
Discussiones Mathematicae
Graph Theory 37 (2017) 1079–1094
doi:10.7151/dmgt.1992

EQUITABLE COLORINGS OF CORONA MULTIPRODUCTS

OF GRAPHS

Hanna Furmańczyk1
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Abstract

A graph is equitably k-colorable if its vertices can be partitioned into
k independent sets in such a way that the numbers of vertices in any two
sets differ by at most one. The smallest k for which such a coloring exists is
known as the equitable chromatic number of G and denoted by χ=(G). It
is known that the problem of computation of χ=(G) is NP-hard in general
and remains so for corona graphs. In this paper we consider the same model
of coloring in the case of corona multiproducts of graphs. In particular,
we obtain some results regarding the equitable chromatic number for the
l-corona product G ◦l H, where G is an equitably 3- or 4-colorable graph
and H is an r-partite graph, a cycle or a complete graph. Our proofs are
mostly constructive in that they lead to polynomial algorithms for equitable
coloring of such graph products provided that there is given an equitable
coloring of G. Moreover, we confirm the Equitable Coloring Conjecture for
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1080 H. Furmańczyk, M. Kubale and V.V. Mkrtchyan

corona products of such graphs. This paper extends the results from [H.
Furmańczyk, K. Kaliraj, M. Kubale and V.J. Vivin, Equitable coloring of
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Keywords: corona graph, equitable chromatic number, equitable coloring
conjecture, equitable graph coloring, multiproduct of graphs, NP-complete-
ness, polynomial algorithm.

2010 Mathematics Subject Classification: 05C15, 05C76.

1. Introduction

All graphs considered in this paper are finite, connected and simple, i.e., undi-
rected, loopless and without multiple edges.

If the set of vertices of a graph G can be partitioned into k classes V1, V2, . . . ,
Vk such that each Vi is an independent set and the condition ||Vi| − |Vj || ≤ 1
holds for every pair (i, j), then G is said to be equitably k-colorable. In the case,
where each color is used the same number of times, i.e., |Vi| = |Vj | for every pair
(i, j), graph G is said to be strongly equitably k-colorable. The smallest integer k
for which G is equitably k-colorable is known as the equitable chromatic number
of G and denoted by χ=(G). Since equitable coloring is a proper coloring with
additional condition, the inequality χ(G) ≤ χ=(G) holds for any graph G. It
turns out that if a graph G has an equitable k-coloring, then it does not mean
that it has also an equitable (k+1)-coloring. For example, K3,3 admits equitable
2-coloring, but it is not equitably 3-colorable.

In some discrete industrial systems we can encounter the problem of parti-
tioning a system with binary conflict relations into balanced conflict-free subsys-
tems. Such situations can be clearly modeled by means of the equitable graph
coloring. For example, equitable coloring algorithms can be used in scheduling
and timetabling problems [6, 9].

The notion of equitable colorability was introduced by Meyer [15]. However,
an earlier work of Hajnal and Szemerédi [10] showed that a graph G with maximal
degree ∆ is equitably k-colorable if k ≥ ∆+1. Recently, Kierstead et al. [11] have
given an O(∆|V (G)|2)-time algorithm for equitable (∆+ 1)-coloring of graph G.
In his seminal paper, Meyer [15] formulated the following conjecture.

Conjecture 1 (Equitable Coloring Conjecture (ECC)). For any connected graph
G with maximum degree ∆ and other than a complete graph or an odd cycle,
χ=(G) ≤ ∆.

Chen, Lih and Wu made a stronger conjecture:

Conjecture 2 (Equitable ∆-Coloring Conjecture, [3]). If G is a connected graph
of maximum degree ∆, other than a complete graph, an odd cycle or a complete
bipartite graph K2n+1,2n+1 for any n ≥ 1, then G is equitably ∆-colorable.
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Conjecture 1 has been verified for all graphs on six or fewer vertices. Lih and
Wu [13] proved that the Equitable Coloring Conjecture is true for all bipartite
graphs. Wang and Zhang [17] considered a broader class of graphs, namely r-
partite graphs. They proved that Meyer’s conjecture is true for complete graphs
from this class. Conjecture 2 was confirmed for outerplanar graphs [18], series-
parallel graphs [20], and planar graphs with maximum degree at least 9 [16, 19].
For the survey see [12].

