Discussiones Mathematicae Graph Theory 38 (2018) 107–119 doi:10.7151/dmgt.1995

ON INCIDENCE COLORING OF COMPLETE MULTIPARTITE AND SEMICUBIC BIPARTITE GRAPHS ¹

Robert Janczewski, Michał Małafiejski

Department of Algorithms and System Modelling Faculty of Electronics, Telecommunications and Informatics Gdańsk University of Technology, Poland

e-mail: skalar@eti.pg.gda.pl, michal@animima.org

AND

Anna Małafiejska

Department of Probability Theory and Biomathematics Faculty of Physics and Applied Mathematics Gdańsk University of Technology, Poland

e-mail: anna@animima.org

Abstract

In the paper, we show that the incidence chromatic number χ_i of a complete k-partite graph is at most $\Delta+2$ (i.e., proving the *incidence coloring conjecture* for these graphs) and it is equal to $\Delta+1$ if and only if the smallest part has only one vertex (i.e., $\Delta = n-1$). Formally, for a complete k-partite graph $G = K_{r_1,r_2,\ldots,r_k}$ with the size of the smallest part equal to $r_1 \geq 1$ we have

 $\chi_i(G) = \begin{cases} \Delta(G) + 1 & \text{if } r_1 = 1, \\ \Delta(G) + 2 & \text{if } r_1 > 1. \end{cases}$

In the paper we prove that the incidence 4-coloring problem for semicubic bipartite graphs is \mathcal{NP} -complete, thus we prove also the \mathcal{NP} -completeness of L(1, 1)-labeling problem for semicubic bipartite graphs. Moreover, we observe that the incidence 4-coloring problem is \mathcal{NP} -complete for cubic graphs, which was proved in the paper [12] (in terms of generalized dominating sets). **Keywords:** incidence coloring, complete multipartite graphs, semicubic graphs, subcubic graphs, \mathcal{NP} -completeness, L(1, 1)-labelling.

2010 Mathematics Subject Classification: 05C69, 05C05, 05C85.

 $^{^1{\}rm This}$ project has been partially supported by Narodowe Centrum Nauki under contract DEC-2011/02/A/ST6/00201.

1. INTRODUCTION

In the following we consider connected simple graphs only, and use standard notations in graph theory. Let n be a positive integer and G = (V, E) be any nvertex graph of the maximum degree² $\Delta(G) > 0$. A pair $(u, \{u, v\})$ is an *incidence* of G if and only if $u, v \in V$ and $\{u, v\} \in E$. The set of all incidences of G will be denoted by I(G). To shorten the notation, we will write uv instead of $(u, \{u, v\})$. We will say that incidence uv leads from u to v. We will say that incidences $uv \neq wx$ are adjacent in G if and only if one of the following holds: (1) u = w; (2) u = x and v = w; (3) $(u \neq x$ and v = w) or (u = x and $v \neq w)$, which is equivalent to u = x or u = w or v = w. Obviously, if uv is adjacent to wx, then $v \neq x$.

A function $c: I(G) \to \mathbb{N}$ is an *incidence coloring* of G if and only if $c(uv) \neq c(wx)$ for all adjacent incidences uv and wx. The *incidence coloring number* of G, denoted by $\chi_i(G)$, is the smallest integer k such that there is an incidence coloring c of G using exactly k colors. By the *incidence k-coloring*, we mean an incidence coloring c of G with k colors (i.e., k = |c(I(G))|), and by the *incidence k-coloring problem* we mean a decision problem of the existence of the incidence k-coloring in a graph G.

The notion of the incidence coloring was introduced in [3]. In [10] the author observed that the problem of incidence graph coloring is a special case of the star arboricity problem, i.e., the problem of partitioning of a set of arcs of a symmetric digraph into the smallest number of forests of directed stars. That problem was studied in [1, 2, 10].

The following bounds are well-known (see [3, 17]).

Proposition 1. For every graph G of order $n \ge 2$ and $\Delta(G) > 0$ there is

$$\Delta(G) + 1 \le \chi_i(G) \le n.$$

The upper bound $\chi_i(G) \leq 2\Delta(G)$ for every graph G has been proved in [3]. This bound has been improved in [10], where the author proved that $\chi_i(G) \leq \Delta(G) + O(\log \Delta(G))$ for every graph G.

