆+1 if and only if the smallest
part has only one vertex (i.e., ∆ = n−1). Formally, for a complete k-partite
graph G = Kr1,r2,...,rk with the size of the smallest part equal to r1 ≥ 1 we
have

χi(G) =

{

∆(G) + 1 if r1 = 1,

∆(G) + 2 if r1 > 1.

In the paper we prove that the incidence 4-coloring problem for semicubic
bipartite graphs is NP-complete, thus we prove also the NP-completeness
of L(1, 1)-labeling problem for semicubic bipartite graphs. Moreover, we ob-
serve that the incidence 4-coloring problem is NP-complete for cubic graphs,
which was proved in the paper [12] (in terms of generalized dominating sets).
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1. Introduction

In the following we consider connected simple graphs only, and use standard
notations in graph theory. Let n be a positive integer and G = (V,E) be any n-
vertex graph of the maximum degree2 ∆(G) > 0. A pair (u, {u, v}) is an incidence

of G if and only if u, v ∈ V and {u, v} ∈ E. The set of all incidences of G will be
denoted by I(G). To shorten the notation, we will write uv instead of (u, {u, v}).
We will say that incidence uv leads from u to v. We will say that incidences
uv 6= wx are adjacent in G if and only if one of the following holds: (1) u = w;
(2) u = x and v = w; (3) (u 6= x and v = w) or (u = x and v 6= w), which is
equivalent to u = x or u = w or v = w. Obviously, if uv is adjacent to wx, then
v 6= x.

A function c : I(G) → N is an incidence coloring of G if and only if c(uv) 6=
c(wx) for all adjacent incidences uv and wx. The incidence coloring number of
G, denoted by χi(G), is the smallest integer k such that there is an incidence
coloring c of G using exactly k colors. By the incidence k-coloring, we mean an
incidence coloring c of G with k colors (i.e., k = |c(I(G))|), and by the incidence

k-coloring problem we mean a decision problem of the existence of the incidence
k-coloring in a graph G.

The notion of the incidence coloring was introduced in [3]. In [10] the author
observed that the problem of incidence graph coloring is a special case of the star
arboricity problem, i.e., the problem of partitioning of a set of arcs of a symmetric
digraph into the smallest number of forests of directed stars. That problem was
studied in [1, 2, 10].

The following bounds are well-known (see [3, 17]).

Proposition 1. For every graph G of order n ≥ 2 and ∆(G) > 0 there is

∆(G) + 1 ≤ χi(G) ≤ n.

The upper bound χi(G) ≤ 2∆(G) for every graph G has been proved in [3].
This bound has been improved in [10], where the author proved that χi(G) ≤
∆(G) +O(log∆(G)) for every graph G.

1.1. Motivation and our results

In [3] the authors conjectured that χi(G) ≤ ∆(G) + 2 holds for every graph
G (incidence coloring conjecture, shortly ICC). This was disproved by Guiduli
in [10] who showed that Paley graphs have incidence coloring number at least
∆+ Ω(log∆). For the following classes of graphs the incidence coloring number
is at most ∆+2: trees and cycles [3], complete graphs [3] and complete bipartite

2We sometimes write ∆ instead of ∆(G) whenever G is clear from the context.
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graphs [5] and [3] (proof corrected in [17]). In fact, for all of them the exact value
is equal to ∆+ 1 or ∆+ 2 and the optimal coloring is constructed in polynomial
time. In [7] the authors proved that any partial 2-tree (i.e., K4-minor free graph)
admits ∆+ 2 incidence coloring, hence for all outerplanar graphs ICC holds. In
[8] the authors proved that every planar graph with girth at least 11 or with girth
at least 6 and maximum degree at least 5 has incidence coloring number at most
∆ + 2. Recently, the conjecture was proved for pseudo-Halin graphs [11], some
powers of cycles [15] and hypercubes [16].

