CONSTANT SUM PARTITION OF SETS OF INTEGERS AND DISTANCE MAGIC GRAPHS

Sylwia Cichacz and Agnieszka Görlich

AGH University of Science and Technology Faculty of Applied Mathematics

> e-mail: cichacz@agh.edu.pl forys@agh.edu.pl

Abstract

Let $A = \{1, 2, \ldots, tm+tn\}$. We shall say that A has the (m, n, t)-balanced constant-sum-partition property ((m, n, t)-BCSP-property) if there exists a partition of A into 2t pairwise disjoint subsets $A^1, A^2, \ldots, A^t, B^1, B^2, \ldots, B^t$ such that $|A^i| = m$ and $|B^i| = n$, and $\sum_{a \in A^i} a = \sum_{b \in B^j} b$ for $1 \le i \le t$ and $1 \le j \le t$. In this paper we give sufficient and necessary conditions for a set A to have the (m, n, t)-BCSP-property in the case when m and n are both even. We use this result to show some families of distance magic graphs.

Keywords: constant sum partition, distance magic labeling, product of graphs.

2010 Mathematics Subject Classification: 05C78.

1. Introduction

Let $A = \{1, 2, ..., tm + tn\}$. We shall say that A has the (m, n, t)-balanced constant-sum-partition property ((m, n, t)-BCSP-property) if there exists a partition of A into pairwise disjoint subsets $A^1, A^2, ..., A^t, B^1, B^2, ..., B^t$ such that $|A^i| = m$ and $|B^i| = n$, and $\sum_{a \in A^i} a = \sum_{b \in B^j} b$ for $1 \le i, j \le t$. A positive integer $\mu = \sum_{a \in A^i} a = \sum_{b \in B^j} b$ is called a balanced constant.

All graphs considered in this paper are simple finite graphs. Given a graph G, we denote its order by |G|, its size by ||G||, its vertex set by V(G) and the edge set by E(G). The neighborhood N(x) of a vertex x is the set of vertices adjacent to x, and the degree d(x) of x is |N(x)|, the size of the neighborhood of x.

Distance magic labeling (also called sigma labeling) of a graph G = (V, E) of order n is a bijection $l: V \to \{1, 2, ..., n\}$ with the property that there is a positive integer k (called magic constant) such that $w(x) = \sum_{y \in N_G(x)} l(y) = k$ for every $x \in V$. If a graph G admits a distance magic labeling, then we say that G is a distance magic graph (see [29]). It was proved recently that the magic constant is unique ([27]).

The concept of distance magic labeling has been motivated by the construction of magic rectangles. Magic rectangles are a natural generalization of magic squares which have long intrigued mathematicians and the general public [17]. A $magic\ (m,n)$ -rectangle S is an $m\times n$ array in which the first mn positive integers are placed so that the sum over each row of S is constant and the sum over each column of S is another (different if $m\neq n$) constant. Harmuth proved the following theorem.

Theorem 1 [19, 20]. For m, n > 1 there is a magic (m, n)-rectangle S if and only if $m \equiv n \mod 2$ and $(m, n) \neq (2, 2)$.

As in the case of magic squares, we can construct a distance magic complete m partite graph with each part size equal to n by labeling the vertices of each part by the columns of the magic rectangle. Moreover, observe that constant sum partition of $\{1, 2, \ldots, n\}$ leads to complete multipartite distance magic labeled graphs. For instance, the partition $\{1, 4\}$, $\{2, 3\}$ of the set $\{1, 2, 3, 4\}$ with constant sum 5 leads to distance magic labeling of the complete bipartite graph $K_{2,2}$, see [6]. Beena proved the following.

Theorem 2 [6]. Let m and n be two positive integers such that $m \leq n$. The complete bipartite graph $K_{m,n}$ is a distance magic graph if and only if

- $m + n \equiv 0 \text{ or } 3 \pmod{4}$, and
- either $n \le \lfloor (1+\sqrt{2})m \frac{1}{2} \rfloor$ or $2(2n+1)^2 (2m+2n-1)^2 = 1$.

Moreover, Kotlar recently gave necessary and sufficient conditions for complete 4-partite graph to be distance magic (see [22]). He also posted the following open problem.