1.1. Motivation and our results

In [3] the authors conjectured that $\chi_i(G) \leq \Delta(G) + 2$ holds for every graph G (*incidence coloring conjecture*, shortly ICC). This was disproved by Guiduli in [10] who showed that Paley graphs have incidence coloring number at least $\Delta + \Omega(\log \Delta)$. For the following classes of graphs the incidence coloring number is at most $\Delta + 2$: trees and cycles [3], complete graphs [3] and complete bipartite

²We sometimes write Δ instead of $\Delta(G)$ whenever G is clear from the context.

graphs [5] and [3] (proof corrected in [17]). In fact, for all of them the exact value is equal to $\Delta + 1$ or $\Delta + 2$ and the optimal coloring is constructed in polynomial time. In [7] the authors proved that any partial 2-tree (i.e., K_4 -minor free graph) admits $\Delta + 2$ incidence coloring, hence for all outerplanar graphs ICC holds. In [8] the authors proved that every planar graph with girth at least 11 or with girth at least 6 and maximum degree at least 5 has incidence coloring number at most $\Delta + 2$. Recently, the conjecture was proved for pseudo-Halin graphs [11], some powers of cycles [15] and hypercubes [16].

In the paper [19] the authors claim that the incidence coloring conjecture holds for complete multipartite graphs, but the coloring presented in the proof of Theorem 3.1 in [19] is incorrect and presented without a full proof. In Section 2 we will show that the incidence coloring number of complete k-partite graphs is at most $\Delta + 2$, and is equal to $\Delta + 1$ if and only if the size of the smallest part equals 1. We present an $O(n^2)$ -time algorithm giving an optimal coloring (i.e., with the minimum number of colors).

In [6] the authors proved that ICC holds for some subclasses of cubic graphs (e.g. Hamiltonian cubic graphs). In [18] the author proved that ICC holds for cubic graphs having a Hamiltonian path and for bridgeless cubic graphs of high girth. At last, in [14] the author proved that ICC holds for subcubic graphs. In [13] the authors proved \mathcal{NP} -completeness of the incidence 4-colorability of *semicubic* graphs (i.e., graphs with $\Delta = 3$ and vertices of degree equal to 1 or 3). By the paper [12] we conclude that the incidence 4-coloring problem is \mathcal{NP} complete for cubic graphs. The complexity of this problem was unknown for (semicubic) bipartite graphs. In Section 3 we will show that incidence 4-colorability of semicubic bipartite graphs is \mathcal{NP} -complete.

2. Incidence Coloring of Complete Multipartite Graphs

In this section we present an algorithm (formula) giving a coloring of a multipartite graph using at most $\Delta + 2$ colors.

In [19] the authors presented Theorem 3.1 claiming that the incidence coloring conjecture holds for complete multipartite graphs. The coloring σ presented in the proof of Theorem 3.1 is incorrect and in fact there is no proof that this coloring is a proper incidence coloring and uses at most $\Delta + 2$ colors. In the coloring definition (3.2) [19] the authors use the formula $\sum_{m=0}^{t-1} (n_m + s)$, but n_0 is undefined, so we believe it should be corrected to m = 1. But in this case, following the notation from [19], for $k \geq 3$ let t = k - 1 and $s = n_t$. Take any j < t, hence for $n_j \geq n_t$ we can put i = s, thus we get $\sigma(v_s^j, v_s^j v_s^{k-1}) = \sum_{m=1}^{k-2} (n_m + s) = \sum_{m=1}^{k-1} n_m + (k-3)n_{k-1} = \Delta + (k-3)n_{k-1} > \Delta + 2$, for $k \geq 6$ or k = 5 and $n_{k-1} > 1$.

In the following, we present a different coloring than the coloring σ from [19].

Let $G = K_{r_1, r_2, ..., r_k}$ be a complete k-partite graph with $V(G) = V_1 \cup \cdots \cup V_k$, where integer $k \ge 1$, $|V_i| = r_i$, for each $i \in \{1, ..., k\}$, and all V_i are independent sets and pairwise disjoint.