In the paper [19] the authors claim that the incidence coloring conjecture
holds for complete multipartite graphs, but the coloring presented in the proof of
Theorem 3.1 in [19] is incorrect and presented without a full proof. In Section 2
we will show that the incidence coloring number of complete k-partite graphs is
at most ∆ + 2, and is equal to ∆ + 1 if and only if the size of the smallest part
equals 1. We present an O(n2)-time algorithm giving an optimal coloring (i.e.,
with the minimum number of colors).

In [6] the authors proved that ICC holds for some subclasses of cubic graphs
(e.g. Hamiltonian cubic graphs). In [18] the author proved that ICC holds for
cubic graphs having a Hamiltonian path and for bridgeless cubic graphs of high
girth. At last, in [14] the author proved that ICC holds for subcubic graphs.
In [13] the authors proved NP-completeness of the incidence 4-colorability of
semicubic graphs (i.e., graphs with ∆ = 3 and vertices of degree equal to 1 or 3).
By the paper [12] we conclude that the incidence 4-coloring problem is NP-
complete for cubic graphs. The complexity of this problem was unknown for
(semicubic) bipartite graphs. In Section 3 we will show that incidence 4-colo-
rability of semicubic bipartite graphs is NP-complete.

2. Incidence Coloring of Complete Multipartite Graphs

In this section we present an algorithm (formula) giving a coloring of a multipartite
graph using at most ∆+ 2 colors.

In [19] the authors presented Theorem 3.1 claiming that the incidence coloring
conjecture holds for complete multipartite graphs. The coloring σ presented in
the proof of Theorem 3.1 is incorrect and in fact there is no proof that this
coloring is a proper incidence coloring and uses at most ∆ + 2 colors. In the
coloring definition (3.2) [19] the authors use the formula

∑t−1
m=0(nm + s), but n0

is undefined, so we believe it should be corrected to m = 1. But in this case,
following the notation from [19], for k ≥ 3 let t = k − 1 and s = nt. Take
any j < t, hence for nj ≥ nt we can put i = s, thus we get σ(vjs, v

j
svk−1

s ) =
∑k−2

m=1(nm + s) =
∑k−1

m=1 nm + (k− 3)nk−1 = ∆+ (k− 3)nk−1 > ∆+2, for k ≥ 6
or k = 5 and nk−1 > 1.
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In the following, we present a different coloring than the coloring σ from [19].
Let G = Kr1,r2,...,rk be a complete k-partite graph with V (G) = V1 ∪ · · · ∪Vk,

where integer k ≥ 1, |Vi| = ri, for each i ∈ {1, . . . , k}, and all Vi are independent
sets and pairwise disjoint.

Theorem 2. For any complete multipartite graph G = Kr1,r2,...,rk with k ≥ 2,
there is

χi(G) = ∆(G) + 1 if and only if r1 = 1,

where r1 = min{r1, . . . , rk}.

Proof. (⇒) Let c be an incidence coloring of G that uses ∆+ 1 colors. Suppose
that r1 > 1. Let u 6= v be two vertices that belong to V1. Then

• u is of degree ∆ and c uses exactly ∆ + 1 colors, so all incidences that lead
to u must have the same color, say a;

• v is of degree ∆ and c uses exactly ∆ + 1 colors, so all incidences that lead
to v must have the same color, say b;

• a 6= b since u and v have identical neighborhoods;

• incidences that lead from u also lead to vertices that are adjacent to v, so
colors of incidences leading from u must differ from b.

Hence c uses at least ∆+2 colors: a, b and ∆ other colors on incidences that lead
from u, a contradiction.

(⇐) It follows immediately from Proposition 1, since ∆(G) = |V (G)|− r1.

Theorem 3. For any complete multipartite graph G = Kr1,r2,...,rk with k ≥ 2,
there is

χi(G) ≤ ∆(G) + 2.