In this paper we consider the same model of coloring in the case of corona
products of graphs. The corona of two graphs, n-vertex graph G and m-vertex
graph H, is a graph G◦H formed from one copy of G and n copies of H where the
ith vertex of G is adjacent to every vertex in the ith copy of H. For any integer
l ≥ 2, we define the graph G◦lH recursively from G◦H as G◦lH = (G◦l−1H)◦H
(cf. Figure 1). Graph G◦lH is also named as l-corona product of G and H. Such
type of graph product was introduced by Frucht and Harary [4].

Figure 1. Example of graphs: (a) C3; (b) C3 ◦K2; (c) C3 ◦
2 K2.
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The topic of equitable coloring was widely discussed in the literature. It was
considered for some particular graph classes and also for several graph products:
Cartesian [14], tensor [6], and coronas [7, 8]. The complexity of many problems,
including equitable coloring, that deal with very large and complicated graphs is
reduced greatly if one is able to fully characterize the properties of less complex
prime factors. In adition to this, corona graphs lie close to the boundary between
easy and NP-hard coloring problems [8].

A straightforward reduction from graph coloring to equitable coloring by
adding sufficiently many isolated vertices to a graph, proves that it is NP-complete
to test whether a graph has an equitable coloring with a given number of colors
(greater than two). Furmańczyk and Kubale proved that the problem remains
NP-complete for cubical coronas [8]. In this way they pointed out a class of
graphs for which equitable coloring is harder than ordinary coloring. Bodlaender
and Fomin [1] showed that the equitable coloring problem can be solved to opti-
mality in polynomial time for graphs with bounded treewidth. Polynomial time
algorithms are known for equitable coloring of split graphs [2], cubic graphs [8],
and some coronas [7].

The remainder of the paper is organized as follows. In Section 2 we give an
upper bound on the equitable chromatic number of l-corona product of graphs
with complete graphs while in Section 3 we give some results concerning the
equitable colorability of l-corona products of some graphs versus r-partite graphs.
Next, in Section 4 we consider l-corona products of graphs G with χ=(G) ≤ 4
and cycles. Section 5 summarizes our results in a tabular form. In this way we
extend the class of graphs that can be colored optimally in polynomial time and
confirm the ECC conjecture for the extended class of graphs.

2. Equitable Coloring of Corona Multiproducts with Complete

Graphs

It is known that χ=(G ◦Km) = m+1 for every graph G such that χ (G) ≤ m+1
[7]. As G ◦Km is (m+1)-colorable, the graph G ◦2Km is also equitably (m+1)-
colorable, and so on. Therefore, this result can be easy generalized to the l-corona
product, l ≥ 1.

Proposition 3. If G is a graph with χ (G) ≤ m+ 1, then χ=(G ◦l Km) = m+ 1
for any l ≥ 1.

Let us note that since G is connected, the maximum degree of the corona
∆(G ◦l Km) is equal to ∆(G) + m · l. Since m + 1 ≤ ∆(G) + m · l, the ECC
conjecture is true for such graphs.

Let us also notice that we immediately get an upper bound on the equitable
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chromatic number:
χ=(G ◦l H) ≤ m+ 1,

where l ≥ 1, χ(G) ≤ m+ 1 and graph H is of order m.

3. Equitable Coloring of Corona Graphs with r-Partite Graphs

In this section we consider corona products of a graph G and r-partite graphs,
where G fulfills some additional conditions.

Theorem 4. Let G be an equitably k-colorable graph on n vertices and let H be
a (k − 1)-partite graph. If k divides n (in symbols k|n), then for any l ≥ 1 graph
G ◦l H is equitably k-colorable.

Proof. The proof is by induction on l.