Theorem 2. For any complete multipartite graph $G = K_{r_1,r_2,...,r_k}$ with $k \ge 2$, there is

$$\chi_i(G) = \Delta(G) + 1$$
 if and only if $r_1 = 1$,

where $r_1 = \min\{r_1, \ldots, r_k\}.$

Proof. (\Rightarrow) Let c be an incidence coloring of G that uses $\Delta + 1$ colors. Suppose that $r_1 > 1$. Let $u \neq v$ be two vertices that belong to V_1 . Then

- u is of degree Δ and c uses exactly $\Delta + 1$ colors, so all incidences that lead to u must have the same color, say a;
- v is of degree Δ and c uses exactly Δ + 1 colors, so all incidences that lead to v must have the same color, say b;
- $a \neq b$ since u and v have identical neighborhoods;
- incidences that lead from u also lead to vertices that are adjacent to v, so colors of incidences leading from u must differ from b.

Hence c uses at least $\Delta + 2$ colors: a, b and Δ other colors on incidences that lead from u, a contradiction.

(⇐) It follows immediately from Proposition 1, since $\Delta(G) = |V(G)| - r_1$.

Theorem 3. For any complete multipartite graph $G = K_{r_1,r_2,...,r_k}$ with $k \ge 2$, there is

$$\chi_i(G) \le \Delta(G) + 2.$$

Proof. Let us assume that $1 \leq r_1 \leq r_2 \leq \cdots \leq r_k$ and $V(G) = V_1 \cup \cdots \cup V_k$, $|V_i| = r_i$, and sets from $\{V_i\}_{i \in \{1,\dots,k\}}$ are independent sets and pairwise disjoint. Let n = |V(G)|. It suffices to show that there is an incidence coloring of G that uses at most $\Delta + 2$ colors. Before we do this, we have to introduce some notations.

Let $s_i: V_i \to \{1, 2, ..., r_i\}$ be any numbering of vertices of V_i for $i \in \{1, ..., k\}$. Let $p: V(G) \to \{1, 2, ..., k\}$ be a function such that p(u) = i if and only if $u \in V_i$. Let

$$V(G) \ni u \mapsto s(u) = r_k + 1 - s_{p(u)}(u) \in \{1, 2, \dots, r_k\}$$

and

$$\{1, 2, \dots, r_k\} \ni j \mapsto l(j) = \sum_{i=1}^{j-1} \left(|s^{-1}(\{i\})| - \lfloor |s^{-1}(\{i\})|/k \rfloor \right) \in \mathbb{N} \cup \{0\}.$$

It is easy to see the following properties.

110

(1) u = v if and only if p(u) = p(v) and s(u) = s(v); (2) $1 \le |s^{-1}(\{1\})| \le |s^{-1}(\{2\})| \le \dots \le |s^{-1}(\{r_k\})| = k$; (3) $|s^{-1}(\{i\})| = k$ if and only if $r_k \ge i \ge r_k - r_1 + 1$; (4) $k + 1 - |s^{-1}(\{s(v)\})| \le p(v) \le k$.

Now we are ready to construct the required incidence coloring c. We define it in two steps. First, we define it on incidences uv such that s(u) = s(v):

$$c(uv) = \begin{cases} \Delta + 2 & \text{if } p(v) = k, \\ k + 1 - p(v) + l(s(v)) & \text{if } p(u) > p(v) > k + 1 - |s^{-1}(\{s(v)\})|, \\ k - p(v) + l(s(v)) & \text{if } p(u) < p(v) < k, \\ \Delta + 1 & \text{if } p(v) = k + 1 - |s^{-1}(\{s(v)\})| \neq k. \end{cases}$$

Next, we extend it to other incidences by the formula:

$$c(uv) = \begin{cases} k+1 - p(v) + l(s(v)) & \text{if } p(u) < p(v), \\ k - p(v) + l(s(v)) & \text{if } p(u) > p(v). \end{cases}$$

Since $p(u) \neq p(v)$ for all incidences uv, the above formula determines the value of c(uv) for all incidences of G. To complete the proof, it suffices to show that $c(I(G)) \subseteq \{1, 2, \ldots, \Delta + 2\}$ and c is an incidence coloring of G.

It is easy to see that $c \ge 1$. On the other hand, $\Delta = n - r_1 = n - |\{i: |s^{-1}(\{i\})| = k\}| = \sum_{i=1}^{r_k} (|s^{-1}(\{i\})| - \lfloor |s^{-1}(\{i\})|/k\rfloor) = |s^{-1}(\{r_k\})| - 1 + l(r_k) \ge |s^{-1}(\{s(v)\})| - 1 + l(s(v)) \ge k - p(v) + l(s(v)), \text{ so } c \le \Delta + 2.$ Moreover, $k - p(v) + l(s(v)) = \Delta$ if and only if $s(v) = r_k$ and p(v) = 1. As an easy consequence we get that $c^{-1}(\{\Delta + 1\})$ and $c^{-1}(\{\Delta + 2\})$ are independent sets.

