CONSTANT SUM PARTITION OF SETS OF INTEGERS AND DISTANCE MAGIC GRAPHS

Sylwia Cichacz and Agnieszka Gőrlich
AGH University of Science and Technology
Faculty of Applied Mathematics
e-mail: cichacz@agh.edu.pl
forys@agh.edu.pl

Abstract

Let $A=\{1,2, \ldots, t m+t n\}$. We shall say that A has the (m, n, t)-balanced constant-sum-partition property $((m, n, t)$-BCSP-property) if there exists a partition of A into $2 t$ pairwise disjoint subsets $A^{1}, A^{2}, \ldots, A^{t}, B^{1}, B^{2}, \ldots, B^{t}$ such that $\left|A^{i}\right|=m$ and $\left|B^{i}\right|=n$, and $\sum_{a \in A^{i}} a=\sum_{b \in B^{j}} b$ for $1 \leq i \leq t$ and $1 \leq j \leq t$. In this paper we give sufficient and necessary conditions for a set A to have the (m, n, t)-BCSP-property in the case when m and n are both even. We use this result to show some families of distance magic graphs.

Keywords: constant sum partition, distance magic labeling, product of graphs.
2010 Mathematics Subject Classification: 05C78.

1. Introduction

Let $A=\{1,2, \ldots, t m+t n\}$. We shall say that A has the (m, n, t)-balanced constant-sum-partition property $((m, n, t)$-BCSP-property) if there exists a partition of A into pairwise disjoint subsets $A^{1}, A^{2}, \ldots, A^{t}, B^{1}, B^{2}, \ldots, B^{t}$ such that $\left|A^{i}\right|=m$ and $\left|B^{i}\right|=n$, and $\sum_{a \in A^{i}} a=\sum_{b \in B^{j}} b$ for $1 \leq i, j \leq t$. A positive integer $\mu=\sum_{a \in A^{i}} a=\sum_{b \in B^{j}} b$ is called a balanced constant.

All graphs considered in this paper are simple finite graphs. Given a graph G, we denote its order by $|G|$, its size by $\|G\|$, its vertex set by $V(G)$ and the edge set by $E(G)$. The neighborhood $N(x)$ of a vertex x is the set of vertices adjacent to x, and the degree $d(x)$ of x is $|N(x)|$, the size of the neighborhood of x.

Distance magic labeling (also called sigma labeling) of a graph $G=(V, E)$ of order n is a bijection $l: V \rightarrow\{1,2, \ldots, n\}$ with the property that there is a positive integer k (called magic constant) such that $w(x)=\sum_{y \in N_{G}(x)} l(y)=k$ for every $x \in V$. If a graph G admits a distance magic labeling, then we say that G is a distance magic graph (see [29]). It was proved recently that the magic constant is unique ([27]).

The concept of distance magic labeling has been motivated by the construction of magic rectangles. Magic rectangles are a natural generalization of magic squares which have long intrigued mathematicians and the general public [17]. A magic (m, n)-rectangle S is an $m \times n$ array in which the first $m n$ positive integers are placed so that the sum over each row of S is constant and the sum over each column of S is another (different if $m \neq n$) constant. Harmuth proved the following theorem.
Theorem 1 [19, 20]. For $m, n>1$ there is a magic (m, n)-rectangle S if and only if $m \equiv n \bmod 2$ and $(m, n) \neq(2,2)$.

As in the case of magic squares, we can construct a distance magic complete m partite graph with each part size equal to n by labeling the vertices of each part by the columns of the magic rectangle. Moreover, observe that constant sum partition of $\{1,2, \ldots, n\}$ leads to complete multipartite distance magic labeled graphs. For instance, the partition $\{1,4\},\{2,3\}$ of the set $\{1,2,3,4\}$ with constant sum 5 leads to distance magic labeling of the complete bipartite graph $K_{2,2}$, see [6]. Beena proved the following.

Theorem 2 [6]. Let m and n be two positive integers such that $m \leq n$. The complete bipartite graph $K_{m, n}$ is a distance magic graph if and only if

- $m+n \equiv 0$ or $3(\bmod 4)$, and
- either $n \leq\left\lfloor(1+\sqrt{2}) m-\frac{1}{2}\right\rfloor$ or $2(2 n+1)^{2}-(2 m+2 n-1)^{2}=1$.