Step 1. For l = 1 the theorem holds due to the following. Suppose V (G) =
V1 ∪ V2 ∪ · · · ∪ Vk, where V1, . . . , Vk are independent sets each of size n/k. This
means that they form a strongly equitable k-coloring of G. For each vertex
z ∈ V (G), let Hz = (Xz

1 , . . . , X
z
k−1, E

z) be the copy of (k − 1)-partite graph
H = (X1, . . . , Xk−1, E) in G ◦H corresponding to z. Let

V ′
1 = V1 ∪

⋃

z∈V2

Xz
1 ∪ · · · ∪

⋃

z∈Vk

Xz
k−1,

V ′
2 = V2 ∪

⋃

z∈V3

Xz
1 ∪ · · · ∪

⋃

z∈Vk

Xz
k−2 ∪

⋃

z∈V1

Xz
k−1,

...

V ′
k−1 = Vk−1 ∪

⋃

z∈Vk

Xz
1 ∪

⋃

z∈V1

Xz
2 ∪ · · · ∪

⋃

z∈Vk−2

Xz
k−1,

V ′
k = Vk ∪

⋃

z∈V1

Xz
1 ∪ · · · ∪

⋃

z∈Vk−1

Xz
k−1.

It is easy to see that V (G ◦ H) = V ′
1 ∪ · · · ∪ V ′

k is an equitable k-coloring of
G ◦ H. In this coloring each of the k colors is used exactly n(1 + |X1| + · · · +
|Xk−1|)/k times.

Step 2. Suppose Theorem 4 holds for some l ≥ 1.

Step 3. We have to show that (G ◦l H) ◦H is equitably k-colorable. Let us note
that if k|n then the cardinality of vertex set of G◦lH, which is equal to n(m+1)l,
is also divisible by k. So using the inductive hypothesis we get immediately the
conclusion.

Since any r-partite graph, where r ≤ k − 1, is also (k − 1)-partite we have
immediately
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Corollary 5. Let G be an equitably k-colorable graph on n vertices and let H be
an r-partite graph with r ≤ k − 1. If k|n, then for any l ≥ 1

χ=(G ◦l H) ≤ k.

If G is an equitably 3-colorable graph on n vertices, and H is a bipartite
graph, then Corollary 5 ensures that all corona multiproducts of G and H are
equitably 3-colorable provided that 3|n. One may wonder whether this result can
be extended to the case when 3 ∤ n. The theorem proved below gives a negative
answer to this question.

Theorem 6. Let G be an equitably 3-colorable graph on n vertices, and assume
that 3 ∤ n. Moreover, let H be a connected bipartite graph with equal size of
partitions and |V (H)| ≥ 6. Then multicorona products G ◦l H are not equitably
3-colorable for l ≥ 1.

Proof. We first observe that if G◦lH is 3-colored, then the colors on the vertices
of G uniquely determine the colors used on each copy of H. Moreover, since H
is connected, each copy of H must be equitably 2-colored. Hence, if we assume
that G ◦l H is equitably 3-colored, and adopt the convention that G ◦0 H = G,
we can write the following equalities for the number of vertices with colors 1, 2
and 3, respectively.

|V1(G ◦l H)| = |V1(G ◦l−1 H)|+ (|V2(G ◦l−1 H)|+ |V3(G ◦l−1 H)|) · |V (H)|
2 ,

|V2(G ◦l H)| = |V2(G ◦l−1 H)|+ (|V1(G ◦l−1 H)|+ |V3(G ◦l−1 H)|) · |V (H)|
2 ,

|V3(G ◦l H)| = |V3(G ◦l−1 H)|+ (|V1(G ◦l−1 H)|+ |V2(G ◦l−1 H)|) · |V (H)|
2 .

Here Vk, for k = 1, 2, 3, denotes the set of vertices of the corresponding graph
with color k. Define

ml = max
1≤i<j≤3

∣

∣

∣
|Vi(G ◦l H)| − |Vj(G ◦l H)|

∣

∣

∣
.

Then, for l ≥ 1

ml = ml−1 ·

(

|V (H)|

2
− 1

)

.