Problem 1.1 [22]. Let n, k and p_1, p_2, \ldots, p_k be positive integers such that $p_1 + p_2 + \cdots + p_k = n$ and $\binom{n+1}{2}/k$ is an integer. When is it possible to find a partition of the set $\{1, 2, \ldots, n\}$ into k subsets of sizes p_1, p_2, \ldots, p_k , respectively, such that the sum of the elements in each subset is $\binom{n+1}{2}/k$?

A similar problem was also considered in [2, 7, 9, 12, 14, 23, 24]. Namely, a non-increasing sequence $\langle m_1, \ldots, m_k \rangle$ of positive integers is said to be n-realizable if the set $\{1, 2, \ldots, n\}$ can be partitioned into k mutually disjoint subsets X_1, X_2, \ldots, X_k such that $\sum_{x \in X_i} x = m_i$ for each $1 \leq i \leq k$. The study of n-realizable sequences was motivated by the ascending subgraph decomposition

problem posed by Alavi, Boals, Chartrand, Erdős and Oellerman [1], which asks for a decomposition of a given graph G of size $\binom{n+1}{2}$ by subgraphs H_1, H_2, \ldots, H_n , where H_i has size i and is a subgraph of H_{i+1} for each $i=1,2,\ldots,n-1$. These authors conjectured that a forest of stars of size $\binom{n+1}{2}$ with each component having at least n edges admits an ascending subgraph decomposition by stars. This is equivalent to the fact that every non-increasing sequence $\langle m_1,\ldots,m_k\rangle$ with $\sum_{i=1}^k m_i = \binom{n+1}{2}$ and $m_k \geq n$ is n-realizable, a result which was proved by Ma, Zhou and Zhou [25]. Although the general ascending subgraph decomposition conjecture is unsolved so far, some partial results have been obtained [10, 11, 13].

We recall two out of four standard graph products (see [21]). Both, the lexicographic product $G \circ H$ and the direct product $G \times H$ are graphs with the vertex set $V(G) \times V(H)$. Two vertices (g,h) and (g',h') are adjacent in:

- $G \circ H$ if and only if either g is adjacent to g' in G or g = g' and h is adjacent to h' in H;
- $G \times H$ if g is adjacent to g' in G and h is adjacent to h' in H.

The graph $G \circ H$ is also called the *composition* and denoted by G[H] (see [18]). The product $G \times H$, also known as *Kronecker product*, tensor product, categorical product and graph conjunction, is the most natural graph product.

Some graphs which are distance magic among (some) products can be found in [3, 4, 6, 8, 16, 26, 28].

The following problem was posted in [5].

Problem 1.2 [5]. If G is non-regular graph, determine if there is a distance magic labeling of $G \circ C_4$.

Anholcer and Cichacz proved the following.

Theorem 3 [3]. Let m and n be integers such that $1 \le m < n$. Then $K_{m,n} \circ C_4$ is distance magic if and only if the following conditions hold.

(1) The numbers

$$a = \frac{(m+n)(4m+4n+1)(2m-1)}{4mn-m-n}$$

and

$$b = \frac{(m+n)(4m+4n+1)(2n-1)}{4mn-m-n}$$

are integers.

(2) There exist integers $p, q, t \ge 1$ such that

$$p + q = (b - a),$$

$$4n = pt,$$

$$4m = qt.$$

Moreover, they showed that a product $C_3^{(t)} \circ C_4$ is not distance magic, where $C_3^{(t)}$, called a *Dutch Windmill Graph*, is the graph obtained by taking t > 1 copies of the cycle graph C_3 with a vertex in common [15]. We prove that also the product $C_3^{(t)} \times C_4$ is not distance magic.

Thus we state a problem similar to Problem 1.2 for direct product.

Problem 1.3. If G is a non-regular graph, determine if there is a distance magic labeling of $G \times C_4$.

The paper is organized as follows. In the next section we focus on sets having an (m, n, t)-BCSP-property. We give the necessary and sufficient conditions for a set $A = \{1, 2, ..., tm + tn\}$ to have the (m, n, t)-BCSP-property in the case when m and n are both even. In the third section we generalize the Beena's result ([6]) by showing necessary and sufficient conditions for t copies of $K_{m,n}$ ($tK_{m,n}$) to be distance magic, if m and n are both even. We use this result to give necessary and sufficient conditions for the direct product $K_{m,n} \times C_4$ to be distance magic.