Suppose that c is not an incidence coloring of G. Then $c(uv) = c(wx) \leq \Delta$ for some adjacent incidences uv, wx. Without loss of generality we assume $s(x) \geq s(v)$. There are several cases to consider.

•
$$s(x) \ge s(v) + 2$$
 and $|s^{-1}(\{s(v) + 1\})| = k$.

Then $c(wx) \ge k - p(x) + l(s(x)) \ge l(s(x)) \ge l(s(v) + 2) \ge |s^{-1}(\{s(v)\})| + |s^{-1}(\{s(v)+1\})| - 2 + l(s(v)) \ge |s^{-1}(\{s(v)\})| + l(s(v))$. By (4) we have $|s^{-1}(\{s(v)\})| + l(s(v)) \ge k + 1 - p(v) + l(s(v)) \ge c(uv)$. Since c(wx) = c(uv), we get p(x) = k and c(wx) = k - p(x) + l(s(x)), a contradiction.

• $s(x) \ge s(v) + 2$ and $|s^{-1}(\{s(v) + 1\})| < k$.

Then $|s^{-1}(\{s(v)\})| < k$ and $c(wx) \ge k - p(x) + l(s(x)) \ge l(s(x)) \ge l(s(v) + 2) = |s^{-1}(\{s(v)\})| + |s^{-1}(\{s(v) + 1\})| + l(s(v)) > |s^{-1}(\{s(v)\})| + l(s(v)) \ge k + 1 - p(v) + l(s(v)) \ge c(uv)$, a contradiction.

• s(x) = s(v) + 1 and c(uv) = k - p(v) + l(s(v)).

Then $c(wx) \ge k - p(x) + l(s(x)) \ge l(s(x)) = l(s(v) + 1) \ge |s^{-1}(\{s(v)\})| - 1 + l(s(v)) \ge k - p(v) + l(s(v)) = c(uv)$. These inequalities must be equalities since c(wx) = c(uv). This gives p(x) = k and c(wx) = k - p(x) + l(s(x)), a contradiction.

•
$$s(x) = s(v) + 1$$
 and $c(uv) = k + 1 - p(v) + l(s(v))$ and $|s^{-1}(\{s(v)\})| = k$.

Then $p(v) \ge 2$ and $c(wx) \ge k - p(x) + l(s(x)) \ge l(s(x)) = l(s(v) + 1) = |s^{-1}(\{s(v)\})| - 1 + l(s(v)) = k - 1 + l(s(v)) \ge k + 1 - p(v) + l(s(v)) = c(uv)$. These inequalities must be equalities since c(wx) = c(uv). This gives p(x) = k and c(wx) = k - p(x) + l(s(x)), a contradiction.

•
$$s(x) = s(v) + 1$$
 and $c(uv) = k + 1 - p(v) + l(s(v))$ and $|s^{-1}(\{s(v)\})| < k$.

Then $c(wx) \ge k - p(x) + l(s(x)) \ge l(s(x)) = l(s(v) + 1) = |s^{-1}(\{s(v)\})| + l(s(v)) \ge k + 1 - p(v) + l(s(v)) = c(uv)$. These inequalities must be equalities since c(wx) = c(uv). This gives p(x) = k and c(wx) = k - p(x) + l(s(x)), a contradiction.

• s(x) = s(v).

s(x) = s(v) implies $p(x) \neq p(v)$. Without loss of generality we assume that p(x) > p(v). Then $c(wx) \leq k + 1 - p(x) + l(s(x)) \leq k - p(v) + l(s(v)) = c(uv)$, which gives c(wx) = k + 1 - p(x) + l(s(x)), c(uv) = k - p(v) + l(s(v)) and p(x) = p(v) + 1. There are 4 subcases to consider.

(a) s(u) = s(v), p(u) < p(v) and s(w) = s(x), p(w) > p(x). Then p(w) > p(x) > p(v) > p(u), which shows that $u \neq x$, $u \neq w$ and $v \neq w$, a contradiction.