Proof. Let us assume that 1 ≤ r1 ≤ r2 ≤ · · · ≤ rk and V (G) = V1 ∪ · · · ∪ Vk,
|Vi| = ri, and sets from {Vi}i∈{1,...,k} are independent sets and pairwise disjoint.
Let n = |V (G)|. It suffices to show that there is an incidence coloring of G that
uses at most ∆+2 colors. Before we do this, we have to introduce some notations.

Let si : Vi → {1, 2, . . . , ri} be any numbering of vertices of Vi for i ∈ {1, . . . , k}.
Let p : V (G) → {1, 2, . . . , k} be a function such that p(u) = i if and only if u ∈ Vi.
Let

V (G) ∋ u 7→ s(u) = rk + 1− sp(u)(u) ∈ {1, 2, . . . , rk}

and

{1, 2, . . . , rk} ∋ j 7→ l(j) =

j−1
∑

i=1

(

|s−1({i})| − ⌊|s−1({i})|/k⌋
)

∈ N ∪ {0}.

It is easy to see the following properties.
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(1) u = v if and only if p(u) = p(v) and s(u) = s(v);

(2) 1 ≤ |s−1({1})| ≤ |s−1({2})| ≤ · · · ≤ |s−1({rk})| = k;

(3) |s−1({i})| = k if and only if rk ≥ i ≥ rk − r1 + 1;

(4) k + 1− |s−1({s(v)})| ≤ p(v) ≤ k.

Now we are ready to construct the required incidence coloring c. We define
it in two steps. First, we define it on incidences uv such that s(u) = s(v):

c(uv) =























∆+ 2 if p(v) = k,

k + 1− p(v) + l(s(v)) if p(u) > p(v) > k + 1− |s−1({s(v)})|,

k − p(v) + l(s(v)) if p(u) < p(v) < k,

∆+ 1 if p(v) = k + 1− |s−1({s(v)})| 6= k.

Next, we extend it to other incidences by the formula:

c(uv) =

{

k + 1− p(v) + l(s(v)) if p(u) < p(v),

k − p(v) + l(s(v)) if p(u) > p(v).

Since p(u) 6= p(v) for all incidences uv, the above formula determines the value
of c(uv) for all incidences of G. To complete the proof, it suffices to show that
c(I(G)) ⊆ {1, 2, . . . ,∆+ 2} and c is an incidence coloring of G.

It is easy to see that c ≥ 1. On the other hand, ∆ = n − r1 = n −
|{i : |s−1({i})| = k}| =

∑rk
i=1(|s

−1({i})| − ⌊|s−1({i})|/k⌋) = |s−1({rk})| − 1 +
l(rk) ≥ |s−1({s(v)})| − 1 + l(s(v)) ≥ k − p(v) + l(s(v)), so c ≤ ∆ + 2. More-
over, k − p(v) + l(s(v)) = ∆ if and only if s(v) = rk and p(v) = 1. As an easy
consequence we get that c−1({∆+ 1}) and c−1({∆+ 2}) are independent sets.

Suppose that c is not an incidence coloring of G. Then c(uv) = c(wx) ≤ ∆
for some adjacent incidences uv, wx. Without loss of generality we assume s(x) ≥
s(v). There are several cases to consider.

• s(x) ≥ s(v) + 2 and |s−1({s(v) + 1})| = k.

Then c(wx) ≥ k − p(x) + l(s(x)) ≥ l(s(x)) ≥ l(s(v) + 2) ≥ |s−1({s(v)})| +
|s−1({s(v)+1})|−2+l(s(v)) ≥ |s−1({s(v)})|+l(s(v)). By (4) we have |s−1({s(v)})|
+ l(s(v)) ≥ k + 1− p(v) + l(s(v)) ≥ c(uv). Since c(wx) = c(uv), we get p(x) = k
and c(wx) = k − p(x) + l(s(x)), a contradiction.

• s(x) ≥ s(v) + 2 and |s−1({s(v) + 1})| < k.