2. Constant Sum Partition

Theorem 4. Let m and n be two positive integers such that $m \le n$. If the set $A = \{1, 2, ..., tm+tn\}$ has the (m, n, t)-BCSP-property, then the conditions hold:

- $m + n \equiv 0 \pmod{4}$ or $tm + tn \equiv 3 \pmod{4}$, and
- $1 = 2(2tn+1)^2 (2tm+2tn+1)^2$ or $m \ge (\sqrt{2}-1)n + \frac{\sqrt{2}-1}{2t}$.

Proof. Suppose that $A^1, A^2, \ldots, A^t, B^1, B^2, \ldots, B^t$ is an (m, n, t)-constant sum partition of the set A. Let $A^i = \{a^i_0, a^i_1, \ldots, a^i_{m-1}\}$ and $B^i = \{b^i_0, b^i_1, \ldots, b^i_{n-1}\}$ for $i = 1, 2, \ldots, t$. Since for the balanced constant μ we have $\mu = \sum_{i=0}^{m-1} a^j_i = \sum_{l=0}^{n-1} b^j_l$, for $j = 1, 2, \ldots, t$, it is easy to observe that

$$\mu = \frac{1}{2t} \sum_{i=1}^{tn+tm} i = \frac{(tm+tn)(tm+tn+1)}{4t},$$

which implies that $m+n\equiv 0\pmod 4$ or $tm+tn\equiv 3\pmod 4$. Notice that $\sum_{i=0}^{m-1}\sum_{j=1}^t a_i^j \leq \sum_{i=1}^{tm}(i+tn) = \frac{tm(tm+2tn+1)}{2}$, thus $\mu \leq \frac{m(tm+2tn+1)}{2}$. This implies $(m+n)(tm+tn+1) \leq 2m(tm+2tn+1)$ and therefore

$$\left[tm + \left(tn + \frac{1}{2}\right)\right]^2 \ge t^2n^2 + tn + \left(tn + \frac{1}{2}\right)^2 = \frac{(2tn+1)^2}{2} - \frac{1}{4}.$$

That is

$$1 > 2(2tn+1)^2 - (2tm+2tn+1)^2$$
.

Therefore,
$$1 = 2(2tn+1)^2 - (2tm+2tn+1)^2$$
 or $m \ge (\sqrt{2}-1)n + \frac{\sqrt{2}-1}{2t}$.

Theorem 5. Let m and n be two positive integers such that $m \leq n$. If the conditions hold:

- $m + n \equiv 0 \pmod{4}$ or $tm + tn \equiv 3 \pmod{4}$, and
- $1 = 2(2tn+1)^2 (2tm+2tn+1)^2$,

then the set $A = \{1, 2, ..., tm + tn\}$ has the (m, n, t)-BCSP-property.

Proof. Using the same arguments as in the proof of Theorem 4, the condition $1=2(2tn+1)^2-(2tm+2tn+1)^2$ relates to the solution when the tm elements in $A^1\cup A^2\cup\cdots\cup A^t$ have to be the tm largest integers $1+tn, 2+tn, \ldots, tn+tm$ (because then $\sum_{i=0}^{m-1}\sum_{j=1}^t a_i^j = \sum_{i=1}^{tm}(i+tn) = \frac{tm(tm+2tn+1)}{2}$), whereas the tn elements in $B^1\cup B^2\cup\cdots\cup B^t$ have to be the tn smallest integers $1,2,\ldots,tn$ and $\mu=\frac{m(tm+2tn+1)}{2}=\frac{n(tn+1)}{2}$. Notice that if m or n is odd, then t is odd since the constant μ is an integer.

If m is odd, then there exists a magic (t,m)-rectangle by Theorem 1. Let $a_{i,j}$ be an (i,j)-entry of the (t,m)-rectangle, $0 \le i \le t-1$ and $0 \le j \le m-1$. Notice that $\sum_{j=0}^{m-1} a_{i,j} = \frac{m(1+tm)}{2}$. Let $a_j^i = a_{i,j} + tn$, for $j = 0, 1, \ldots, m-1$ and $i = 0, 1, \ldots, t-1$.

If n is odd, then there exists a magic (t,n)-rectangle by Theorem 1. Let $b_{i,j}$ be an (i,j)-entry of the (t,n)-rectangle, $0 \le i \le t-1$ and $0 \le j \le n-1$. Notice that $\sum_{i=0}^{n-1} b_{i,j} = \frac{n(1+tn)}{2}$. Let $b_j^i = b_{i,j}$, for $j = 0, 1, \ldots, n-1$ and $i = 0, 1, \ldots, t-1$.

