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1. Introduction

Electric power networks must be monitored continuously and this can be ac-
complished efficiently by placing phasor measurement units (PMUs) at selected
network locations. The power domination problem, as introduced in [2], is to find
the minimum number of PMUs needed to monitor a given electric power system.
This problem has been formulated as a graph theoretic problem by Haynes et al.
[10]. The additional propagational behaviour in power domination is due to the
use of Kirchhoff’s laws in an electrical network [1].

Let G be a graph and S ⊆ V (G). The open neighbourhood of a vertex v of G,
denoted by NG(v), is the set of vertices adjacent to v. The closed neighbourhood

of v is NG[v] = NG(v) ∪ {v}. For a subset S of vertices, the open (respectively
closed) neighbourhood NG(S) (respectively NG[S]) of S is the union of the open
(respectively closed) neighbourhoods of its elements. A vertex v in a graph G is
said to dominate its closed neighbourhood NG[v]. A subset S ⊆ V (G) of vertices
is a dominating set if NG[S] = V (G). The minimum cardinality among dominat-
ing sets ofG is called its domination number, denoted by γ(G). The propagational
behaviour of the set of monitored vertices distinguishes power domination from
the standard domination in the following way.

The set monitored by S, denoted by M(S), is defined algorithmically as
follows:

• (domination) M(S)← S ∪N(S),

• (propagation) as long as there exists v ∈ M(S) such that N(v) ∩ (V (G) \
M(S)) = {w}, set M(S)←M(S) ∪ {w} .

Equivalently, the set M(S) of vertices monitored by the set S is obtained
from S as follows. The set of vertices monitored by a set S, denoted by M(S),
initially consists of all vertices in NG[S]. This step is called the domination step.
Then this set is iteratively extended by including all vertices w ∈ V (G) that have
a neighbour v in M(S) such that all the other neighbours of v, except w, are
already in M(S). This second part is called the propagation step. This step is
continued until no such vertex w exists, at which stage the set monitored by S
has been constructed. The set S is called a power dominating set (PDS) of G if
M(S) = V (G). The power domination number of a graph G, denoted by γP(G),
is the minimum cardinality among power dominating sets of G.

Later, the definition of M(S) was formally described with the following sets
definition, where P i

G,1 is the set of vertices monitored after i propagation rounds.
This definition was first introduced by Aazami in [1] and then Chang et al. gen-
eralized this definition in [4] to introduce k-power domination for a nonnegative
integer k. The corresponding definition for the monitored set, M(S), is obtained
by replacing k by 1 in the following.
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Definition 1.1 (Monitored vertices). Let k ∈ N0 : = {0, 1, . . .}. If G is a graph
and S ⊆ V (G), then the sets

(
P i
G,k(S)

)

i∈N0
of vertices monitored by S at step i

are as follows:

P0
G,k(S) = NG[S], (domination step) and

P i+1
G,k (S) =

⋃
{

NG[v] : v ∈ P
i
G,k(S),

∣
∣NG[v] \ P

i
G,k(S)

∣
∣ ≤ k

}

(propagation steps).

We remark that for i ≥ 0 we have P i
G,k(S) ⊆ P

i+1
G,k (S). Furthermore, every

time a vertex of the set P i
G,k(S) has at most k neighbours outside the set, we add

its neighbours to the next generation P i+1
G,k (S). If P i0+1

G,k (S) = P i0
G,k(S) for some

i0, then P
j
G,k(S) = P

i0
G,k(S) for every j ≥ i0. We thus define P∞

G,k(S) = P
i0
G,k(S).

When the graph G is clear from the context, we will simplify the notations to
P i
k(S) and P

∞

k (S).

Definition 1.2 [4]. A k-power dominating set of G (k-PDS) is a set S ⊆ V (G)
such that P∞

G,k(S) = V (G). The k-power domination number of G, denoted by
γP,k(G), is the minimum cardinality among k-power dominating sets of G.

Clearly, γP,0(G) = γ(G) and γP,1(G) = γP(G). Upper bounds for the power
domination number are studied in [10, 19]. The power domination problem for
various products of graphs is studied in [7, 8, 18] and exact values are determined
for some product graphs. The generalized power domination is further studied
in [5, 6]. In [6], the authors introduced the k-propagation radius of a graph G,
motivated from the studies in [1], as a way to measure the efficiency of a minimum
k-PDS. It gives the minimum number of propagation steps needed to monitor the
entire graph G over all minimum k-PDS. The k-power domination number and
propagation radius of Sierpiński graphs (cf. [14]) are determined in [6].