Then |s−1({s(v)})| < k and c(wx) ≥ k − p(x) + l(s(x)) ≥ l(s(x)) ≥ l(s(v) + 2) =
|s−1({s(v)})| + |s−1({s(v) + 1})| + l(s(v)) > |s−1({s(v)})| + l(s(v)) ≥ k + 1 −
p(v) + l(s(v)) ≥ c(uv), a contradiction.

• s(x) = s(v) + 1 and c(uv) = k − p(v) + l(s(v)).
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Then c(wx) ≥ k − p(x) + l(s(x)) ≥ l(s(x)) = l(s(v) + 1) ≥ |s−1({s(v)})| −
1 + l(s(v)) ≥ k − p(v) + l(s(v)) = c(uv). These inequalities must be equalities
since c(wx) = c(uv). This gives p(x) = k and c(wx) = k − p(x) + l(s(x)), a
contradiction.

• s(x) = s(v) + 1 and c(uv) = k + 1− p(v) + l(s(v)) and |s−1({s(v)})| = k.

Then p(v) ≥ 2 and c(wx) ≥ k − p(x) + l(s(x)) ≥ l(s(x)) = l(s(v) + 1) =
|s−1({s(v)})| − 1 + l(s(v)) = k − 1 + l(s(v)) ≥ k + 1 − p(v) + l(s(v)) = c(uv).
These inequalities must be equalities since c(wx) = c(uv). This gives p(x) = k
and c(wx) = k − p(x) + l(s(x)), a contradiction.

• s(x) = s(v) + 1 and c(uv) = k + 1− p(v) + l(s(v)) and |s−1({s(v)})| < k.

Then c(wx) ≥ k − p(x) + l(s(x)) ≥ l(s(x)) = l(s(v) + 1) = |s−1({s(v)})| +
l(s(v)) ≥ k + 1 − p(v) + l(s(v)) = c(uv). These inequalities must be equalities
since c(wx) = c(uv). This gives p(x) = k and c(wx) = k − p(x) + l(s(x)), a
contradiction.

• s(x) = s(v).

s(x) = s(v) implies p(x) 6= p(v). Without loss of generality we assume that
p(x) > p(v). Then c(wx) ≤ k + 1 − p(x) + l(s(x)) ≤ k − p(v) + l(s(v)) = c(uv),
which gives c(wx) = k + 1 − p(x) + l(s(x)), c(uv) = k − p(v) + l(s(v)) and
p(x) = p(v) + 1. There are 4 subcases to consider.

(a) s(u) = s(v), p(u) < p(v) and s(w) = s(x), p(w) > p(x). Then p(w) > p(x) >
p(v) > p(u), which shows that u 6= x, u 6= w and v 6= w, a contradiction.

(b) s(u) = s(v), p(u) < p(v) and s(w) 6= s(x), p(w) < p(x). Then p(u) < p(x),
s(u) 6= s(w) and s(v) 6= s(w), which shows that u 6= x, u 6= w and v 6= w, a
contradiction.

(c) s(u) 6= s(v), p(u) > p(v) and s(w) = s(x), p(w) > p(x). Then s(u) 6= s(x),
s(u) 6= s(w) and p(w) > p(v), which shows that u 6= x, u 6= w and v 6= w, a
contradiction.

(d) s(u) 6= s(v), p(u) > p(v) and s(w) 6= s(x), p(w) < p(x). Then s(u) 6=
s(x) which shows that u 6= x. If u = w, then p(v) < p(u) = p(w) < p(x) =
p(v) + 1, which is impossible. Then v = w and s(x) 6= s(w) = s(v) = s(x), a
contradiction.