 $\sum_{i=0}^{n-1} b_{i,j} = \frac{n(1+tn)}{2}. \text{ Let } b_j^i = b_{i,j}, \text{ for } j = 0, 1, \dots, n-1 \text{ and } i = 0, 1, \dots, t-1.$ If m is even, then $a_{2j}^i = tn + i\frac{m}{2} + j + 1$, $a_{2j+1}^i = tn + tm - i\frac{m}{2} - j$, for $j = 0, 1, \dots, m/2 - 1$ and $i = 0, 1, \dots, t-1$.

If n is even, then $b_{2j}^i=i\frac{n}{2}+j+1, b_{2j+1}^i=tn-i\frac{n}{2}-j,$ for $j=0,1,\ldots,n/2-1$ and $i=0,1,\ldots,t-1$.

Theorem 6. Let m and n be two positive even integers such that $m \le n$. The set $A = \{1, 2, ..., tm + tn\}$ has the (m, n, t)-BCSP-property if and only if the conditions hold:

- $m + n \equiv 0 \pmod{4}$, and
- $1 = 2(2tn+1)^2 (2tm+2tn+1)^2$ or $m \ge (\sqrt{2}-1)n + \frac{\sqrt{2}-1}{2t}$.

Proof. The necessity is obvious by Theorem 4. Suppose now that m and n are positive even integers satisfying above assumptions. We can also assume that $m \geq (\sqrt{2}-1)n + \frac{\sqrt{2}-1}{2t}$ (which in these case is equivalent to $m > -n + \frac{\sqrt{2(2tn+1)^2-1}-1}{2t}$ since $\sqrt{2}(2tn+1) > \sqrt{2(2tn+1)^2-1}$), by Theorem 5.

Let us partition the set A into t disjoint sets $V_i = \{i+2tj, 2t-i+1+2tj, j \in \{0,1,\ldots,\frac{m+n-2}{2}\}\}$ for $i \in \{1,\ldots,t\}$ with cardinality m+n. For every $a \in V_i$ let \overline{a} denote the element in V_i such that $a+\overline{a}=tm+tn+1$. Observe that for every element $a \in V_i$ there exists $\overline{a} \in V_i$. The sum of integers in each set V_i is $K = \frac{(1+tm+tn)(m+n)}{2}$. Obviously, a balanced constant is $\mu = \frac{K}{2}$.

Let W_i be the sequence of m greatest integers in V_i for every $i \in \{1, \ldots, t\}$, so $W_i = (tn+i, tm+tn-(m-2)t-i+1, \ldots, tm+tn-2t+i, tm+tn-i+1)$. Denote the j-th element in a sequence W_i by w_i^j . Then for each i we obtain that

$$\sum_{i=1}^{m} w_i^j = \frac{m(1+tm+2tn)}{2} =: S.$$

Since $m > -n + \frac{\sqrt{2(2tn+1)^2-1}-1}{2t}$, observe that $S - \mu > 0$. Hence, there exist nonnegative integers k and d such that $S - \mu = km + d$, where $0 \le d < m$. Therefore, $S - \mu = \frac{tm^2}{4} + \frac{tmn}{2} + \frac{m-n}{4} - \frac{tn^2}{4} = km + d \le \frac{tmn}{2}$, since $m \le n$. Hence, we obtain that $k \le \frac{tn}{2}$. Furthermore, tn - k > 0.

If d=0 we create sets A_1, \ldots, A_t putting $A_i=\{w_i^1-k,\ldots,w_i^m-k\}$. Note that $A_i\cap A_j=\emptyset$ for every $i\neq j$. Moreover, $\sum_{a\in A_i}a=S-mk=\mu$ for $i\in\{1,\ldots,t\}$.

