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Abstract

Let A = {1, 2, . . . , tm+tn}. We shall say that A has the (m,n, t)-balanced
constant-sum-partition property ((m,n, t)-BCSP-property) if there exists a
partition of A into 2t pairwise disjoint subsets A1, A2, . . . , At, B1, B2, . . . , Bt

such that |Ai| = m and |Bi| = n, and
∑

a∈Ai a =
∑

b∈Bj b for 1 ≤ i ≤ t and
1 ≤ j ≤ t. In this paper we give sufficient and necessary conditions for a set
A to have the (m,n, t)-BCSP-property in the case when m and n are both
even. We use this result to show some families of distance magic graphs.
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graphs.
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1. Introduction

Let A = {1, 2, . . . , tm + tn}. We shall say that A has the (m,n, t)-balanced
constant-sum-partition property ((m,n, t)-BCSP-property) if there exists a parti-
tion of A into pairwise disjoint subsets A1, A2, . . . , At, B1, B2, . . . , Bt such that
|Ai| = m and |Bi| = n, and

∑

a∈Ai a =
∑

b∈Bj b for 1 ≤ i, j ≤ t. A positive
integer µ =

∑

a∈Ai a =
∑

b∈Bj b is called a balanced constant.

All graphs considered in this paper are simple finite graphs. Given a graph
G, we denote its order by |G|, its size by ||G||, its vertex set by V (G) and the
edge set by E(G). The neighborhood N(x) of a vertex x is the set of vertices
adjacent to x, and the degree d(x) of x is |N(x)|, the size of the neighborhood
of x.
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Distance magic labeling (also called sigma labeling) of a graph G = (V,E)
of order n is a bijection l : V → {1, 2, . . . , n} with the property that there is a
positive integer k (called magic constant) such that w(x) =

∑

y∈NG(x) l(y) = k
for every x ∈ V . If a graph G admits a distance magic labeling, then we say that
G is a distance magic graph (see [29]). It was proved recently that the magic
constant is unique ([27]).

The concept of distance magic labeling has been motivated by the construc-
tion of magic rectangles. Magic rectangles are a natural generalization of magic
squares which have long intrigued mathematicians and the general public [17]. A
magic (m,n)-rectangle S is an m × n array in which the first mn positive inte-
gers are placed so that the sum over each row of S is constant and the sum over
each column of S is another (different if m 6= n) constant. Harmuth proved the
following theorem.

Theorem 1 [19, 20]. For m,n > 1 there is a magic (m,n)-rectangle S if and

only if m ≡ n mod 2 and (m,n) 6= (2, 2).

As in the case of magic squares, we can construct a distance magic complete
m partite graph with each part size equal to n by labeling the vertices of each
part by the columns of the magic rectangle. Moreover, observe that constant
sum partition of {1, 2, . . . , n} leads to complete multipartite distance magic la-
beled graphs. For instance, the partition {1, 4}, {2, 3} of the set {1, 2, 3, 4} with
constant sum 5 leads to distance magic labeling of the complete bipartite graph
K2,2, see [6]. Beena proved the following.

Theorem 2 [6]. Let m and n be two positive integers such that m ≤ n. The

complete bipartite graph Km,n is a distance magic graph if and only if

• m+ n ≡ 0 or 3 (mod 4), and

• either n ≤
⌊
(1 +

√
2)m− 1

2

⌋
or 2(2n+ 1)2 − (2m+ 2n− 1)2 = 1.

Moreover, Kotlar recently gave necessary and sufficient conditions for com-
plete 4-partite graph to be distance magic (see [22]). He also posted the following
open problem.

Problem 1.1 [22]. Let n, k and p1, p2, . . . , pk be positive integers such that
p1 + p2 + · · · + pk = n and

(
n+1
2

)
/k is an integer. When is it possible to find a

partition of the set {1, 2, . . . , n} into k subsets of sizes p1, p2, . . . , pk, respectively,
such that the sum of the elements in each subset is

(
n+1
2

)
/k?

A similar problem was also considered in [2, 7, 9, 12, 14, 23, 24]. Namely, a
non-increasing sequence 〈m1, . . . ,mk〉 of positive integers is said to be n-realizable
if the set {1, 2, . . . , n} can be partitioned into k mutually disjoint subsets X1,
X2, . . . , Xk such that

∑

x∈Xi
x = mi for each 1 ≤ i ≤ k. The study of n-

realizable sequences was motivated by the ascending subgraph decomposition
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problem posed by Alavi, Boals, Chartrand, Erdős and Oellerman [1], which asks
for a decomposition of a given graph G of size

(
n+1
2

)
by subgraphs H1, H2, . . . , Hn,

where Hi has size i and is a subgraph of Hi+1 for each i = 1, 2, . . . , n− 1. These
authors conjectured that a forest of stars of size

(
n+1
2

)
with each component hav-

ing at least n edges admits an ascending subgraph decomposition by stars. This
is equivalent to the fact that every non-increasing sequence 〈m1, . . . ,mk〉 with
∑k

i=1mi =
(
n+1
2

)
and mk ≥ n is n-realizable, a result which was proved by Ma,

Zhou and Zhou [25]. Although the general ascending subgraph decomposition
conjecture is unsolved so far, some partial results have been obtained [10, 11, 13].