(b) s(u) = s(v), p(u) < p(v) and $s(w) \neq s(x)$, p(w) < p(x). Then p(u) < p(x), $s(u) \neq s(w)$ and $s(v) \neq s(w)$, which shows that $u \neq x$, $u \neq w$ and $v \neq w$, a contradiction.

(c) $s(u) \neq s(v)$, p(u) > p(v) and s(w) = s(x), p(w) > p(x). Then $s(u) \neq s(x)$, $s(u) \neq s(w)$ and p(w) > p(v), which shows that $u \neq x$, $u \neq w$ and $v \neq w$, a contradiction.

(d) $s(u) \neq s(v)$, p(u) > p(v) and $s(w) \neq s(x)$, p(w) < p(x). Then $s(u) \neq s(x)$ which shows that $u \neq x$. If u = w, then p(v) < p(u) = p(w) < p(x) = p(v) + 1, which is impossible. Then v = w and $s(x) \neq s(w) = s(v) = s(x)$, a contradiction.

Corollary 4. Let $G = K_{r_1,r_2,...,r_k}$ be a complete k-partite graph with $k \ge 2$ and let $r_1 = \min\{r_1,...,r_k\}$. Then

$$\chi_i(G) = \begin{cases} \Delta(G) + 1 & \text{if } r_1 = 1, \\ \Delta(G) + 2 & \text{if } r_1 > 1. \end{cases}$$

3. \mathcal{NP} -Completeness of the Incidence 4-Coloring of Semicubic Bipartite Graphs

In this section we discuss the complexity results of the incidence 4-coloring problems and prove that the incidence 4-coloring problem for semicubic bipartite graphs is \mathcal{NP} -complete. By semicubic graphs we mean graphs with $\Delta = 3$ and vertices of degree equal to 1 or 3.

Theorem 5 [13]. The incidence 4-coloring problem for semicubic graphs is \mathcal{NP} complete.

In fact, the authors observed in [13] that for semicubic graphs the problem of 2-distance coloring (i.e., a proper vertex coloring such that all vertices having a common neighbour are of distinct colors) is equivalent to the incidence 4-coloring problem. Indeed, for any incidence 4-coloring of a semicubic graph, the colors of incidences leading to a common vertex (say v) are equal (say a), hence we can assign the color a to the vertex v. Thus from the definition of adjacent incidences we get a proper 2-distance vertex coloring.

Proposition 6 [13]. For semicubic graphs the incidence 4-coloring problem is equivalent to the 2-distance 4-coloring problem.

By an L(p,q)-labelling [4] we mean an assignment of nonnegative integers to the vertices of a graph such that adjacent vertices are labelled using colors at least p apart, and vertices having a common neighbour are labelled using colors at least q apart. By [4] any 2-distance vertex coloring of a graph is the same as its L(1, 1)-labelling, thus we have the following result.

Proposition 7. For semicubic graphs the incidence 4-coloring problem is equivalent to the L(1, 1)-labelling problem with 4 colors.

In [12] the authors introduced the concept of generalized dominating sets as follows. For a given graph G = (V, E) and two subsets σ and ρ of nonnegative integers, by a (σ, ρ) -set we mean any subset $S \subset V$ such that for any $v \in S$ we have $|N(v) \cap S| \in \sigma$ and for any $v \notin S$ there is $|N(v) \cap S| \in \rho$. By a (k, σ, ρ) -partition of V we mean a partition $V_1 \cup \cdots \cup V_k = V$ such that each V_i is the (σ, ρ) -set, for $i = 1, 2, \ldots, k$. In [4] the author observed that any $(k, \{0\}, \{0, 1\})$ -partition is equivalent to an L(1, 1)-labelling with k colors, thus we get the following.

Proposition 8. For semicubic graphs the incidence 4-coloring problem is equivalent to the $(4, \{0\}, \{0, 1\})$ -partition problem.

In [12] the authors proved that the $(4, \{0\}, \{0, 1\})$ -partition problem is \mathcal{NP} complete for cubic graphs, thus by Proposition 8 we have the following theorem.

Theorem 9. The incidence 4-coloring problem of cubic graphs is \mathcal{NP} -complete.

In the following, we use the $\overline{X3C}$ problem, which is \mathcal{NP} -complete [9].