Since 3 ∤ n, we have m0 ≥ 1. Taking into account that |V (H)| ≥ 6, we get

ml = m0 ·

(

|V (H)|

2
− 1

)l

≥ 2l ≥ 2,

which means that the coloring is not equitable, contradicting our assumption.
The proof of Theorem 6 is completed.
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If G is an equitably 4-colorable graph on n vertices, and H is a bipartite
graph, then Corollary 5 implies that all corona multiproducts of G and H are
equitably 4-colorable provided that 4 |n. One may wonder whether this result
can be extended to the case when 4 ∤ n. Below, we will obtain a result that gives
a partial answer to this question.

We will need the following lemma.

Lemma 7. Let G be a graph on 4 vertices, and let H be a bipartite graph with
bipartition A and B, such that |A| = |B| and |V (H)| is divisible by 4. Then
G ◦ H admits an equitable 4-coloring such that the vertices of G have pairwise
different colors.

Proof. Let v1, v2, v3, v4 be the vertices of G. Let H1, H2, H3, and H4 be the
copies of H corresponding to these vertices. Moreover, for i = 1, 2, 3, 4 let Ai and
Bi be the bipartition sets of Hi. Consider a coloring of vertices of G◦H obtained
as follows: color v1, v2, v3, v4 with colors 1, 2, 3 and 4, respectively, color the
vertices of A1 and A4 with color 2, color the vertices of B1 and B4 with color 3,
color the vertices of A2 and A3 with color 1, and color the vertices of B2 and B3

with color 4. One can easily verify that this is an equitable 4-coloring of G ◦H
meeting the requirements of the lemma.

Now, we prove our theorem on equitable 4-colorings.

Theorem 8. Let G be an equitably 4-colorable graph on n ≥ 2 vertices, and let
H be a bipartite graph with bipartition A and B, such that |A| = |B| = m/2 and
m is divisible by 4. Then multicorona products G ◦l H are equitably 4-colorable
for l ≥ 1.

Proof. We first observe that it suffices to prove the theorem for l = 1. The rest
follows from an induction on l. Thus, we will only show that G ◦H is equitably
4-colorable.

Consider an equitable 4-coloring of G. Let t ≡ n (mod 4). We will consider
4 cases.

Case 1. t = 0. In this case 4 |n, hence the equitable 4-coloring of G colors
the vertices of G with colors 1, 2, 3 and 4 so that the color classes are of the
same cardinality. Partition the vertices of G into n/4 groups V1, . . . , Vn/4, so that
each group contains 4 vertices of different colors. For j = 1, . . . , n/4 the graphs
G[Vj ]◦H are equitably 4-colorable due to Lemma 7, where G[Vj ] is a subgraph of
G induced by Vj . Since m is divisible by 4, this results in an equitable 4-coloring
of G ◦H.

Case 2. t = 2. In this case n ≡ 2 (mod 4). Hence, without loss of generality,
we can assume that in the equitable 4-coloring of G, the vertices with colors 1
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and 2 contain one more vertex than the vertices with colors 3 and 4. Let v1 and
v2 be two vertices with colors 1 and 2, respectively. Similarly to Case 1, one
can show that (G−{v1, v2}) ◦H is equitably 4-colorable. Observe that the color
classes of this graph are going to be of equal size.

Now, we show that G[{v1, v2}]◦H is equitably 4-colorable. Let H1 and H2 be
the copies of H corresponding to v1 and v2, respectively. Moreover, for i = 1, 2 let
Ai and Bi be the bipartition of Hi. Color the vertices of A1 with color 2, vertices
of B1 with color 3, vertices of A2 with color 4, and vertices of B2 with color 1,
respectively. One can easily check that this results in an equitable 4-coloring of
G ◦H.

Case 3. t = 3. In this case n ≡ 3 (mod 4). Hence, without loss of generality,
we can assume that in the equitable 4-coloring of G, the vertices with colors 1,
2 and 3 contain one more vertex than the vertices with color 4. Let v1, v2 and
v3 be three vertices with colors 1, 2 and 3, respectively. Similarly to Case 1, one
can show that (G − {v1, v2, v3}) ◦ H is equitably 4-colorable. Observe that the
color classes of this graph are going to be of equal size.