Moreover, Kotlar recently gave necessary and sufficient conditions for complete 4-partite graph to be distance magic (see [22]). He also posted the following open problem.

Problem 1.1 [22]. Let n, k and $p_{1}, p_{2}, \ldots, p_{k}$ be positive integers such that $p_{1}+p_{2}+\cdots+p_{k}=n$ and $\binom{n+1}{2} / k$ is an integer. When is it possible to find a partition of the set $\{1,2, \ldots, n\}$ into k subsets of sizes $p_{1}, p_{2}, \ldots, p_{k}$, respectively, such that the sum of the elements in each subset is $\binom{n+1}{2} / k$?

A similar problem was also considered in $[2,7,9,12,14,23,24]$. Namely, a non-increasing sequence $\left\langle m_{1}, \ldots, m_{k}\right\rangle$ of positive integers is said to be n-realizable if the set $\{1,2, \ldots, n\}$ can be partitioned into k mutually disjoint subsets X_{1}, X_{2}, \ldots, X_{k} such that $\sum_{x \in X_{i}} x=m_{i}$ for each $1 \leq i \leq k$. The study of n realizable sequences was motivated by the ascending subgraph decomposition
problem posed by Alavi, Boals, Chartrand, Erdős and Oellerman [1], which asks for a decomposition of a given graph G of size $\binom{n+1}{2}$ by subgraphs $H_{1}, H_{2}, \ldots, H_{n}$, where H_{i} has size i and is a subgraph of H_{i+1} for each $i=1,2, \ldots, n-1$. These authors conjectured that a forest of stars of size $\binom{n+1}{2}$ with each component having at least n edges admits an ascending subgraph decomposition by stars. This is equivalent to the fact that every non-increasing sequence $\left\langle m_{1}, \ldots, m_{k}\right\rangle$ with $\sum_{i=1}^{k} m_{i}=\binom{n+1}{2}$ and $m_{k} \geq n$ is n-realizable, a result which was proved by Ma, Zhou and Zhou [25]. Although the general ascending subgraph decomposition conjecture is unsolved so far, some partial results have been obtained [$10,11,13]$.

We recall two out of four standard graph products (see [21]). Both, the lexicographic product $G \circ H$ and the direct product $G \times H$ are graphs with the vertex set $V(G) \times V(H)$. Two vertices (g, h) and (g^{\prime}, h^{\prime}) are adjacent in:

- $G \circ H$ if and only if either g is adjacent to g^{\prime} in G or $g=g^{\prime}$ and h is adjacent to h^{\prime} in H;
- $G \times H$ if g is adjacent to g^{\prime} in G and h is adjacent to h^{\prime} in H.

The graph $G \circ H$ is also called the composition and denoted by $G[H]$ (see [18]). The product $G \times H$, also known as Kronecker product, tensor product, categorical product and graph conjunction, is the most natural graph product.

Some graphs which are distance magic among (some) products can be found in $[3,4,6,8,16,26,28]$.

The following problem was posted in [5].
Problem 1.2 [5]. If G is non-regular graph, determine if there is a distance magic labeling of $G \circ C_{4}$.

Anholcer and Cichacz proved the following.
Theorem 3 [3]. Let m and n be integers such that $1 \leq m<n$. Then $K_{m, n} \circ C_{4}$ is distance magic if and only if the following conditions hold.
(1) The numbers

$$
a=\frac{(m+n)(4 m+4 n+1)(2 m-1)}{4 m n-m-n}
$$

and

$$
b=\frac{(m+n)(4 m+4 n+1)(2 n-1)}{4 m n-m-n}
$$

are integers.
(2) There exist integers $p, q, t \geq 1$ such that

$$
\begin{aligned}
p+q & =(b-a), \\
4 n & =p t, \\
4 m & =q t .
\end{aligned}
$$

Moreover, they showed that a product $C_{3}^{(t)} \circ C_{4}$ is not distance magic, where $C_{3}^{(t)}$, called a Dutch Windmill Graph, is the graph obtained by taking $t>1$ copies of the cycle graph C_{3} with a vertex in common [15]. We prove that also the product $C_{3}^{(t)} \times C_{4}$ is not distance magic.