X3C	
Instance:	A subcubic bipartite graph $G = (V \cup M, E)$ without pendant
	vertices, such that $ V = 3q$ and for every vertex $m \in M$ we have
	deg(m) = 3 and m is adjacent to three vertices from V.
Question:	Is there a subset $M' \subset M$ of cardinality $ M' = q$ dominating all
	vertices in V ?

Theorem 10. The incidence 4-coloring problem for semicubic bipartite graphs is \mathcal{NP} -complete.

Proof. The proof proceeds by the reduction from the problem $\overline{\mathsf{X3C}}$. Let $G = (V \cup M, E)$ be a subcubic bipartite graph such that |V| = 3q and for every vertex $m \in M$ we have $\deg(m) = 3$ and m is adjacent to exactly three vertices from V. We construct a semicubic bipartite graph G^* such that there is a subset $M' \subset M$ of cardinality |M'| = q dominating all vertices in V if and only if there is a 2-distance 4-coloring of graph G^* , which by Proposition 6 is equivalent to the existence of an incidence 4-coloring of graph G^* .

Let n_2 and n_3 be the number of vertices in V of degree 2 and 3, respectively. Let us consider graphs H and H_i (for i = 2, 3, ...), shown in Figures 1, 2 and 3. Let H be a graph shown in Figure 1 (on the left-hand side) consisting of white vertices only (i.e., without vertices x and y) and edges between them.

Figure 1. An auxiliary graph $H(x, y \notin V(H))$.

Let H_2 be a graph shown in Figure 2 (on the left-hand side) consisting of two isomorphic and disjoint copies of graph H with attached two white vertices, i.e., vertex y and its pendant neighbour. We assume that two vertices x_1 and x_2 do not belong to H_2 . Let H_2^* be a graph shown in Figure 4, i.e., the graph H_2 with attached two vertices x_1 and x_2 .

$$\begin{array}{c} \bullet \\ \bullet \\ x_1 \end{array} H \begin{array}{c} \bullet \\ y \end{array} H \begin{array}{c} \bullet \\ x_2 \end{array} \equiv \begin{array}{c} \bullet \\ x_1 \end{array} H \begin{array}{c} \bullet \\ H_2 \end{array} \begin{array}{c} \bullet \\ x_2 \end{array}$$

Figure 2. An auxiliary graph H_2 $(x_1, x_2 \notin V(H_2))$.

For each integer $i \geq 2$, let H_{i+1} be a graph shown in Figure 3 and constructed as follows: Take an isomorphic copy of graph H_i^* , i.e., the graph H_i with attached pendant vertices x'_1, \ldots, x'_i (shown on the left-hand side in Figure 3) and add two disjoint isomorphic copies of graph H_2 with attached two pendant vertices to each of them (in the manner as shown in Figure 2). Further, as shown in Figure 3, identify the vertex x'_i with two joined pendant vertices, and label by x_i and x_{i+1} the two others. Then, relabel x'_k with x_k for each $k \in \{1, \ldots, i-1\}$. We assume that $x_1, \ldots, x_{i+1} \notin V(H_{i+1})$.

Let H_{i+1}^* be a graph obtained from the graph H_{i+1} by attaching pendant vertices x_1, \ldots, x_{i+1} , as shown in Figure 3 (on the right-hand side). For each integer $i \geq 2$, the graph H_i^* is bipartite and the vertices x_1, \ldots, x_i are in the same partition. Moreover, the graph H_i^* is semicubic and 2-distance 4-colorable.

Figure 3. The iterative construction of auxiliary graphs H_{i+1} and H_{i+1}^* (for i = 2, 3, ...).

Observation 11. For every graph H_i^* $(i \ge 2)$, in every 2-distance 4-coloring of graph H_i^* the colors assigned to vertices x_1, \ldots, x_i are equal.

Proof. Let i = 2 and let c be any 2-distance 4-coloring of graph H_2^* . The graph H_2^* contains as a subgraph two copies of graph H. By a simple analysis, we leave it to the reader, we can prove that $c(x_1) = c(y)$ and analogously $c(y) = c(x_2)$. By induction, the thesis follows for every $i \ge 2$.

Observation 12. For every graph H_i^* $(i \ge 2)$, if we precolor vertices x_1, \ldots, x_i with one color, say 1, and the neighbors of x_1, \ldots, x_i with arbitrary colors from the set $\{2, 3, 4\}$, then we can extend this precoloring to a 2-distance 4-coloring of the whole graph H_i^* .