Now, we show that G[{v1, v2, v3}] ◦ H is equitably 4-colorable. Let H1, H2

and H3 be the copies of H corresponding to v1, v2 and v3, respectively. Moreover,
for i = 1, 2, 3 let Ai and Bi be the bipartition of Hi. Color the vertices of A1

with color 4, half of vertices of B1 with color 2 and the other half with color 3,
vertices of A2 with color 1, and vertices of B2 with color 3, half of vertices of
A3 with color 1 and the other half with color 4, and vertices of B4 with color 2,
respectively. One can easily check that this results in an equitable 4-coloring of
G ◦H.

Case 4. t = 1. In this case n ≡ 1 (mod 4). Hence, without loss of generality,
we can assume that in the equitable 4-coloring of G, the vertices with color 1
contain one more vertex than the vertices with colors 2, 3 and 4. Let v1, v2, v3,
v4 and v5 be five vertices with colors 1, 2, 3 and 4, such that vi is of color i for i =
1, 2, 3, 4, and v5 is of color 1. Observe that we can always choose such five vertices,
since n ≥ 2. Similarly to Case 1, one can show that (G− {v1, v2, v3, v4, v5}) ◦H
is equitably 4-colorable. Observe that the color classes of this graph are going to
be of equal size.

Now, we show that G[{v1, v2, v3, v4, v5}]◦H is equitably 4-colorable. Let H1,
H2, H3, H4, and H5 be the copies of H corresponding to v1, v2, v3, v4 and v5,
respectively. Moreover, let Ai and Bi be the bipartition sets of Hi, i = 1, . . . , 5.

Color the vertices of A1 with color 2, the vertices of B1 with color 3, the
vertices of A2 with color 4, the vertices of B2 with color 1, the vertices of A3

with color 1, the vertices of B3 with color 4, half of vertices of A4 with color 3
and the other half with color 1, vertices of B4 with color 2, half of vertices of A5

with color 2 and the other half with color 4, and the vertices of B5 with color 3,
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respectively. One can easily check that this results in an equitable 4-coloring of
G ◦H.

The proof of the theorem is completed.

4. Equitable Coloring of Corona Multiproducts with Cycles

In this section we consider corona products of a graph G and cycles. We will
consider two main cases depending on the parity of m.

Theorem 9. Let G be an equitably 3-colorable graph on n ≥ 1 vertices and let
m be even. If 3 |n or m = 4, then

χ=(G ◦l Cm) = 3

for each l ≥ 1.

Proof. Of course, we cannot use fewer than three colors, as χ(G◦lCm) = 3. The
first part of the theorem, for 3 |n, follows from Corollary 5.

The case when m = 4 was partially considered in [7]. The authors proved
that if G is an equitably 3-colorable graph on n ≥ 2 vertices, then χ=(G◦C4) = 3.
It is easy to see that also for n = 1 this equality holds, i.e., χ=(K1 ◦ C4) = 3.
This means that our theorem is true for l = 1. The remaining part of this proof
is by induction on the number l, similar to that in the proof of Theorem 4.

We also know that in the remaining cases, i.e. when G is equitably 4-colorable
or 3 ∤ n, we need more than three colors for equitable coloring of G ◦Cm, even if
m is even [7].

Theorem 10. If G is equitably 4-colorable and l ≥ 2, then the graph G ◦l Cm is
equitably 4-colorable for each even m ≥ 4.

Proof. Let us consider two cases.

Case 1. 4 |n. The conclusion follows immediately from Theorem 4.

Case 2. 4 ∤ n. First, we will show that our theorem is true for l = 2 and then
by induction on l we will get the conclusion for multicoronas G ◦l Cm, l ≥ 2.

Step 1. l = 2.

• n = 1. Now, we have to prove that there is an equitable 4-coloring of K1◦
2 Cm.