Thus we state a problem similar to Problem 1.2 for direct product.
Problem 1.3. If G is a non-regular graph, determine if there is a distance magic labeling of $G \times C_{4}$.

The paper is organized as follows. In the next section we focus on sets having an (m, n, t)-BCSP-property. We give the necessary and sufficient conditions for a set $A=\{1,2, \ldots, t m+t n\}$ to have the (m, n, t)-BCSP-property in the case when m and n are both even. In the third section we generalize the Beena's result ([6]) by showing necessary and sufficient conditions for t copies of $K_{m, n}\left(t K_{m, n}\right)$ to be distance magic, if m and n are both even. We use this result to give necessary and sufficient conditions for the direct product $K_{m, n} \times C_{4}$ to be distance magic.

2. Constant Sum Partition

Theorem 4. Let m and n be two positive integers such that $m \leq n$. If the set $A=\{1,2, \ldots, t m+t n\}$ has the (m, n, t)-BCSP-property, then the conditions hold:

- $m+n \equiv 0(\bmod 4)$ or $t m+t n \equiv 3(\bmod 4)$, and
- $1=2(2 t n+1)^{2}-(2 t m+2 t n+1)^{2}$ or $m \geq(\sqrt{2}-1) n+\frac{\sqrt{2}-1}{2 t}$.

Proof. Suppose that $A^{1}, A^{2}, \ldots, A^{t}, B^{1}, B^{2}, \ldots, B^{t}$ is an (m, n, t)-constant sum partition of the set A. Let $A^{i}=\left\{a_{0}^{i}, a_{1}^{i}, \ldots, a_{m-1}^{i}\right\}$ and $B^{i}=\left\{b_{0}^{i}, b_{1}^{i}, \ldots, b_{n-1}^{i}\right\}$ for $i=1,2, \ldots, t$. Since for the balanced constant μ we have $\mu=\sum_{i=0}^{m-1} a_{i}^{j}=$ $\sum_{l=0}^{n-1} b_{l}^{j}$, for $j=1,2, \ldots, t$, it is easy to observe that

$$
\mu=\frac{1}{2 t} \sum_{i=1}^{t n+t m} i=\frac{(t m+t n)(t m+t n+1)}{4 t}
$$

which implies that $m+n \equiv 0(\bmod 4)$ or $t m+t n \equiv 3(\bmod 4)$. Notice that $\sum_{i=0}^{m-1} \sum_{j=1}^{t} a_{i}^{j} \leq \sum_{i=1}^{t m}(i+t n)=\frac{t m(t m+2 t n+1)}{2}$, thus $\mu \leq \frac{m(t m+2 t n+1)}{2}$. This implies $(m+n)(t m+t n+1) \leq 2 m(t m+2 t n+1)$ and therefore

$$
\left[t m+\left(t n+\frac{1}{2}\right)\right]^{2} \geq t^{2} n^{2}+t n+\left(t n+\frac{1}{2}\right)^{2}=\frac{(2 t n+1)^{2}}{2}-\frac{1}{4}
$$

That is

$$
1 \geq 2(2 t n+1)^{2}-(2 t m+2 t n+1)^{2}
$$

Therefore, $1=2(2 t n+1)^{2}-(2 t m+2 t n+1)^{2}$ or $m \geq(\sqrt{2}-1) n+\frac{\sqrt{2}-1}{2 t}$.
Theorem 5. Let m and n be two positive integers such that $m \leq n$. If the conditions hold:

- $m+n \equiv 0(\bmod 4)$ or $t m+t n \equiv 3(\bmod 4)$, and
- $1=2(2 t n+1)^{2}-(2 t m+2 t n+1)^{2}$,
then the set $A=\{1,2, \ldots, t m+t n\}$ has the (m, n, t)-BCSP-property.
Proof. Using the same arguments as in the proof of Theorem 4, the condition $1=2(2 t n+1)^{2}-(2 t m+2 t n+1)^{2}$ relates to the solution when the $t m$ elements in $A^{1} \cup A^{2} \cup \cdots \cup A^{t}$ have to be the $t m$ largest integers $1+t n, 2+t n, \ldots, t n+t m$ (because then $\sum_{i=0}^{m-1} \sum_{j=1}^{t} a_{i}^{j}=\sum_{i=1}^{t m}(i+t n)=\frac{t m(t m+2 t n+1)}{2}$), whereas the $t n$ elements in $B^{1} \cup B^{2} \cup \cdots \cup B^{t}$ have to be the $t n$ smallest integers $1,2, \ldots, t n$ and $\mu=\frac{m(t m+2 t n+1)}{2}=\frac{n(t n+1)}{2}$. Notice that if m or n is odd, then t is odd since the constant μ is an integer.

If m is odd, then there exists a magic (t, m)-rectangle by Theorem 1. Let $a_{i, j}$ be an (i, j)-entry of the (t, m)-rectangle, $0 \leq i \leq t-1$ and $0 \leq j \leq m-1$. Notice that $\sum_{j=0}^{m-1} a_{i, j}=\frac{m(1+t m)}{2}$. Let $a_{j}^{i}=a_{i, j}+t n$, for $j=0,1, \ldots, m-1$ and $i=0,1, \ldots, t-1$.

If n is odd, then there exists a magic (t, n)-rectangle by Theorem 1 . Let $b_{i, j}$ be an (i, j)-entry of the (t, n)-rectangle, $0 \leq i \leq t-1$ and $0 \leq j \leq n-1$. Notice that $\sum_{i=0}^{n-1} b_{i, j}=\frac{n(1+t n)}{2}$. Let $b_{j}^{i}=b_{i, j}$, for $j=0,1, \ldots, n-1$ and $i=0,1, \ldots, t-1$.

If m is even, then $a_{2 j}^{i}=t n+i \frac{m}{2}+j+1, a_{2 j+1}^{i}=t n+t m-i \frac{m}{2}-j$, for $j=0,1, \ldots, m / 2-1$ and $i=0,1, \ldots, t-1$.

If n is even, then $b_{2 j}^{i}=i \frac{n}{2}+j+1, b_{2 j+1}^{i}=t n-i \frac{n}{2}-j$, for $j=0,1, \ldots, n / 2-1$ and $i=0,1, \ldots, t-1$.

Theorem 6. Let m and n be two positive even integers such that $m \leq n$. The set $A=\{1,2, \ldots, t m+t n\}$ has the (m, n, t)-BCSP-property if and only if the conditions hold:

- $m+n \equiv 0(\bmod 4)$, and
- $1=2(2 t n+1)^{2}-(2 t m+2 t n+1)^{2}$ or $m \geq(\sqrt{2}-1) n+\frac{\sqrt{2}-1}{2 t}$.

Proof. The necessity is obvious by Theorem 4. Suppose now that m and n are positive even integers satisfying above assumptions. We can also assume that $m \geq$ $(\sqrt{2}-1) n+\frac{\sqrt{2}-1}{2 t}\left(\right.$ which in these case is equivalent to $m>-n+\frac{\sqrt{2(2 t n+1)^{2}-1}-1}{2 t}$ since $\left.\sqrt{2}(2 t n+1)>\sqrt{2(2 t n+1)^{2}-1}\right)$, by Theorem 5 .

Let us partition the set A into t disjoint sets $V_{i}=\{i+2 t j, 2 t-i+1+2 t j$, $\left.j \in\left\{0,1, \ldots, \frac{m+n-2}{2}\right\}\right\}$ for $i \in\{1, \ldots, t\}$ with cardinality $m+n$. For every $a \in V_{i}$ let \bar{a} denote the element in V_{i} such that $a+\bar{a}=t m+t n+1$. Observe that for every element $a \in V_{i}$ there exists $\bar{a} \in V_{i}$. The sum of integers in each set V_{i} is $K=\frac{(1+t m+t n)(m+n)}{2}$. Obviously, a balanced constant is $\mu=\frac{K}{2}$.