Corollary 4. Let G = Kr1,r2,...,rk be a complete k-partite graph with k ≥ 2 and

let r1 = min{r1, . . . , rk}. Then

χi(G) =

{

∆(G) + 1 if r1 = 1,

∆(G) + 2 if r1 > 1.
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3. NP-Completeness of the Incidence 4-Coloring of Semicubic

Bipartite Graphs

In this section we discuss the complexity results of the incidence 4-coloring prob-
lems and prove that the incidence 4-coloring problem for semicubic bipartite
graphs is NP-complete. By semicubic graphs we mean graphs with ∆ = 3 and
vertices of degree equal to 1 or 3.

Theorem 5 [13]. The incidence 4-coloring problem for semicubic graphs is NP-

complete.

In fact, the authors observed in [13] that for semicubic graphs the problem of
2-distance coloring (i.e., a proper vertex coloring such that all vertices having a
common neighbour are of distinct colors) is equivalent to the incidence 4-coloring
problem. Indeed, for any incidence 4-coloring of a semicubic graph, the colors of
incidences leading to a common vertex (say v) are equal (say a), hence we can
assign the color a to the vertex v. Thus from the definition of adjacent incidences
we get a proper 2-distance vertex coloring.

Proposition 6 [13]. For semicubic graphs the incidence 4-coloring problem is

equivalent to the 2-distance 4-coloring problem.

By an L(p, q)-labelling [4] we mean an assignment of nonnegative integers to
the vertices of a graph such that adjacent vertices are labelled using colors at
least p apart, and vertices having a common neighbour are labelled using colors
at least q apart. By [4] any 2-distance vertex coloring of a graph is the same as
its L(1, 1)-labelling, thus we have the following result.

Proposition 7. For semicubic graphs the incidence 4-coloring problem is equiv-

alent to the L(1, 1)-labelling problem with 4 colors.

In [12] the authors introduced the concept of generalized dominating sets as
follows. For a given graph G = (V,E) and two subsets σ and ρ of nonnegative
integers, by a (σ, ρ)-set we mean any subset S ⊂ V such that for any v ∈ S we have
|N(v) ∩ S| ∈ σ and for any v /∈ S there is |N(v) ∩ S| ∈ ρ. By a (k, σ, ρ)-partition
of V we mean a partition V1 ∪ · · · ∪ Vk = V such that each Vi is the (σ, ρ)-set,
for i = 1, 2, . . . , k. In [4] the author observed that any (k, {0}, {0, 1})-partition is
equivalent to an L(1, 1)-labelling with k colors, thus we get the following.

Proposition 8. For semicubic graphs the incidence 4-coloring problem is equiv-

alent to the (4, {0}, {0, 1})-partition problem.

In [12] the authors proved that the (4, {0}, {0, 1})-partition problem is NP-
complete for cubic graphs, thus by Proposition 8 we have the following theorem.
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Theorem 9. The incidence 4-coloring problem of cubic graphs is NP-complete.

In the following, we use the X3C problem, which is NP-complete [9].

X3C

Instance : A subcubic bipartite graph G = (V ∪ M,E) without pendant
vertices, such that |V | = 3q and for every vertex m ∈ M we have
deg(m) = 3 and m is adjacent to three vertices from V .

Question : Is there a subset M ′ ⊂ M of cardinality |M ′| = q dominating all
vertices in V ?

Theorem 10. The incidence 4-coloring problem for semicubic bipartite graphs is

NP-complete.

Proof. The proof proceeds by the reduction from the problem X3C. Let G =
(V ∪M,E) be a subcubic bipartite graph such that |V | = 3q and for every vertex
m ∈ M we have deg(m) = 3 and m is adjacent to exactly three vertices from V .
We construct a semicubic bipartite graph G∗ such that there is a subset M ′ ⊂ M
of cardinality |M ′| = q dominating all vertices in V if and only if there is a
2-distance 4-coloring of graph G∗, which by Proposition 6 is equivalent to the
existence of an incidence 4-coloring of graph G∗.