Definition 1.3 [6]. The radius of a k-PDS is defined by

radP,k(G,S) = 1 +min
{
i : P i

G,k(S) = V (G)
}
.

The k-propagation radius of the graph can be expressed as

radP,k(G) = min {radP,k(G,S) : S is a k-PDS of G, |S| = γP,k(G)} .

Knödel graphs W∆,2ν (0 ≤ ∆− 1 ≤ ⌊log2(ν)⌋) have been introduced by
Knödel in [15] as the network topology underlying an optimal-time algorithm
for gossiping among n nodes. They have been widely studied as interconnection
networks mainly because of their favourable properties in terms of broadcast-
ing and gossiping [3]. Wr,2r is one of the three nonisomorphic infinite graph
families known to be minimum broadcast and gossip graphs. The other two fam-
ilies are the hypercube of dimension r, Hr [16] and the recursive circulant graph
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G(2r, 4) [17]. Vertex transitivity as a Cayley graph [11], high vertex and edge
connectivity, dimensionality and embedding properties [9] make the Knödel graph
a suitable candidate for a network topology and an appropriate architecture for
parallel computing. For a survey about the Knödel graphs, see [9].

We will use the notations Nt := {t, t + 1, . . .} ⊆ N0, [t] := {1, . . . , t} ⊆ N1,
and [t]0 := {0, . . . , t− 1} ⊆ N0, t ∈ N0, in the sequel; note that |[t]0| = t = |[t]|.

Definition 1.4 [9]. The Knödel graph on 2ν vertices, where ν ∈ N1, and of
maximum degree ∆ ∈ [1+ ⌊log2(ν)⌋] is denoted by W∆,2ν . The vertices of W∆,2ν

are the pairs (i, j) with i ∈ [2] and j ∈ [ν]0. For every such j, there is an edge
between vertex (1, j) and any vertex (2, j + 2ℓ − 1mod ν) with ℓ ∈ [∆]0.

Figure 1. The graph W3,16.

An edge of W∆,2ν which connects a vertex (1, j) with the vertex (2, j + 2ℓ −
1mod ν) is called an edge in dimension ℓ; cf. Figure 1.

The Tower of Hanoi (TH) problem, invented by the French number theorist
É. Lucas in 1883, has presented a challenge in mathematics as well as in com-
puter science and psychology. The classical problem consists of three pegs and
is thoroughly studied in [12]. On the other hand, as soon as there are at least
four pegs, the problem turned into a notorious open question. The general TH
problem has p ∈ N3 pegs and n ∈ N0 discs of mutually different size. A legal

move is a transfer of the topmost disc from one peg to another peg, no disc being
placed onto a smaller one. Initially, all discs lie on one peg in small-on-large
ordering, that is, in a perfect state. The objective is to transfer all the discs from
one perfect state to another in the minimum number of legal moves. A state
(= distribution of discs on pegs) is called regular if on every peg the discs lie in
the small-on-large ordering. The Hanoi graphs Hn

p form a natural mathematical
model for the TH problem. Each graph is constructed with all regular states as
vertices, and two states are adjacent whenever one is obtained from the other
by a legal move. For any n ∈ N0, H

n
1 is the graph K1. For two pegs, only the

smallest disc can be moved in any regular state. Hence, for n ∈ N1, H
n
2 is the

disjoint union of 2n−1 copies of K2, i.e., H
n
2
∼= W1,2n . Many properties of Hanoi

graphs have been studied in [13] and literature therein.
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Definition 1.5 [13]. The Hanoi graphs Hn
p for base p ∈ N3 and exponent n ∈ N0

are defined as follows.

V (Hn
p ) = {sn · · · s1 : sd ∈ [p]0 for d ∈ [n]},

E(Hn
p ) =

{
{sis, sjs} : i, j ∈ [p]0, i 6= j, s ∈ [p]n−d

0 , s ∈ ([p]0\{i, j})
d−1, d ∈ [n]

}
.

The edge sets of Hanoi graphs can also be expressed in a recursive definition
(cf. Figure 2).

E(H0
p ) = ∅,

∀n ∈ N0 : E(H1+n
p ) =

{
{ir, is} : i ∈ [p]0, {r, s} ∈ E(Hn

p )
}

∪
{
{ir, jr} : i, j ∈ [p]0, i 6= j, r ∈ ([p]0\{i, j})

n
}
.