Let W_{i} be the sequence of m greatest integers in V_{i} for every $i \in\{1, \ldots, t\}$, so $W_{i}=(t n+i, t m+t n-(m-2) t-i+1, \ldots, t m+t n-2 t+i, t m+t n-i+1)$. Denote the j-th element in a sequence W_{i} by w_{i}^{j}. Then for each i we obtain that

$$
\sum_{j=1}^{m} w_{i}^{j}=\frac{m(1+t m+2 t n)}{2}=: S
$$

Since $m>-n+\frac{\sqrt{2(2 t n+1)^{2}-1}-1}{2 t}$, observe that $S-\mu>0$. Hence, there exist nonnegative integers k and d such that $S-\mu=k m+d$, where $0 \leq d<m$. Therefore, $S-\mu=\frac{t m^{2}}{4}+\frac{t m n}{2}+\frac{m-n}{4}-\frac{t n^{2}}{4}=k m+d \leq \frac{t m n}{2}$, since $m \leq n$. Hence, we obtain that $k \leq \frac{t n}{2}$. Furthermore, $t n-k>0$.

If $d=0$ we create sets A_{1}, \ldots, A_{t} putting $A_{i}=\left\{w_{i}^{1}-k, \ldots, w_{i}^{m}-k\right\}$. Note that $A_{i} \cap A_{j}=\emptyset$ for every $i \neq j$. Moreover, $\sum_{a \in A_{i}} a=S-m k=\mu$ for $i \in$ $\{1, \ldots, t\}$.

Let $B_{i}^{\prime}=\left\{\overline{w_{i}^{1}-k}, \ldots, \overline{w_{i}^{m}-k}\right\}$. Observe that the set

$$
B=A \backslash\left(\bigcup_{i=1}^{t} A_{i} \cup \bigcup_{i=1}^{t} B_{i}^{\prime}\right)
$$

has cardinality $t(n-m)$. Indeed, we can part it into $\frac{t(n-m)}{2}$ pairs with type $\{a, \bar{a}\}$ (see Example 7). Then we part the set B into t disjoint subsets $B_{1}^{\prime \prime}, \ldots, B_{t}^{\prime \prime}$ with cardinality $n-m$ so that the elements of every set $B_{i}^{\prime \prime}$ create exactly $\frac{n-m}{2}$ pairs with type $\{a, \bar{a}\}$. Let $B_{i}=B_{i}^{\prime} \cup B_{i}^{\prime \prime}$ for $i \in\{1, \ldots, t\}$. Then each set B_{i} contains n elements and $B_{i} \cap B_{j}=\emptyset$ for $i \neq j$. Furthermore,

$$
\sum_{b \in B_{i}} b=\frac{(n-m)(t m+t n+1)}{2}+m(t m+t n+1)-\mu=\mu
$$

Example 7. Let $m=n=t=2$. Then $A=\{1,2, \ldots, 8\}, S=13, \mu=9$. Since $V_{1}=\{1,4,5,8\}$ and $V_{2}=\{2,3,6,7\}$, we have $W_{1}=\{5,8\}$ and $W_{2}=\{6,7\}$. Observe that $d=0$ and then $A_{1}=\{3,6\}, A_{2}=\{4,5\}, B_{1}^{\prime}=\{6,3\}$ and $B_{2}^{\prime}=$ $\{5,4\}$. Therefore $B=\{1,2,7,8\}$ and elements of it create two pairs with type $\{a, \bar{a}\}$, namely $\{1,8\}$ and $\{2,7\}$.