Let $B_i' = {\overline{w_i^1 - k}, \dots, \overline{w_i^m - k}}$. Observe that the set

$$B = A \setminus \left(\bigcup_{i=1}^{t} A_i \cup \bigcup_{i=1}^{t} B_i'\right)$$

has cardinality t(n-m). Indeed, we can part it into $\frac{t(n-m)}{2}$ pairs with type $\{a, \overline{a}\}$ (see Example 7). Then we part the set B into t disjoint subsets B_1'', \ldots, B_t'' with cardinality n-m so that the elements of every set B_i'' create exactly $\frac{n-m}{2}$ pairs with type $\{a, \overline{a}\}$. Let $B_i = B_i' \cup B_i''$ for $i \in \{1, \ldots, t\}$. Then each set B_i contains n elements and $B_i \cap B_j = \emptyset$ for $i \neq j$. Furthermore,

$$\sum_{b \in B_i} b = \frac{(n-m)(tm+tn+1)}{2} + m(tm+tn+1) - \mu = \mu.$$

Example 7. Let m = n = t = 2. Then $A = \{1, 2, ..., 8\}$, S = 13, $\mu = 9$. Since $V_1 = \{1, 4, 5, 8\}$ and $V_2 = \{2, 3, 6, 7\}$, we have $W_1 = \{5, 8\}$ and $W_2 = \{6, 7\}$. Observe that d = 0 and then $A_1 = \{3, 6\}$, $A_2 = \{4, 5\}$, $B'_1 = \{6, 3\}$ and $B'_2 = \{5, 4\}$. Therefore $B = \{1, 2, 7, 8\}$ and elements of it create two pairs with type $\{a, \overline{a}\}$, namely $\{1, 8\}$ and $\{2, 7\}$.

If d>0 we create sets A_i as follows. We subtract 1 from each of the first d labels: $A_i=\{w_i^1-k-1,\ldots,w_i^d-k-1,w_i^{d+1}-k,\ldots,w_i^m-k\}$ for

 $i\in\{1,\ldots,t\}$. Then $\sum_{a\in A_i}a=S-mk-d=\mu$ for $i\in\{1,\ldots,t\}$. Then $B_i'=\{\overline{w_i^1-k-1},\ldots,\overline{w_i^d-k-1},\overline{w_i^{d+1}-k},\ldots,\overline{w_i^m-k}\}$ and elements of a set $B=A\setminus(\bigcup_{i=1}^tA_i\cup\bigcup_{i=1}^tB_i')$ create $\frac{t(n-m)}{2}$ pairs with type $\{a,\overline{a}\}$. As above, we part the set B into t disjoint subsets B_1'',\ldots,B_t'' with cardinality n-m so that the elements of every set B_i'' create exactly $\frac{n-m}{2}$ pairs with type $\{a,\overline{a}\}$ and define pairwise disjoint sets $B_i=B_i'\cup B_i''$ for $i\in\{1,\ldots,t\}$. Each set B_i contains n elements and $\sum_{b\in B_i}b=\mu$.

Hence A has the (m, n, t)-BCSP-property.

Notice that although the numbers m=3, n=6, t=3 satisfy the necessary conditions of Theorem 4, they do not satisfy the sufficient conditions either of Theorem 5 or 6. Let $A_1=\{10,26,27\}, A_2=\{14,24,25\}, A_3=\{18,22,23\}, B_1=\{1,4,7,13,17,21\}, B_2=\{2,5,8,12,16,20\}, B_3=\{3,6,9,11,15,19\}$. Thus, the set $A=\{1,2,\ldots,27\}$ has the (3,6,3)-BCSP-property. Therefore, we conclude this section by stating the following.

Conjecture 2.1. Let m and n be two positive integers such that $m \le n$. The set $A = \{1, 2, ..., tm + tn\}$ has the (m, n, t)-BCSP-property if and only if the conditions hold:

- $m + n \equiv 0 \pmod{4}$ or $tm + tn \equiv 3 \pmod{4}$, and
- $1 = 2(2tn+1)^2 (2tm+2tn+1)^2$ or $m \ge (\sqrt{2}-1)n + \frac{\sqrt{2}-1}{2t}$.

Recall that the conjecture is true for t = 1 by Theorem 2. Moreover, one can verify that the conjecture is also true for t = 2 (see e.g. [22], Theorem 2).

3. Distance Magic Graphs

We obtain the following corollaries by Theorem 6.

Corollary 1. Let m and n be two positive even integers such that $m \leq n$. The graph $tK_{m,n}$ is distance magic if and only if the conditions hold:

- $m + n \equiv 0 \pmod{4}$, and
- $1 = 2(2tn+1)^2 (2tm+2tn+1)^2$ or $m \ge (\sqrt{2}-1)n + \frac{\sqrt{2}-1}{2t}$.

Let
$$K_{m[a],n[b]} \cong K_{\underbrace{m,\ldots,m}_{a}},\underbrace{n,\ldots,n}_{b}$$
.