Proof. Let i = 2 and let v_1 and v_2 be vertices neighboring in the graph H_2^* with vertices x_1 and x_2 , respectively. Let w_1 be a neighbor of the *interior* vertex y (see Figure 2) that is at distance 2 from v_1 , and, analogously, let w_2 be a neighbor of y at distance 2 from w_2 , which is shown in Figure 4.

Now, without loss of generality, let us assume that we precolor vertices x_1 and x_2 with color 1, and v_1 with color 2, and v_2 with color p, that may equal

either 2 or 3. In both cases, we color the vertex w_1 with 3 and the vertex w_2 with color 4, what is extendible to the whole graph H_2^* , which we leave to the reader. By induction, we have the thesis for every integer $i \ge 2$.

Figure 4. Graph H_2^* .

Let us consider graphs A_2 and A_3 , shown in Figures 5 and 6. By a detailed (but simple) analysis of graphs A_2 and A_3 we have the following results.

Figure 5. Graph A_2 .

Figure 6. Graph A_3 .

Observation 13. (i) In every 2-distance 4-coloring of the graph A_2 the colors assigned to vertices a and b are different and one of them is equal to the color of vertex u.

(ii) Any precoloring of vertices $\{a, b, u\}$ of the graph A_2 , where the colors assigned to vertices a and b are different, and either a or b has the same color as u, we can extend to a 2-distance 4-coloring of the graph A_2 .

Observation 14. (i) In every 2-distance 4-coloring of the graph A_3 the colors assigned to vertices a, b and c are different and one of them is equal to the color of vertex u.

(ii) Any precoloring of vertices $\{a, b, c, u\}$ of the graph A_3 , where the colors assigned to vertices a, b, c are different, and either a, b or c has the same color as u, we can extend to a 2-distance 4-coloring of graph A_3 .

We will transform (in polynomial time) the graph G into G^* in four steps:

- 1. each vertex $v \in V$ of degree 2 and neighbors $m_1, m_2 \in M$ replace with a graph $A_2(v)$ (isomorphic to A_2) and add two edges $\{m_1, a\}$ and $\{m_2, b\}$,
- 2. each vertex $v \in V$ of degree 3 and neighbors $m_1, m_2, m_3 \in M$ replace with a graph $A_3(v)$ (isomorphic to A_3) and add three edges $\{m_1, a\}, \{m_2, b\}$ and $\{m_3, c\}$; graphs of both types $(A_2(v) \text{ or } A_3(v))$ we call further A-graphs,
- 3. each vertex $m \in M$ replace with a graph $H_3^*(m)$ (isomorphic to H_3^*) and identify three neighbors of m (in an A-graph) with vertices $x_1, x_2, x_3 \in V(H_3^*(m))$,
- 4. attach a graph H_p^* , where $p = 2n_3 + n_2$ and uniquely identify the pendant vertices $x_1, \ldots, x_p \in V(H_p^*)$ with vertices u and w in all A-graphs.

It is easy to observe that the graph G^* is a semicubic bipartite graph. By Observation 11 and Observations 13(i) and 14(i) we have the following.

Observation 15. In every 2-distance 4-coloring of the graph G^* the same color (say 1) is assigned to vertices u and w in all A-graphs, and in every A-graph there is exactly one vertex of a, b, c colored with 1.

(⇒) Suppose, $M' \subset M$ dominates all vertices in V and |M'| = q. We construct a 2-distance 4-coloring of graph the G^* as follows: (1) for every $m \in M'$ color with 1 vertices x_1, x_2, x_3 from the graph $H_3^*(m)$, (2) color with 1 vertices u and w in all A-graphs. Let us notice that after removing set of vertices M' from the graph G, each vertex from V in the result graph is of degree 1 or 2, thus (3) for every $m \in M \setminus M'$ we can color vertices x_1, x_2, x_3 from the graph $H_3^*(m)$ with either 2, 3 or 4 (by Brooks theorem). By Observation 12 and Observations 13(ii) and 14(ii) we can extend this precoloring to the 2-distance 4-coloring of the whole graph G^* .