We recall two out of four standard graph products (see [21]). Both, the
lexicographic product G ◦ H and the direct product G × H are graphs with the
vertex set V (G)× V (H). Two vertices (g, h) and (g′, h′) are adjacent in:

• G ◦H if and only if either g is adjacent to g′ in G or g = g′ and h is adjacent
to h′ in H;

• G×H if g is adjacent to g′ in G and h is adjacent to h′ in H.

The graph G ◦H is also called the composition and denoted by G[H] (see [18]).
The product G×H, also known as Kronecker product, tensor product, categorical
product and graph conjunction, is the most natural graph product.

Some graphs which are distance magic among (some) products can be found
in [3, 4, 6, 8, 16, 26, 28].

The following problem was posted in [5].

Problem 1.2 [5]. If G is non-regular graph, determine if there is a distance
magic labeling of G ◦ C4.

Anholcer and Cichacz proved the following.

Theorem 3 [3]. Let m and n be integers such that 1 ≤ m < n. Then Km,n ◦C4

is distance magic if and only if the following conditions hold.

(1) The numbers

a =
(m+ n)(4m+ 4n+ 1)(2m− 1)

4mn−m− n
and

b =
(m+ n)(4m+ 4n+ 1)(2n− 1)

4mn−m− n
are integers.

(2) There exist integers p, q, t ≥ 1 such that

p+ q = (b− a),

4n = pt,

4m = qt.
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Moreover, they showed that a product C
(t)
3 ◦C4 is not distance magic, where

C
(t)
3 , called a Dutch Windmill Graph, is the graph obtained by taking t > 1

copies of the cycle graph C3 with a vertex in common [15]. We prove that also

the product C
(t)
3 × C4 is not distance magic.

Thus we state a problem similar to Problem 1.2 for direct product.

Problem 1.3. If G is a non-regular graph, determine if there is a distance magic
labeling of G× C4.

The paper is organized as follows. In the next section we focus on sets having
an (m,n, t)-BCSP-property. We give the necessary and sufficient conditions for a
set A = {1, 2, . . . , tm+ tn} to have the (m,n, t)-BCSP-property in the case when
m and n are both even. In the third section we generalize the Beena’s result ([6])
by showing necessary and sufficient conditions for t copies of Km,n (tKm,n) to be
distance magic, if m and n are both even. We use this result to give necessary
and sufficient conditions for the direct product Km,n × C4 to be distance magic.

2. Constant Sum Partition

Theorem 4. Let m and n be two positive integers such that m ≤ n. If the set

A = {1, 2, . . . , tm+tn} has the (m,n, t)-BCSP-property, then the conditions hold:

• m+ n ≡ 0 (mod 4) or tm+ tn ≡ 3 (mod 4), and

• 1 = 2(2tn+ 1)2 − (2tm+ 2tn+ 1)2 or m ≥ (
√
2− 1)n+

√
2−1
2t .

Proof. Suppose that A1, A2, . . . , At, B1, B2, . . . , Bt is an (m,n, t)-constant sum
partition of the set A. Let Ai = {ai0, ai1, . . . , aim−1} and Bi = {bi0, bi1, . . . , bin−1}
for i = 1, 2, . . . , t. Since for the balanced constant µ we have µ =

∑m−1
i=0 aji =

∑n−1
l=0 bjl , for j = 1, 2, . . . , t, it is easy to observe that

µ =
1

2t

tn+tm∑

i=1

i =
(tm+ tn)(tm+ tn+ 1)

4t
,

which implies that m + n ≡ 0 (mod 4) or tm + tn ≡ 3 (mod 4). Notice that
∑m−1

i=0

∑t
j=1 a

j
i ≤ ∑tm

i=1(i + tn) = tm(tm+2tn+1)
2 , thus µ ≤ m(tm+2tn+1)

2 . This
implies (m+ n)(tm+ tn+ 1) ≤ 2m(tm+ 2tn+ 1) and therefore

[

tm+

(

tn+
1

2

)]2

≥ t2n2 + tn+

(

tn+
1

2

)2

=
(2tn+ 1)2

2
− 1

4
.
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That is

1 ≥ 2(2tn+ 1)2 − (2tm+ 2tn+ 1)2.

Therefore, 1 = 2(2tn+ 1)2 − (2tm+ 2tn+ 1)2 or m ≥ (
√
2− 1)n+

√
2−1
2t .