Figure 2. The graph H2
4 .

The vertices of the form in :=

n times
︷ ︸︸ ︷

i . . . i are called extreme vertices of Hn
p .

In this paper, we study the power domination problem in Knödel graphs and
Hanoi graphs. We determine the power domination number of W3,2ν and provide
an upper bound for the power domination number of Wr+1,2r+1 for r ∈ N3. We
also compute the k-power domination number and k-propagation radius of H2

p .

2. Power Domination in Knödel Graphs

In this section, we study the power domination number of Knödel graphs. For
∆ = 1,W1,2ν consists of ν disjoint copies of K2 and therefore γP(W1,2ν) = ν. For
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ν ∈ N2 and ∆ = 2,W2,2ν is a cycle on 2ν vertices and clearly γP(W2,2ν) = 1. We
have the following theorem for the case ∆ = 3, if ν ∈ N4.

Theorem 2.1. For ν ∈ N4, γP(W3,2ν) = 2.

Proof. We prove that the set S = {(1, 0), (2, 2)} is a PDS of W3,2ν . Clearly,
P0
1 (S) = {(i, j) : i ∈ [2], j ∈ [3]0}∪{(1, ν−1), (2, 3)}. For ν = 4, S is a dominating

set of W3,8 and for ν = 5, 6, we can easily observe that all vertices of W3,2ν get
monitored after stage 1 and therefore S is a PDS. Let ν ∈ N7. Depending on
whether ν is odd or even, we write ν = 2m− 1 or ν = 2m, m ∈ N4, respectively.
Then for i ∈ [m− 3],

P i
1(S) =

(
{(1, j) : j ∈ [i+ 3]0} ∪ {(1, ν − j) : j ∈ [i+ 2]}

)

∪
(
{(2, j) : j ∈ [i+ 5]0} ∪ {(2, ν − j) : j ∈ [i]}

)
.

We get that Pm−3
1 (S) = V (W3,2ν), if ν is odd, and Pm−2

1 (S) =Pm−3
1 (S)∪ {(1,m),

(2,m+2)} = V (W3,2ν), if ν is even. Hence, in both cases we see that every vertex
of W3,2ν gets monitored after stage

⌊
ν
2

⌋
− 2 and therefore S is a PDS of W3,2ν .

To prove that γP(W3,2ν) ≥ 2, let us assume that {v} is a PDS of W3,2ν . Then,
since W3,2ν is bipartite, after the domination step, each of the neighbours of v
has exactly two unmonitored neighbours which prevents the further propagation.
Hence γP(W3,2ν) = 2.

We now focus on the family of Knödel graphsWr+1,2r+1 . In the next theorem,
we prove that the power domination number of Wr+1,2r+1 is at most 2r−2. For
that, we construct a PDS of cardinality 2r−2 in Wr+1,2r+1 . One can easily check
that S′ = {(1, 1), (2, 6)} is a PDS of W4,16. It is proved in [9] that Wr+1,2r+1 can
be constructed by taking two copies of Wr,2r and linking the vertices of each copy
by a certain perfect matching. Therefore, in order to construct a PDS for W5,32,
we take two copies of the set S′, each from a copy of W4,16 that lies in W5,32

and then prove that the new set is a PDS of W5,32. We now extend the same
idea to construct a PDS of Wr+1,2r+1 for larger values of r. In the proof of the
following theorem, we first produce a set S and then give the set of vertices that
are dominated by P0

1 (S). After that we give the elements in P1
1 (S) and P2

1 (S),
the sets of vertices that get monitored at the first and second propagation step,
respectively. We obtain that the entire graph gets monitored in two propagation
steps and thus S is a PDS of Wr+1,2r+1 .

Theorem 2.2. For r ∈ N3, γP(Wr+1,2r+1) ≤ 2r−2.