(\Leftarrow) Let c be any 2-distance 4-coloring of the graph G^* . By Observation 15 the colors assigned to vertices u and w in all A-graphs are equal (say 1). Moreover, by Observation 15 there is exactly one vertex from $\{a, b\}$ in every graph $A_2(v)$ and exactly one vertex from $\{a, b, c\}$ in every graph $A_3(v)$ colored with 1, thus the set of all vertices $m \in M$ such that the corresponding graph $H_3^*(m)$ has vertices x_1, x_2, x_3 colored with 1, is the solution to the $\overline{\mathsf{X3C}}$ problem.

By Proposition 7 we have the following.

Corollary 16. The L(1,1)-labelling problem with 4 colors for bipartite semicubic graphs is \mathcal{NP} -complete.

The complexity of the incidence 4-coloring problem (and equivalently, the L(1, 1)-labelling problem with 4 colors) for cubic bipartite graphs remains unknown.

References

- I. Algor and N. Alon, The star arboricity of graphs, Discrete Math. 75 (1989) 11–22. doi:10.1016/0012-365X(89)90073-3
- [2] N. Alon, C. McDiarmid and B. Reed, *Star arboricity*, Combinatorica **12** (1992) 375–380.
 doi:10.1007/BF01305230
- [3] R.A. Brualdi and J.Q. Massey, *Incidence and strong edge colorings of graphs*, Discrete Math. **122** (1993) 51–58. doi:10.1016/0012-365X(93)90286-3
- [4] T. Calamoneri, The L(h,k)-labelling problem: an updated survey and annotated bibliography, Department of Computer Science, University of Rome (2014) 1–54, a manuscript.
- [5] D.L. Chen, X.K. Liu and S.D. Wang, The incidence chromatic number and the incidence coloring conjecture of graphs, Math. Econ. 15 (1998) 47–51.
- [6] D.L. Chen, P.C.B. Lam and W.C. Shiu, On incidence coloring for some cubic graphs, Discrete Math. 252 (2002) 259–266. doi:10.1016/S0012-365X(01)00457-5
- M.H. Dolama, E. Sopena and X. Zhu, Incidence coloring of k-degenerated graphs, Discrete Math. 283 (2004) 121–128. doi:10.1016/j.disc.2004.01.015
- [8] M.H. Dolama and E. Sopena, On the maximum average degree and the incidence chromatic number of a graph, Discrete Math. Theor. Comput. Sci. 7 (2005) 203–216.
- [9] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman & Co., New York, 1979).
- B. Guiduli, On incidence coloring and star arboricity of graphs, Discrete Math. 163 (1997) 275–278. doi:10.1016/0012-365X(95)00342-T
- [11] J. Guo, X. Meng and B. Su, Incidence coloring of pseudo-Halin graphs, Discrete Math. **312** (2012) 3276–3282. doi:10.1016/j.disc.2012.07.024
- [12] P. Heggernes and J.A. Telle, Partitioning graphs into generalized dominating sets, Nordic J. Comput. 5 (1998) 128–143.
- X. Li and J. Tu, NP-completeness of 4-incidence colorability of semi-cubic graphs, Discrete Math. 308 (2008) 1334–1340. doi:10.1016/j.disc.2007.03.076

- M. Maydanskiy, The incidence coloring conjecture for graphs of maximum degree 3, Discrete Math. 292 (2005) 131–141. doi:10.1016/j.disc.2005.02.003
- [15] K. Nakprasit and K. Nakprasit, Incidence colorings of the powers of cycles, Int. J. Pure Appl. Math. 76 (2012) 143–148.
- [16] A.C. Shiau, T.-H. Shiau and Y.-L. Wang, Incidence coloring of Cartesian product graphs, Inform. Process. Lett. 115 (2015) 765–768. doi:10.1016/j.ipl.2015.05.002
- [17] W.C. Shiu and P.K. Sun, *Invalid proofs on incidence coloring*, Discrete Math. 308 (2008) 6575–6580.
 doi:10.1016/j.disc.2007.11.030
- J. Wu, Some results on the incidence coloring number of a graph, Discrete Math. 309 (2009) 3866–3870. doi:10.1016/j.disc.2008.10.027
- [19] X. Liu and Y. Li, *The incidence chromatic number of some graph*, Int. J. Math. Math. Sci. 5 (2005) 803–813. doi:10.1155/IJMMS.2005.803

Received 8 March 2016 Revised 7 October 2016 Accepted 14 October 2016