Corollary 2. Let m and n be two positive even integers such that $m \leq n$. The graph $K_{m[t],n[t]}$ is distance magic if and only if the conditions hold:

- $m + n \equiv 0 \pmod{4}$, and
- $1 = 2(2tn+1)^2 (2tm+2tn+1)^2$ or $m \ge (\sqrt{2}-1)n + \frac{\sqrt{2}-1}{2t}$.

Corollary 3. Let m and n be two positive integers such that $m \leq n$. The graph $K_{m,n} \times C_4$ is a distance magic graph if and only if the following conditions hold:

- $m + n \equiv 0 \pmod{2}$, and
- $1 = 2(8n+1)^2 (8m+8n+1)^2$ or $m \ge (\sqrt{2}-1)n + \frac{\sqrt{2}-1}{8}$.

Proof. Since $K_{m,n} \times C_4 \cong 2K_{2m,2n}$ we are done by Theorem 2.

We now show that there does not exist a distance magic labeling for $C_3^{(t)} \times C_4$.

Theorem 8. The graph $C_3^{(t)} \times C_4$ is not a distance magic graph.

Proof. Let $C_3^{(t)}$ have the central vertex x and let vertices y_i, z_i belong to ith copy of a cycle C_3 . Let $C_4 = v^0 v^1 v^2 v^3 v^0$. Suppose that l is a distance magic labeling of the graph $H = C_3^{(t)} \times C_4$ and k = w(x), for all vertices $x \in V\left(C_3^{(t)} \times C_4\right)$. Let

- $l(x, v^0) + l(x, v^2) = s_1$,
- $l(x, v^1) + l(x, v^3) = s_2$,
- $l(y_i, v^0) + l(y_i, v^2) = a_i^1$,
- $l(y_i, v^1) + l(y_i, v^3) = a_i^2$,
- $l(z_i, v^0) + l(z_i, v^2) = b_i^1$,
- $l(z_i, v^1) + l(z_i, v^3) = b_i^2$

for $0 \le i \le t - 1$.

Since $k = a_i^1 + s_2 = b_i^1 + s_2$ and $k = a_i^2 + s_1 = b_i^2 + s_1$, we observe that $l(y_i, v^0) + l(y_i, v^2) = l(z_i, v^0) + l(z_i, v^2) = a_1$ and $l(y_i, v^1) + l(y_i, v^3) = l(z_i, v^1) + l(z_i, v^3) = a_2$ for $0 \le i \le t - 1$. Furthermore, since $k = w(x, v^0) = 2ta_2 = w(x, v^1) = 2ta_1$, we have $a_1 = a_2 = a$ and hence $s_1 = s_2 = s$.

Notice that $2s + 4ta = \sum_{x \in V(H)} l(x) = \sum_{i=1}^{8t+4} i = (4t+2)(8t+5)$. Since k = 2ta = a + s, we obtain that (4t-1)a = (2t+1)(8t+5). Recall that a needs to be an integer, hence (4t-1) needs to divide (22t+5). Therefore we obtain that $t \in \{1,2\}$. Suppose that t = 2 then |V(H)| = 20, a = 15, s = 45, then $l(x, v^i) = 15$ for some i = 0, 1, 2, 3 and thus $l(x, v^{i+2}) = 30 > 20$, a contradiction.

Notice that if we want to find the values of m and n such that $K_{m,n} \times C_4$ is a distance magic graph we need to solve the Diophantine equation

(1)
$$\alpha = 2(4n+1)^2 - (4m+4n+1)^2$$

for some integer $\alpha \leq 1$. For instance if $\alpha = 1$, then the equation (1) is a Pell's equation, thus for example $K_{102,246} \times C_4$ is a distance magic graph.