Theorem 5. Let m and n be two positive integers such that m ≤ n. If the

conditions hold:

• m+ n ≡ 0 (mod 4) or tm+ tn ≡ 3 (mod 4), and

• 1 = 2(2tn+ 1)2 − (2tm+ 2tn+ 1)2,

then the set A = {1, 2, . . . , tm+ tn} has the (m,n, t)-BCSP-property.

Proof. Using the same arguments as in the proof of Theorem 4, the condition
1 = 2(2tn+ 1)2 − (2tm+ 2tn+ 1)2 relates to the solution when the tm elements
in A1 ∪A2 ∪ · · · ∪At have to be the tm largest integers 1+ tn, 2+ tn, . . . , tn+ tm
(because then

∑m−1
i=0

∑t
j=1 a

j
i =

∑tm
i=1(i + tn) = tm(tm+2tn+1)

2 ), whereas the tn

elements in B1 ∪B2 ∪ · · · ∪Bt have to be the tn smallest integers 1, 2, . . . , tn and
µ = m(tm+2tn+1)

2 = n(tn+1)
2 . Notice that if m or n is odd, then t is odd since the

constant µ is an integer.

If m is odd, then there exists a magic (t,m)-rectangle by Theorem 1. Let
ai,j be an (i, j)-entry of the (t,m)-rectangle, 0 ≤ i ≤ t − 1 and 0 ≤ j ≤ m − 1.

Notice that
∑m−1

j=0 ai,j =
m(1+tm)

2 . Let aij = ai,j + tn, for j = 0, 1, . . . ,m− 1 and
i = 0, 1, . . . , t− 1.

If n is odd, then there exists a magic (t, n)-rectangle by Theorem 1. Let bi,j be
an (i, j)-entry of the (t, n)-rectangle, 0 ≤ i ≤ t−1 and 0 ≤ j ≤ n−1. Notice that
∑n−1

i=0 bi,j =
n(1+tn)

2 . Let bij = bi,j , for j = 0, 1, . . . , n− 1 and i = 0, 1, . . . , t− 1.

If m is even, then ai2j = tn + im2 + j + 1, ai2j+1 = tn + tm − im2 − j, for
j = 0, 1, . . . ,m/2− 1 and i = 0, 1, . . . , t− 1.

If n is even, then bi2j = in2 +j+1, bi2j+1 = tn− in2 −j, for j = 0, 1, . . . , n/2−1
and i = 0, 1, . . . , t− 1.

Theorem 6. Let m and n be two positive even integers such that m ≤ n. The

set A = {1, 2, . . . , tm + tn} has the (m,n, t)-BCSP-property if and only if the

conditions hold:

• m+ n ≡ 0 (mod 4), and

• 1 = 2(2tn+ 1)2 − (2tm+ 2tn+ 1)2 or m ≥ (
√
2− 1)n+

√
2−1
2t .

Proof. The necessity is obvious by Theorem 4. Suppose now that m and n are
positive even integers satisfying above assumptions. We can also assume thatm ≥
(
√
2− 1)n+

√
2−1
2t (which in these case is equivalent to m > −n+

√
2(2tn+1)2−1−1

2t

since
√
2(2tn+ 1) >

√

2(2tn+ 1)2 − 1), by Theorem 5.
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Let us partition the set A into t disjoint sets Vi = {i + 2tj, 2t − i + 1 + 2tj,
j ∈ {0, 1, . . . , m+n−2

2 }} for i ∈ {1, . . . , t} with cardinality m+n. For every a ∈ Vi

let a denote the element in Vi such that a + a = tm + tn + 1. Observe that for
every element a ∈ Vi there exists a ∈ Vi. The sum of integers in each set Vi is
K = (1+tm+tn)(m+n)

2 . Obviously, a balanced constant is µ = K
2 .

Let Wi be the sequence of m greatest integers in Vi for every i ∈ {1, . . . , t},
so Wi = (tn+ i, tm+ tn− (m− 2)t− i+1, . . . , tm+ tn− 2t+ i, tm+ tn− i+1).
Denote the j-th element in a sequence Wi by wj

i . Then for each i we obtain that

m∑

j=1

wj
i =

m(1 + tm+ 2tn)

2
=: S.

Since m > −n +

√
2(2tn+1)2−1−1

2t , observe that S − µ > 0. Hence, there exist
nonnegative integers k and d such that S − µ = km + d, where 0 ≤ d < m.
Therefore, S−µ = tm2

4 + tmn
2 + m−n

4 − tn2

4 = km+d ≤ tmn
2 , since m ≤ n. Hence,

we obtain that k ≤ tn
2 . Furthermore, tn− k > 0.