Proof. Let ν = 2r and S = {(1, 2r−3+ j), (2, 7 ·2r−3−1+ j) : j ∈ [2r−3]0}. Then

P0
1 (S) = S ∪ {(1, 7 · 2r−3 + j − 2ℓmod ν), (2, 2r−3 + j + 2ℓ − 1mod ν) :

j ∈ [2r−3]0, ℓ = r − 3, r − 2, r − 1, r}.
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For r = 3, the vertex (1, 2j + 1) monitors (2, 2j + 1) for every j ∈ [3] and the
vertex (2, 2j) monitors (1, 2j) for every j ∈ [3]0. Thus we get P1

1 (S) = V (W4,16).
Assume now that r ∈ N4. Then, for each j and ℓ, where j ∈ [2r−4]0, ℓ =
r − 2, r − 1, r, the vertices in the set {(1, 7 · 2r−3 + j − 2ℓmod ν)} monitor the
vertices in the set {(2, 8 · 2r−3+ j− 2ℓ− 1mod ν)} by propagation. Also, for each
j and ℓ, where 2r−4 ≤ j ≤ 2r−3 − 1, ℓ = r − 2, r − 1, r, the vertices in the set
{(2, 2r−3 + j + 2ℓ − 1mod ν)} monitor the vertices in the set {(1, j + 2ℓmod ν)}
by propagation. Hence the set of vertices monitored at stage 1 is given by

P1
1 (S) = {(1, j + 2ℓmod ν) : 2r−4 ≤ j ≤ 2r−3 − 1, ℓ = r − 2, r − 1, r}

∪ {(2, 8 · 2r−3+ j− 2ℓ −1mod ν) : j ∈ [2r−4]0, ℓ = r − 2, r − 1, r} ∪ P0
1 (S).

Again following the propagation rule, for each j and ℓ, where 2r−4 ≤ j ≤
2r−3−1, ℓ = r−2, r−1, r, the vertices in the set {(1, 7·2r−3+j−2ℓmod ν)}monitor
the vertices in the set {(2, 8 ·2r−3+ j−2ℓ−1mod ν)} and for each j and ℓ, where
j ∈ [2r−4]0, ℓ = r−2, r−1, r, the vertices in the set {(2, 2r−3+ j+2ℓ−1mod ν)}
monitor the vertices in the set {(1, j + 2ℓmod ν)}. Hence the set of vertices
monitored at stage 2 is given by

P2
1 (S) = {(1, j + 2ℓmod ν) : j ∈ [2r−4]0, ℓ = r − 2, r − 1, r}

∪ {(2, 8 · 2r−3+ j − 2ℓ− 1mod ν) : 2r−4≤ j ≤ 2r−3− 1, ℓ = r − 2, r − 1, r}

∪ P1
1 (S) = V (Wr+1,2r+1).

Therefore every vertex of Wr+1,2r+1 gets monitored after stage 2 and hence S is
a PDS of Wr+1,2r+1 and γP(Wr+1,2r+1) ≤ |S| = 2r−2.

For r = 3, any singleton set {v}, v ∈W4,16, cannot itself power dominate the
entire graph, as each of the neighbours of v will have exactly three unmonitored
neighbours after the domination step. Hence the bound in Theorem 2.2 is sharp
for r = 3. We further illustrate Theorem 2.2 for the graph W5,32. The vertices of
the set S as defined in the theorem are coloured black in Figure 3.

Figure 3. A power dominating set in the graph W5,32.

In Figure 4, the set of dominated vertices, P0
1 (S), is coloured black and the

remaining vertices are white.
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Figure 4. Neighbourhood is monitored.

The black vertices in Figure 5 and Figure 6 represent the sets P1
1 (S) and P

2
1 (S),

respectively.

Figure 5. Propagation occurs.

Figure 6. End of propagation.

The directed edges in the figures indicate the direction in which the propagation
occurs at each stage. For instance, the directed edge [(2, 2), (1, 1)] in Figure 5
indicates that (2, 2) monitors (1, 1) in the first propagation step. We observe that
all the vertices get monitored by stage 2 and therefore S is a PDS of W5,32.

However, we found that for r = 5, W6,64 has a power dominating set of
cardinality 6, namely S = {(1, 1), (1, 2), (1, 11), (2, 22), (2, 27), (2, 31)}. Therefore
γP(W6,64) < 23. Hence the bound in Theorem 2.2 is not sharp for r = 5. This
has to be compared with a conjecture stated in [5]. This conjecture says that,
for k ∈ N1 and r ∈ N2, if G 6= Kr+1,r+1 is a connected r + 1-regular graph of
order n, then γP,k(G) ≤ n

r+2
. In the present example this means, for k = 1,

γP(W6,64) ≤ 9.
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3. Generalized Power Domination in H2
p

In this section, we study the behaviour of power domination in H2
p . The cases

p ∈ [2] are trivial with γP,k(H
2
1 ) = γP,k(K1) = 1 and γP,k(H

2
2 ) = 2 = γP,k(W1,4),

respectively, for all k.