First, we color with 1 the vertex of K1, next the vertices of Cm in K1 ◦Cm with
colors 2 and 3 using each of them m/2 times. Next, we color appropriately the
vertices in one copy linked to vertex colored with 1, m/2 copies linked to vertices
colored with 2, and m/2 − 1 copies linked to vertices colored with 3 using each
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time two of three allowed colors. In particular, we use color i− 1 and i+1 in the
copy linked to vertex colored with i (operations are applied modulo 4). One copy
of Cm remains still uncolored. We color the vertices of it properly with color 1
and 0. In such a coloring color 1 is used (m/2+1)m/2+1 times, while any other
color is used (m/2 + 1)m/2 times. Thus the coloring is equitable for each even
m ≥ 4.

• n ≥ 2. First, we color G equitably with 4 colors and arrange the cardinalities
of color classes in a non-increasing order. Next, we renumber the vertices of G so
that for each i = 1, . . . , n vertex vi has color i mod 4. After that we color G ◦Cm

using for the copy adjacent to each vi m/2 times color (i mod 4+1) mod 4, ⌈m/4⌉
times color (i mod 4+2) mod 4 and ⌊m/4⌋ times color (i mod 4+3) mod 4. Note
that this coloring is not equitable. Therefore we have to recolor some of the copies
of Cm. To this aim we consider three subcases.

(i) n ≡ 1 (mod 4). In this case we recolor:

– the copy linked to v1 using m/2 times color 3, ⌈m/4⌉ times color 0, and
⌊m/4⌋ times color 2,

– the copy linked to v2 using m/2 times color 1, ⌈m/4⌉ times color 0, and
⌊m/4⌋ times color 3,

– the copy linked to v3 using m/2 times color 1, and m/2 times color 0,

– the copy linked to v4 using m/2 times color 2, ⌈m/4⌉ times color 3, and
⌊m/4⌋ times color 1.

(ii) n ≡ 2 (mod 4). In this case we recolor the copy linked to v2 using m/2 times
color 1, ⌈m/4⌉ times color 0, and ⌊m/4⌋ times color 3.

(iii) n ≡ 3 (mod 4). In this case we recolor:

– the copy linked to v1 using m/2 times color 3, ⌈m/4⌉ times color 0, and
⌊m/4⌋ times color 2,

– the copy linked to v2 using m/2 times color 1, ⌈m/4⌉ times color 0, and
⌊m/4⌋ times color 3,

– the copy linked to v3 using m/2 times color 2, ⌈m/4⌉ times color 0, and
⌊m/4⌋ times color 1.

One can easily check that, in each subcase, the obtained coloring is an equitable
4-coloring with colors {0, 1, 2, 3}. Let G′ = G ◦ Cm. Now, we repeat the above
procedure to get an equitable 4-coloring of G′ ◦ Cm = G ◦2 Cm.

Step 2. Induction hypothesis for some l ≥ 2.

Step 3. The proof that G ◦l+1 Cm is equitably 4-colorable. Since G ◦l+1 Cm =
(G ◦lCm) ◦Cm and by the fact that we have an equitable 4-coloring of the center
graph G ◦l Cm by the induction hypothesis, we can extend the coloring into an
equitable 4-coloring of G ◦l+1 Cm in the way described above.
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It turns out that in the case when the number of vertices of graph G is not
divisible by three, the weak inequality becomes equality.

Theorem 11. Let G be an equitably 3- or 4-colorable graph on n ≥ 2 vertices
and let l ≥ 1. If 3 ∤ n, then

χ=(G ◦l Cm) = 4

for each even m ≥ 6.

Proof. Due to Theorem 10 all we need is the proof that we cannot use fewer
colors.

If χ(G) = 4 then of course χ=(G ◦l Cm) = 4, for any l. Let us assume
that χ(G) ≤ 3. Note that any 3-coloring of G uniquely determines a 3-coloring
of G ◦l Cm. When we color the vertices in a copy of Cm linked to a vertex
of G ◦l−1 Cm, we use two available colors. It is not hard to notice that the
difference between cardinalities of color classes is the smallest when 3-coloring of
G is strongly equitable. In our case, since n is not divisible by three, a strongly
equitable coloring does not exist. If the maximal difference between cardinalities
of any two color classes of G is 1, any 3-coloring of G ◦l Cm cannot be equitable.
This follows from the following reasoning.