Let n2 and n3 be the number of vertices in V of degree 2 and 3, respectively.
Let us consider graphs H and Hi (for i = 2, 3, . . .), shown in Figures 1, 2 and 3.
Let H be a graph shown in Figure 1 (on the left-hand side) consisting of white
vertices only (i.e., without vertices x and y) and edges between them.

x y

≡
x y

H

Figure 1. An auxiliary graph H (x, y /∈ V (H)).

Let H2 be a graph shown in Figure 2 (on the left-hand side) consisting of two
isomorphic and disjoint copies of graph H with attached two white vertices, i.e.,
vertex y and its pendant neighbour. We assume that two vertices x1 and x2 do
not belong to H2. Let H∗

2 be a graph shown in Figure 4, i.e., the graph H2 with
attached two vertices x1 and x2.

x1 y x2
≡

x1 x2
H2H H

Figure 2. An auxiliary graph H2 (x1, x2 /∈ V (H2)).
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For each integer i ≥ 2, let Hi+1 be a graph shown in Figure 3 and constructed
as follows: Take an isomorphic copy of graph H∗

i , i.e., the graph Hi with attached
pendant vertices x′1, . . . , x

′
i (shown on the left-hand side in Figure 3) and add two

disjoint isomorphic copies of graph H2 with attached two pendant vertices to each
of them (in the manner as shown in Figure 2). Further, as shown in Figure 3,
identify the vertex x′i with two joined pendant vertices, and label by xi and xi+1

the two others. Then, relabel x′k with xk for each k ∈ {1, . . . , i− 1}. We assume
that x1, . . . , xi+1 /∈ V (Hi+1).

Let H∗
i+1 be a graph obtained from the graph Hi+1 by attaching pendant

vertices x1, . . . , xi+1, as shown in Figure 3 (on the right-hand side). For each
integer i ≥ 2, the graph H∗

i is bipartite and the vertices x1, . . . , xi are in the same
partition. Moreover, the graph H∗

i is semicubic and 2-distance 4-colorable.

x′1x
′
2 x′i

Hi

H∗
i

x1x2

xi xi+1

Hi

H2 H2

−→ ≡

x1x2 xi+1

Hi+1

H∗
i+1

. . .
. . .

. . .

Figure 3. The iterative construction of auxiliary graphs Hi+1 and H∗

i+1 (for i = 2, 3, . . .).

Observation 11. For every graph H∗
i (i ≥ 2), in every 2-distance 4-coloring of

graph H∗
i the colors assigned to vertices x1, . . . , xi are equal.

Proof. Let i = 2 and let c be any 2-distance 4-coloring of graph H∗
2 . The graph

H∗
2 contains as a subgraph two copies of graph H. By a simple analysis, we leave

it to the reader, we can prove that c(x1) = c(y) and analogously c(y) = c(x2). By
induction, the thesis follows for every i ≥ 2.

Observation 12. For every graph H∗
i (i ≥ 2), if we precolor vertices x1, . . . , xi

with one color, say 1, and the neighbors of x1, . . . , xi with arbitrary colors from

the set {2, 3, 4}, then we can extend this precoloring to a 2-distance 4-coloring of

the whole graph H∗
i .

Proof. Let i = 2 and let v1 and v2 be vertices neighboring in the graph H∗
2 with

vertices x1 and x2, respectively. Let w1 be a neighbor of the interior vertex y (see
Figure 2) that is at distance 2 from v1, and, analogously, let w2 be a neighbor of
y at distance 2 from w2, which is shown in Figure 4.

Now, without loss of generality, let us assume that we precolor vertices x1
and x2 with color 1, and v1 with color 2, and v2 with color p, that may equal
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either 2 or 3. In both cases, we color the vertex w1 with 3 and the vertex w2 with
color 4, what is extendible to the whole graph H∗

2 , which we leave to the reader.
By induction, we have the thesis for every integer i ≥ 2.

x1 v1 w1 y w2 v2 x2

Figure 4. Graph H∗

2 .