Recall that for p ∈ N3 and n = 2, V (H2
p ) = {s2s1 : s1, s2 ∈ [p]0} and E(H2

p ) ={
{ri, rj}, {iℓ, jℓ} : r, i, j ∈ [p]0, i 6= j, ℓ ∈ [p]0\{i, j}

}
.

Note that the extreme vertices are of degree p− 1 and all the other vertices
are of degree 2p− 3 in H2

p . It is easy to observe that γ(H2
p ) = p. Indeed, any set

containing a vertex from each of the p cliques in H2
p forms a dominating set of

H2
p . Since each of the p cliques contains an extreme vertex, any dominating set

of H2
p must contain at least p vertices and hence γ(H2

p ) = p.

For p = 3, Hn
3 is isomorphic to the Sierpiński graph Sn

3 ; see [13, p. 143 ff].
It is proved in [6] that

γP,k(S
n
3 ) =







1, n = 1 or k ∈ N2;

2, n = 2 and k = 1;

3n−2, n ∈ N3 and k = 1.

Therefore γP,1(H
2
3 ) = 2 and γP,k(H

2
3 ) = 1 for k ∈ N2.

For p ∈ N4, the Hanoi graphs do not contain perfect codes for n ∈ N3 [13,
p. 195]. The domination number of these graphs is not known. Therefore we
concentrate on n = 2. (For n = 1, H1

p
∼= Kp

∼= S1
p .)

Theorem 3.1. Let k ∈ N1 and p ∈ N4. Then

γP,k(H
2
p ) =

{

1, k ∈ Np−2;

p− k − 1, k ∈ [p− 3].

Proof. Case 1. k ∈ Np−2. Let v be an arbitrary vertex of H2
p . Let K

i
p denote the

subgraph induced by the vertices {ij : j ∈ [p]0}. Assume that v ∈ Ki
p for some i.

Let S = {v}. Then V (Ki
p) ⊆ P

0
k(S). Since each vertex in Ki

p other than the

vertex ii has p−2 neighbours outside Ki
p, for any j 6= i, V (Kj

p)\{jj, ji} ⊆ P1
k(S).

Hence any vertex jℓ in Kj
p , ℓ 6= i, j, will have two unmonitored neighbours,

namely jj and ji. Since k ≥ p − 2 ≥ 2, these vertices will get monitored by
propagation, i.e., V (Kj

p) ⊆ P2
k(S). Since this is true for any j 6= i, S is a k-PDS

of H2
p .

Case 2. k ∈ [p−3]. We first prove that γP,k(H
2
p ) ≤ p−k−1. Let S be the set

of vertices {i(i−1) : i ∈ [p−k−2]}∪{0(p−k−2)}. Then P0
k(S) =

⋃
{V (Ki

p) : i ∈
[p−k−1]0}∪{ij : p−k−1 ≤ i ≤ p−1, j ∈ [p−k−2]0}∪{i(p−k−2) : p−k−1 ≤
i ≤ p−1}. Let Y be the set of vertices {ij : i ∈ [p−k−1]0, p−k−1 ≤ j ≤ p−1}.
Then any vertex v = i′j′ in Y has exactly k unmonitored neighbours given by
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{ℓj′ : p − k − 1 ≤ ℓ ≤ p − 1, ℓ 6= j′} which will get monitored by propagation.
Therefore, the remaining set of unmonitored vertices is given by {jj : V (Kj

p)∩ S
= ∅}, which will then get monitored by propagation by its neighbours in Kj

p .
Thus S is a k-PDS of H2

p , which implies γP,k(H
2
p ) ≤ p− k − 1.