We claim that every equitable (not strongly) 3-coloring of G determines a
3-coloring of G ◦l Cm with maximum difference among the color classes greater
than 1. Indeed, for l = 1 we have:

Case 1. n ≡ 1 (mod 3). Cardinalities of color classes for colors 1, 2 and 3 are
equal to ⌊n/3⌋(m+1)+1, ⌊n/3⌋(m+1)+m/2 and ⌊n/3⌋(m+1)+m/2, respectively.
The maximum difference between color classes is equal to m/2− 1 ≥ 2.

Case 2. n ≡ 2 (mod 3). Cardinalities of color classes for colors 1, 2 and 3 are
equal to ⌊n/3⌋(m+1)+1+m/2, ⌊n/3⌋(m+1)+1+m/2 and ⌊n/3⌋(m+1)+m,
respectively. The maximum difference between color classes is equal to m/2− 1
≥ 2.

The reader may verify that the maximal difference between the cardinalities
of color classes in multicorona G ◦l Cm is (m/2− 1)l, which is growing as l tends
to infinity.

Now, we consider cycles on odd number of vertices. First, let us recall a
result for coronas G ◦ Cm, where m is odd.

Theorem 12 [7]. If G is equitably 4-colorable graph on n ≥ 2 vertices and m ≥ 3
is odd, then

χ=(G ◦ Cm) = 4.

Now, we generalize this result to multicoronas.
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Theorem 13. If G is an equitably 4-colorable graph on n ≥ 2 vertices and l ≥ 1,
then

χ=

(

G ◦l Cm

)

= 4

for each odd m ≥ 3.

Proof. We have χ=(G◦lCm) ≥ 4, since G◦lCm contains K1 ◦Cm as a subgraph.
On the other hand, we get the inequality χ=(G ◦l Cm) ≤ 4 by starting from
an initial induction step based on Theorem 12 and applying a similar inductive
argument to that used in the proof of Theorem 10.

We have considered equitable coloring of corona product of graphs on at
least one vertex and even cycles or corona of graphs on at least two vertices and
odd cycles. Now, for the sake of completeness, we consider equitable colorings of
corona products of one isolated vertex and odd cycles. It is easy to see that

(1) χ=(K1 ◦ Cm) =

{

4, if m = 3,
⌈

m
2

⌉

+ 1, if m > 3.

Though the value of equitable chromatic number of multicorona K1 ◦
l Cm

can be arbitrarily large for l = 1, the situation changes significantly for larger
values of l.

Theorem 14. If m ≥ 3, l ≥ 2, then

χ=(K1 ◦
l Cm) =

{

3, if m = 4,

4, otherwise.

Proof. We have to consider three cases.

Case 1. m is even. First, we have χ=(K1◦
lCm) ≤ 4 due to Theorem 10. Next,

observe that a 3-coloring of K1 ◦
l Cm is uniquely determined up to permutations

of colors. This coloring is equitable only for m = 4.

Case 2. m = 3. Since C3 = K3, our conclusion follows immediately from
Proposition 3.

Case 3. m is odd and m ≥ 5. Observe that at least 4 colors are necessary,
since K1 ◦

2 Cm includes K1 ◦ Cm as a subgraph. Below we present an equitable
coloring with 4 colors.

Our proof is by induction on l.