If $d>0$ we create sets A_{i} as follows. We subtract 1 from each of the first d labels: $A_{i}=\left\{w_{i}^{1}-k-1, \ldots, w_{i}^{d}-k-1, w_{i}^{d+1}-k, \ldots, w_{i}^{m}-k\right\}$ for
$i \in\{1, \ldots, t\}$. Then $\sum_{a \in A_{i}} a=S-m k-d=\mu$ for $i \in\{1, \ldots, t\}$. Then $B_{i}^{\prime}=$ $\left\{\overline{w_{i}^{1}-k-1}, \ldots, \overline{w_{i}^{d}-k-1}, \overline{w_{i}^{d+1}-k}, \ldots, \overline{w_{i}^{m}-k}\right\}$ and elements of a set $B=$ $A \backslash\left(\bigcup_{i=1}^{t} A_{i} \cup \bigcup_{i=1}^{t} B_{i}^{\prime}\right)$ create $\frac{t(n-m)}{2}$ pairs with type $\{a, \bar{a}\}$. As above, we part the set B into t disjoint subsets $B_{1}^{\prime \prime}, \ldots, B_{t}^{\prime \prime}$ with cardinality $n-m$ so that the elements of every set $B_{i}^{\prime \prime}$ create exactly $\frac{n-m}{2}$ pairs with type $\{a, \bar{a}\}$ and define pairwise disjoint sets $B_{i}=B_{i}^{\prime} \cup B_{i}^{\prime \prime}$ for $i \in\{1, \ldots, t\}$. Each set B_{i} contains n elements and $\sum_{b \in B_{i}} b=\mu$.

Hence A has the (m, n, t)-BCSP-property.
Notice that although the numbers $m=3, n=6, t=3$ satisfy the necessary conditions of Theorem 4, they do not satisfy the sufficient conditions either of Theorem 5 or 6 . Let $A_{1}=\{10,26,27\}, A_{2}=\{14,24,25\}, A_{3}=\{18,22,23\}$, $B_{1}=\{1,4,7,13,17,21\}, B_{2}=\{2,5,8,12,16,20\}, B_{3}=\{3,6,9,11,15,19\}$. Thus, the set $A=\{1,2, \ldots, 27\}$ has the (3,6,3)-BCSP-property. Therefore, we conclude this section by stating the following.

Conjecture 2.1. Let m and n be two positive integers such that $m \leq n$. The set $A=\{1,2, \ldots, t m+t n\}$ has the $(m, n, t)-B C S P$-property if and only if the conditions hold:

- $m+n \equiv 0(\bmod 4)$ or $t m+t n \equiv 3(\bmod 4)$, and
- $1=2(2 t n+1)^{2}-(2 t m+2 t n+1)^{2}$ or $m \geq(\sqrt{2}-1) n+\frac{\sqrt{2}-1}{2 t}$.

Recall that the conjecture is true for $t=1$ by Theorem 2 . Moreover, one can verify that the conjecture is also true for $t=2$ (see e.g. [22], Theorem 2).

3. Distance Magic Graphs

We obtain the following corollaries by Theorem 6 .
Corollary 1. Let m and n be two positive even integers such that $m \leq n$. The graph $t K_{m, n}$ is distance magic if and only if the conditions hold:

- $m+n \equiv 0(\bmod 4)$, and
- $1=2(2 t n+1)^{2}-(2 t m+2 t n+1)^{2}$ or $m \geq(\sqrt{2}-1) n+\frac{\sqrt{2}-1}{2 t}$.

Let $K_{m[a], n[b]} \cong K_{\underbrace{}_{a}}^{m, \ldots, m} \underbrace{n, \ldots, n}_{b}$.
Corollary 2. Let m and n be two positive even integers such that $m \leq n$. The graph $K_{m[t], n[t]}$ is distance magic if and only if the conditions hold:

- $m+n \equiv 0(\bmod 4)$, and
- $1=2(2 t n+1)^{2}-(2 t m+2 t n+1)^{2}$ or $m \geq(\sqrt{2}-1) n+\frac{\sqrt{2}-1}{2 t}$.

Corollary 3. Let m and n be two positive integers such that $m \leq n$. The graph $K_{m, n} \times C_{4}$ is a distance magic graph if and only if the following conditions hold:

- $m+n \equiv 0(\bmod 2)$, and
- $1=2(8 n+1)^{2}-(8 m+8 n+1)^{2}$ or $m \geq(\sqrt{2}-1) n+\frac{\sqrt{2}-1}{8}$.