We next prove that γP,k(H
2
p ) ≥ p− k− 1. Let S be a k-PDS of H2

p . Suppose
on the contrary that γP,k(H

2
p ) ≤ p − k − 2. Assume first that S has exactly

one vertex in p-cliques Ki
p for i ∈ {i1, . . . , ip−k−2}. Let {i1j1, . . . , ip−k−2jp−k−2}

be the set of p − k − 2 vertices in S. Then S ∩ V (Ki′

p ) = ∅ for any i′ ∈ I ′ =

[p]0\{i1, . . . , ip−k−2}. Let X = {i′j1, . . . , i
′jp−k−2}. Then P0

k(S) ∩ V (Ki′

p ) ⊆ X.
This holds for any i′ ∈ I ′. Let J ′ = [p]0\{j1, . . . , jp−k−2}. Then the set of vertices
{i′j′ : i′ ∈ I ′, j′ ∈ J ′} has an empty intersection with P0

k(S). Since every vertex in
H2

p has either no or more than k neighbours in this set, no vertex from this set can
get monitored later on, a contradiction. Assume next that |S| < p−k−2 or that
S intersects some Ki

p in more than one vertex. Then we can conclude analogously

that not all vertices of Ki′

p will be monitored and hence γP,k(H
2
p ) ≥ p− k− 1.

It is obtained in [6] that γP,k(S
2
p) =

{

1, k ∈ Np−1;

p− k, k ∈ [p− 2].

We can observe that for p ∈ N4, γP,k(S
2
p) − γP,k(H

2
p ) = 1 if and only if

k ∈ [p− 2] and for k ∈ Np−1, the two values coincide.

We now compute the propagation radius of H2
p . For p = 3, it is proved in [6]

that radP,1(H
2
3 ) = 2 and radP,k(H

n
3 ) = 3 for k ∈ N2.

Theorem 3.2. Let k ∈ N1 and p ∈ N4. Then radP,k(H
2
p ) = 3.

Proof. For k ∈ Np−2, γP,k(H
2
p ) = 1 and let S = {ij} be a k-PDS of H2

p . If
i 6= j, we prove that the vertices ji and jj do not belong to P1

k(S). Clearly,
ji, jj /∈ P0

k(S). Also none of the neighbours of ji and jj belongs to P0
k(S).

Therefore, ji and jj cannot be monitored in stage 1. For i = j, we can similarly
prove that the vertices ℓi and ℓℓ, for ℓ 6= i, do not belong to P1

k(S) and hence
radP,k(H

2
p ) ≥ 3. To prove the upper bound, consider the set S = {ii}. Then,

P0
k(S) = V (Ki

p),

P1
k(S) = P

0
k(S) ∪

⋃{

V (Kℓ
p)\{ℓi, ℓℓ} : ℓ ∈ [p]0 \ {i}

}

,

P2
k(S) = P

1
k(S) ∪ {ℓi, ℓℓ : ℓ ∈ [p]0 \ {i}} = V (H2

p ).

Hence radP,k(H
2
p ) ≤ radP,k(G,S) = 3.

Suppose that k ∈ [p − 3] and let S be a minimum k-PDS of H2
p . Then

γP,k(H
2
p ) = p − k − 1 and thus there exist at least k + 1 p-cliques Ki

p not con-

taining any vertex of S. Let Ki′

p be an arbitrary such clique. We prove that
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the vertex i′i′ is not in P1
k(S). Clearly, the vertex i′i′ does not belong to P0

k(S).
Moreover, |V (Ki′

p ) ∩ P
0
k(S)| ≤ p − k − 1 and therefore |V (Ki′

p )\P
0
k(S)| ≥ k + 1.

Hence any neighbour of i′i′ has more than k unmonitored vertices preventing any
propagation to this vertex on that step. Thus i′i′ is not in P1

k(S). To prove the
upper bound, consider the set S = {i(i − 1) : i ∈ [p − k − 2]} ∪ {0(p − k − 2)}.
Then,

P0
k(S) = {V (Ki

p) : i ∈ [p− k − 1]0} ∪ {ij : p− k −1≤ i ≤ p− 1, j ∈ [p− k−1]0},

P1
k(S) =P

0
k(S) ∪ {ij : p− k − 1 ≤ i, j ≤ p− 1, i 6= j},

P2
k(S) =P

1
k(S) ∪ {ii : p− k − 1 ≤ i ≤ p− 1} = V (H2

p ).

This completes the proof.
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graphs, SIAM J. Discrete Math. 22 (2008) 554–567.
doi:10.1137/060661879

[8] M. Dorfling and M.A. Henning, A note on power domination in grid graphs, Discrete
Appl. Math. 154 (2006) 1023–1027.
doi:10.1016/j.dam.2005.08.006

[9] G. Fertin and A. Raspaud, A survey on Knödel graphs, Discrete Appl. Math. 137
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type graphs, Discrete Appl. Math. 217 (2017) 565–600.
doi:10.1016/j.dam.2016.09.024
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