Step 1. For l = 2 the theorem holds due to the following. Let us notice that
|V (K1 ◦

2 Cm)| = (m + 1)2. This means that each of four colors must be used
exactly (m+ 1)2/4 = (⌊m/2⌋+ 1)2 times in every equitable coloring. The graph
K1◦

2Cm consists of m+1 copies of Cm joined to vertices of K1◦Cm appropriately.
The equitable 4-coloring of K1 ◦

2 Cm is formed as follows.
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• the vertex of K1 is colored with 1;

• the remaining vertices of K1 ◦Cm are assigned colors 2, 3 and 4 with cardi-
nalities equal to ⌊m/2⌋, ⌊m/2⌋ and 1, respectively;

• the copy of Cm in K1 ◦
2 Cm joined to vertex colored 1 is assigned colors 2,

3 and 4 with cardinalities equal to 1, ⌊m/2⌋ and ⌊m/2⌋, respectively;

• copies of Cm in K1 ◦2 Cm joined to vertex colored 2 are assigned colors
1, 3 and 4 with cardinalities in each cycle equal to 1, ⌊m/2⌋ and ⌊m/2⌋,
respectively;

• copies of Cm in K1 ◦2 Cm joined to vertex colored 3 are assigned colors
1, 2 and 4 with cardinalities in each cycle equal to ⌊m/2⌋, ⌊m/2⌋ and 1,
respectively;

• copies of Cm in K1 ◦
2 Cm joined to vertex colored 4 are assigned colors 1,

2 and 3 with cardinalities in each cycle Cm equal to ⌊m/2⌋, ⌊m/2⌋ and 1,
respectively.

In such a coloring each of 4 colors is used exactly (m+ 1)2/4 times.

Step 2. Induction hypothesis. Suppose Theorem 14 holds for some l ≥ 2.

Step 3. We have to show that χ=((K1 ◦
l Cm) ◦Cm) = 4. The conclusion follows

from Theorem 13.

Since G ◦l Pm is a subgraph of G ◦l Cm, we have similar bounds on equitable
chromatic number of coronas of appropriate graph G and a path as it was in the
case of G ◦l Cm, namely

χ=(G ◦l Pm) ≤ χ=(G ◦l Cm).

5. Conclusion

In the paper we have given some results concerning multicorona products of low
chromaticity graphs (bipartite, cycles, etc.) that confirm the Equitable Coloring
Conjecture. In particular, we have shown that the ECC conjecture follows for
every l-corona product G ◦l H, where graph H is on m vertices and graph G
is on n vertices and can be properly colored with m − 1 colors. Moreover, we
have established some special cases of products G ◦l H that can be colored with
3 or 4 colors efficiently provided that an equitable coloring of G can be done
in polynomial time p(n). This is in sharp contrast to cubical coronas for which
equitable coloring with 4 colors is NP-hard [8]. The main of our results are
summarized in Table 1.

Since the time spent on coloring/recoloring of any vertex of G◦lH is constant,
such a coloring of graphs under consideration can be done in time O(p(n) +
nm−1(m+ 1)l+1), which is polynomial in the size of G ◦l H.
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For example, the following graphs:

• broken spoke wheels [5],

• reels [5],

• cubic graphs except K4 [8],

• some graph products [6, 14],

• some cubical coronas [8]

admit equitable 3-coloring in polynomial time, and so do the corresponding mul-
ticoronas.

X
X
X

X
X
X
X

X
X
X
X

G
H bipartite even cycles Cm odd

graphs m = 4 m ≥ 6 cycles

equitably 3 |n 3 [Thm. 4]

3 [Thm. 9]

3 [Thm. 9]

4 [Thm. 13]3-colorable graph
3 ∤ n ≥ 4∗ [Thm. 6] 4 [Thm. 11]

on n ≥ 2 vertices

equitably 3 |n
≤ 4∗∗ [Thm. 8] ≤ 4 [Thm. 10]

≤ 4 [Thm. 10]

4 [Thm. 13]4-colorable graph
3 ∤ n 4 [Thm. 11]

on n ≥ 2 vertices

Table 1. Possible values of the equitable chromatic number of coronas G ◦l H, l ≥ 2.
Asterix (∗) means that the result is valid for H being balanced connected bipartite with
m ≥ 6. Double asterix (∗∗) means that the result is valid for H being balanced bipartite
with 4|m.
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[7] H. Furmańczyk, K. Kaliraj, M. Kubale and V.J. Vivin, Equitable coloring of corona
products of graphs , Adv. Appl. Discrete Math. 11 (2013) 103–120.
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