Proof. Since $K_{m, n} \times C_{4} \cong 2 K_{2 m, 2 n}$ we are done by Theorem 2 .
We now show that there does not exist a distance magic labeling for $C_{3}^{(t)} \times C_{4}$.
Theorem 8. The graph $C_{3}^{(t)} \times C_{4}$ is not a distance magic graph.
Proof. Let $C_{3}^{(t)}$ have the central vertex x and let vertices y_{i}, z_{i} belong to i th copy of a cycle C_{3}. Let $C_{4}=v^{0} v^{1} v^{2} v^{3} v^{0}$. Suppose that l is a distance magic labeling of the graph $H=C_{3}^{(t)} \times C_{4}$ and $k=w(x)$, for all vertices $x \in V\left(C_{3}^{(t)} \times C_{4}\right)$. Let

- $l\left(x, v^{0}\right)+l\left(x, v^{2}\right)=s_{1}$,
- $l\left(x, v^{1}\right)+l\left(x, v^{3}\right)=s_{2}$,
- $l\left(y_{i}, v^{0}\right)+l\left(y_{i}, v^{2}\right)=a_{i}^{1}$,
- $l\left(y_{i}, v^{1}\right)+l\left(y_{i}, v^{3}\right)=a_{i}^{2}$,
- $l\left(z_{i}, v^{0}\right)+l\left(z_{i}, v^{2}\right)=b_{i}^{1}$,
- $l\left(z_{i}, v^{1}\right)+l\left(z_{i}, v^{3}\right)=b_{i}^{2}$,
for $0 \leq i \leq t-1$.
Since $k=a_{i}^{1}+s_{2}=b_{i}^{1}+s_{2}$ and $k=a_{i}^{2}+s_{1}=b_{i}^{2}+s_{1}$, we observe that $l\left(y_{i}, v^{0}\right)+$ $l\left(y_{i}, v^{2}\right)=l\left(z_{i}, v^{0}\right)+l\left(z_{i}, v^{2}\right)=a_{1}$ and $l\left(y_{i}, v^{1}\right)+l\left(y_{i}, v^{3}\right)=l\left(z_{i}, v^{1}\right)+l\left(z_{i}, v^{3}\right)=a_{2}$ for $0 \leq i \leq t-1$. Furthermore, since $k=w\left(x, v^{0}\right)=2 t a_{2}=w\left(x, v^{1}\right)=2 t a_{1}$, we have $a_{1}=a_{2}=a$ and hence $s_{1}=s_{2}=s$.

Notice that $2 s+4 t a=\sum_{x \in V(H)} l(x)=\sum_{i=1}^{8 t+4} i=(4 t+2)(8 t+5)$. Since $k=2 t a=a+s$, we obtain that $(4 t-1) a=(2 t+1)(8 t+5)$. Recall that a needs to be an integer, hence $(4 t-1)$ needs to divide $(22 t+5)$. Therefore we obtain that $t \in\{1,2\}$. Suppose that $t=2$ then $|V(H)|=20, a=15$, $s=45$, then $l\left(x, v^{i}\right)=15$ for some $i=0,1,2,3$ and thus $l\left(x, v^{i+2}\right)=30>20$, a contradiction.

Notice that if we want to find the values of m and n such that $K_{m, n} \times C_{4}$ is a distance magic graph we need to solve the Diophantine equation

$$
\begin{equation*}
\alpha=2(4 n+1)^{2}-(4 m+4 n+1)^{2} \tag{1}
\end{equation*}
$$

for some integer $\alpha \leq 1$. For instance if $\alpha=1$, then the equation (1) is a Pell's equation, thus for example $K_{102,246} \times C_{4}$ is a distance magic graph.