References

- [1] Y. Alavi, A.J. Boals, G. Chartrand, P. Erdős and O.R. Oellerman, *The ascending subgraph decomposition problem*, Congr. Numer. **58** (1987) 7–14.
- [2] K. Ando, S. Gervacio and M. Kano, Disjoint subsets of integers having a constant sum, Discrete Math. 82 (1990) 7–11. doi:10.1016/0012-365X(90)90040-O
- [3] M. Anholcer and S. Cichacz, Note on distance magic products $G \circ C_4$, Graphs Combin. **31** (2015) 1117–1124. doi:10.1007/s00373-014-1453-x
- [4] M. Anholcer, S. Cichacz, I. Peterin and A. Tepeh, Distance magic labeling and two products of graphs, Graphs Combin. 31 (2015) 1125–1136. doi:10.1007/s00373-014-1455-8
- [5] S. Arumugam, D. Froncek and N. Kamatchi, Distance magic graphs A survey,
 J. Indones. Math. Soc., Special Edition (2011) 11–26.
- [6] S. Beena, On Σ and Σ' labelled graphs, Discrete Math. **309** (2009) 1783–1787. doi:10.1016/j.disc.2008.02.038
- [7] F.L. Chen, H.L. Fu, Y. Wang and J. Zhou, Partition of a set of integers into subsets with prescribed sums, Taiwanese J. Math. 9 (2005) 629–638.
- [8] S. Cichacz, D. Froncek, E. Krop and C. Raridan, Distance magic Cartesian products of graphs, Discuss. Math. Graph Theory 36 (2016) 299–308. doi:10.7151/dmgt.1852
- [9] H. Enomoto and M. Kano, Disjoint odd integer subsets having a constant even sum,
 Discrete Math. 137 (1995) 189–193.
 doi:10.1016/0012-365X(93)E0128-Q
- [10] R.J. Faudree, A. Gyárfás and R.H. Schelp, Graphs which have an ascending subgraph decomposition, Congr. Numer. 59 (1987) 49–54.
- [11] H.L. Fu and W.H. Hu, A note on ascending subgraph decompositions of complete multipartite graphs, Discrete Math. 226 (2001) 397–402. doi:10.1016/S0012-365X(00)00171-0
- [12] H.L. Fu and W.H. Hu, A special partition of the set I_n , Bull. Inst. Combin. Appl. 6 (1992) 57–61.
- [13] H.L. Fu and W.H. Hu, Ascending subgraph decompositions of regular graphs, Discrete Math. 253 (2002) 11–18. doi:10.1016/S0012-365X(01)00445-9
- [14] H.L. Fu and W.H. Hu, Disjoint odd integer subsets having a constant odd sum, Discrete Math. 128 (1994) 143–150. doi:10.1016/0012-365X(94)90108-2
- [15] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2016) #DS6.

- [16] P. Gregor and P. Kovář, Distance magic labelings of hypercubes, Electron. Notes Discrete Math. 40 (2013) 145–149. doi:10.1016/j.endm.2013.05.027
- [17] T.R. Hagedorn, Magic rectangles revisited, Discrete Math. 207 (1999) 65–72. doi:10.1016/S0012-365X(99)00041-2
- [18] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1994).
- [19] T. Harmuth, Über magische Quadrate und ähnliche Zahlenfiguren, Arch. Math. Phys. 66 (1881) 286–313.
- [20] T. Harmuth, Uber magische Rechtecke mit ungeraden Seitenzahlen, Arch. Math. Phys. 66 (1881) 413–447.
- [21] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition (CRC Press, Boca Raton, FL, 2011).
- [22] D. Kotlar, Distance magic labeling in complete 4-partite graphs, Graphs Combin. 32 (2016) 1027–1038. doi:10.1007/s00373-015-1627-1
- [23] A. Lladó and J. Moragas, On the sumset partition problem, Electron. Notes Discrete Math. 34 (2009) 15–19. doi:10.1016/j.endm.2009.07.003
- [24] A. Lladó and J. Moragas, On the modular sumset partition problem, European J. Combin. 33 (2012) 427–434. doi:10.1016/j.ejc.2011.09.001
- [25] K. Ma, H. Zhou and J. Zhou, On the ascending star subgraph decomposition of star forests, Combinatorica 14 (1994) 307–320. doi:10.1007/BF01212979
- [26] M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin. 28 (2003) 305–315.
- [27] A. O'Neal and P.J. Slater, Uniqueness of vertex magic constants, SIAM J. Discrete Math. 27 (2013) 708–716. doi:10.1137/110834421
- [28] S.B. Rao, T. Singh and V. Prameswaran, Some sigma labelled graphs I, in: Graphs, Combinatorics, Algorithms and Applications, S. Arumugam, B.D. Acharya and S.B. Rao, (Eds.), (Narosa Publishing House, New Delhi, 2004) 125–133.
- [29] V. Vilfred, Σ -Labelled Graphs and Circulant Graphs (Ph.D. Thesis, University of Kerala, Trivandrum, India, 1994).

Received 25 February 2016 Revised 7 October 2016 Accepted 8 October 2016