Let us consider graphs A2 and A3, shown in Figures 5 and 6. By a detailed
(but simple) analysis of graphs A2 and A3 we have the following results.

a b

u

≡ a b

A2

Figure 5. Graph A2.

b

a

u w

c

≡ a b c

A3

H2

H2

H2

Figure 6. Graph A3.

Observation 13. (i) In every 2-distance 4-coloring of the graph A2 the colors

assigned to vertices a and b are different and one of them is equal to the color of

vertex u.

(ii) Any precoloring of vertices {a, b, u} of the graph A2, where the colors

assigned to vertices a and b are different, and either a or b has the same color as

u, we can extend to a 2-distance 4-coloring of the graph A2.

Observation 14. (i) In every 2-distance 4-coloring of the graph A3 the colors

assigned to vertices a, b and c are different and one of them is equal to the color

of vertex u.
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(ii) Any precoloring of vertices {a, b, c, u} of the graph A3, where the colors

assigned to vertices a, b, c are different, and either a, b or c has the same color as

u, we can extend to a 2-distance 4-coloring of graph A3.

We will transform (in polynomial time) the graph G into G∗ in four steps:

1. each vertex v ∈ V of degree 2 and neighbors m1,m2 ∈ M replace with a
graph A2(v) (isomorphic to A2) and add two edges {m1, a} and {m2, b},

2. each vertex v ∈ V of degree 3 and neighbors m1,m2,m3 ∈ M replace with
a graph A3(v) (isomorphic to A3) and add three edges {m1, a}, {m2, b} and
{m3, c}; graphs of both types (A2(v) or A3(v)) we call further A-graphs,

3. each vertex m ∈ M replace with a graph H∗
3 (m) (isomorphic to H∗

3 ) and
identify three neighbors of m (in an A-graph) with vertices x1, x2, x3 ∈
V (H∗

3 (m)),

4. attach a graph H∗
p , where p = 2n3 + n2 and uniquely identify the pendant

vertices x1, . . . , xp ∈ V (H∗
p ) with vertices u and w in all A-graphs.

It is easy to observe that the graph G∗ is a semicubic bipartite graph. By Obser-
vation 11 and Observations 13(i) and 14(i) we have the following.

Observation 15. In every 2-distance 4-coloring of the graph G∗ the same color

(say 1) is assigned to vertices u and w in all A-graphs, and in every A-graph there

is exactly one vertex of a, b, c colored with 1.

(⇒) Suppose, M ′ ⊂ M dominates all vertices in V and |M ′| = q. We
construct a 2-distance 4-coloring of graph the G∗ as follows: (1) for every m ∈ M ′

color with 1 vertices x1, x2, x3 from the graph H∗
3 (m), (2) color with 1 vertices u

and w in all A-graphs. Let us notice that after removing set of vertices M ′ from
the graph G, each vertex from V in the result graph is of degree 1 or 2, thus (3)
for every m ∈ M \M ′ we can color vertices x1, x2, x3 from the graph H∗

3 (m) with
either 2, 3 or 4 (by Brooks theorem). By Observation 12 and Observations 13(ii)
and 14(ii) we can extend this precoloring to the 2-distance 4-coloring of the whole
graph G∗.

(⇐) Let c be any 2-distance 4-coloring of the graph G∗. By Observation 15
the colors assigned to vertices u and w in all A-graphs are equal (say 1). Moreover,
by Observation 15 there is exactly one vertex from {a, b} in every graph A2(v)
and exactly one vertex from {a, b, c} in every graph A3(v) colored with 1, thus the
set of all vertices m ∈ M such that the corresponding graph H∗

3 (m) has vertices
x1, x2, x3 colored with 1, is the solution to the X3C problem.

By Proposition 7 we have the following.

Corollary 16. The L(1, 1)-labelling problem with 4 colors for bipartite semicubic

graphs is NP-complete.
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The complexity of the incidence 4-coloring problem (and equivalently, the
L(1, 1)-labelling problem with 4 colors) for cubic bipartite graphs remains un-
known.
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