References

[1] Y. Alavi, A.J. Boals, G. Chartrand, P. Erdős and O.R. Oellerman, The ascending subgraph decomposition problem, Congr. Numer. 58 (1987) 7-14.
[2] K. Ando, S. Gervacio and M. Kano, Disjoint subsets of integers having a constant sum, Discrete Math. 82 (1990) 7-11. doi:10.1016/0012-365X(90)90040-O
[3] M. Anholcer and S. Cichacz, Note on distance magic products $G \circ C_{4}$, Graphs Combin. 31 (2015) 1117-1124. doi:10.1007/s00373-014-1453-x
[4] M. Anholcer, S. Cichacz, I. Peterin and A. Tepeh, Distance magic labeling and two products of graphs, Graphs Combin. 31 (2015) 1125-1136. doi:10.1007/s00373-014-1455-8
[5] S. Arumugam, D. Froncek and N. Kamatchi, Distance magic graphs - A survey, J. Indones. Math. Soc., Special Edition (2011) 11-26.
[6] S. Beena, On Σ and Σ^{\prime} labelled graphs, Discrete Math. 309 (2009) 1783-1787. doi:10.1016/j.disc.2008.02.038
[7] F.L. Chen, H.L. Fu, Y. Wang and J. Zhou, Partition of a set of integers into subsets with prescribed sums, Taiwanese J. Math. 9 (2005) 629-638.
[8] S. Cichacz, D. Froncek, E. Krop and C. Raridan, Distance magic Cartesian products of graphs, Discuss. Math. Graph Theory 36 (2016) 299-308. doi:10.7151/dmgt. 1852
[9] H. Enomoto and M. Kano, Disjoint odd integer subsets having a constant even sum, Discrete Math. 137 (1995) 189-193. doi:10.1016/0012-365X(93)E0128-Q
[10] R.J. Faudree, A. Gyárfás and R.H. Schelp, Graphs which have an ascending subgraph decomposition, Congr. Numer. 59 (1987) 49-54.
[11] H.L. Fu and W.H. Hu, A note on ascending subgraph decompositions of complete multipartite graphs, Discrete Math. 226 (2001) 397-402.
doi:10.1016/S0012-365X(00)00171-0
[12] H.L. Fu and W.H. Hu, A special partition of the set I_{n}, Bull. Inst. Combin. Appl. 6 (1992) 57-61.
[13] H.L. Fu and W.H. Hu, Ascending subgraph decompositions of regular graphs, Discrete Math. 253 (2002) 11-18. doi:10.1016/S0012-365X(01)00445-9
[14] H.L. Fu and W.H. Hu, Disjoint odd integer subsets having a constant odd sum, Discrete Math. 128 (1994) 143-150. doi:10.1016/0012-365X(94)90108-2
[15] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2016) \#DS6.
[16] P. Gregor and P. Kovář, Distance magic labelings of hypercubes, Electron. Notes Discrete Math. 40 (2013) 145-149.
doi:10.1016/j.endm.2013.05.027
[17] T.R. Hagedorn, Magic rectangles revisited, Discrete Math. 207 (1999) 65-72. doi:10.1016/S0012-365X(99)00041-2
[18] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1994).
[19] T. Harmuth, Über magische Quadrate und ähnliche Zahlenfiguren, Arch. Math. Phys. 66 (1881) 286-313.
[20] T. Harmuth, Über magische Rechtecke mit ungeraden Seitenzahlen, Arch. Math. Phys. 66 (1881) 413-447.
[21] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition (CRC Press, Boca Raton, FL, 2011).
[22] D. Kotlar, Distance magic labeling in complete 4-partite graphs, Graphs Combin. 32 (2016) 1027-1038.
doi:10.1007/s00373-015-1627-1
[23] A. Lladó and J. Moragas, On the sumset partition problem, Electron. Notes Discrete Math. 34 (2009) 15-19. doi:10.1016/j.endm.2009.07.003
[24] A. Lladó and J. Moragas, On the modular sumset partition problem, European J. Combin. 33 (2012) 427-434. doi:10.1016/j.ejc.2011.09.001
[25] K. Ma, H. Zhou and J. Zhou, On the ascending star subgraph decomposition of star forests, Combinatorica 14 (1994) 307-320. doi:10.1007/BF01212979
[26] M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin. 28 (2003) 305-315.
[27] A. O'Neal and P.J. Slater, Uniqueness of vertex magic constants, SIAM J. Discrete Math. 27 (2013) 708-716. doi:10.1137/110834421
[28] S.B. Rao, T. Singh and V. Prameswaran, Some sigma labelled graphs I, in: Graphs, Combinatorics, Algorithms and Applications, S. Arumugam, B.D. Acharya and S.B. Rao, (Eds.), (Narosa Publishing House, New Delhi, 2004) 125-133.
[29] V. Vilfred, Σ-Labelled Graphs and Circulant Graphs (Ph.D. Thesis, University of Kerala, Trivandrum, India, 1994).