If d = 0 we create sets A1, . . . , At putting Ai = {w1
i − k, . . . , wm

i − k}. Note
that Ai ∩ Aj = ∅ for every i 6= j. Moreover,

∑

a∈Ai
a = S − mk = µ for i ∈

{1, . . . , t}.
Let B′

i = {w1
i − k, . . . , wm

i − k}. Observe that the set

B = A \
(

t⋃

i=1

Ai ∪
t⋃

i=1

B′
i

)

has cardinality t(n−m). Indeed, we can part it into t(n−m)
2 pairs with type {a, a}

(see Example 7). Then we part the set B into t disjoint subsets B′′
1 , . . . , B

′′
t with

cardinality n−m so that the elements of every set B′′
i create exactly n−m

2 pairs
with type {a, a}. Let Bi = B′

i ∪B′′
i for i ∈ {1, . . . , t}. Then each set Bi contains

n elements and Bi ∩Bj = ∅ for i 6= j. Furthermore,

∑

b∈Bi

b =
(n−m)(tm+ tn+ 1)

2
+m(tm+ tn+ 1)− µ = µ.

Example 7. Let m = n = t = 2. Then A = {1, 2, . . . , 8}, S = 13, µ = 9. Since
V1 = {1, 4, 5, 8} and V2 = {2, 3, 6, 7}, we have W1 = {5, 8} and W2 = {6, 7}.
Observe that d = 0 and then A1 = {3, 6}, A2 = {4, 5}, B′

1 = {6, 3} and B′
2 =

{5, 4}. Therefore B = {1, 2, 7, 8} and elements of it create two pairs with type
{a, a}, namely {1, 8} and {2, 7}.

If d > 0 we create sets Ai as follows. We subtract 1 from each of the
first d labels: Ai = {w1

i − k − 1, . . . , wd
i − k − 1, wd+1

i − k, . . . , wm
i − k} for
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i ∈ {1, . . . , t}. Then ∑a∈Ai
a = S − mk − d = µ for i ∈ {1, . . . , t}. Then B′

i =

{w1
i − k − 1, . . . , wd

i − k − 1, wd+1
i − k, . . . , wm

i − k} and elements of a set B =

A \ (⋃t
i=1Ai ∪

⋃t
i=1B

′
i) create

t(n−m)
2 pairs with type {a, a}. As above, we part

the set B into t disjoint subsets B′′
1 , . . . , B

′′
t with cardinality n − m so that the

elements of every set B′′
i create exactly n−m

2 pairs with type {a, a} and define
pairwise disjoint sets Bi = B′

i ∪ B′′
i for i ∈ {1, . . . , t}. Each set Bi contains n

elements and
∑

b∈Bi
b = µ.

Hence A has the (m,n, t)-BCSP-property.

Notice that although the numbers m = 3, n = 6, t = 3 satisfy the necessary
conditions of Theorem 4, they do not satisfy the sufficient conditions either of
Theorem 5 or 6. Let A1 = {10, 26, 27}, A2 = {14, 24, 25}, A3 = {18, 22, 23},
B1 = {1, 4, 7, 13, 17, 21}, B2 = {2, 5, 8, 12, 16, 20}, B3 = {3, 6, 9, 11, 15, 19}. Thus,
the set A = {1, 2, . . . , 27} has the (3, 6, 3)-BCSP-property. Therefore, we conclude
this section by stating the following.

Conjecture 2.1. Let m and n be two positive integers such that m ≤ n. The

set A = {1, 2, . . . , tm + tn} has the (m,n, t)-BCSP-property if and only if the

conditions hold:

• m+ n ≡ 0 (mod 4) or tm+ tn ≡ 3 (mod 4), and

• 1 = 2(2tn+ 1)2 − (2tm+ 2tn+ 1)2 or m ≥ (
√
2− 1)n+

√
2−1
2t .

Recall that the conjecture is true for t = 1 by Theorem 2. Moreover, one can
verify that the conjecture is also true for t = 2 (see e.g. [22], Theorem 2).

3. Distance Magic Graphs

We obtain the following corollaries by Theorem 6.

Corollary 1. Let m and n be two positive even integers such that m ≤ n. The

graph tKm,n is distance magic if and only if the conditions hold:

• m+ n ≡ 0 (mod 4), and

• 1 = 2(2tn+ 1)2 − (2tm+ 2tn+ 1)2 or m ≥ (
√
2− 1)n+

√
2−1
2t .

Let Km[a],n[b]
∼= Km, . . . ,m

︸ ︷︷ ︸
a

,n, . . . , n
︸ ︷︷ ︸

b

.

Corollary 2. Let m and n be two positive even integers such that m ≤ n. The

graph Km[t],n[t] is distance magic if and only if the conditions hold:

• m+ n ≡ 0 (mod 4), and

• 1 = 2(2tn+ 1)2 − (2tm+ 2tn+ 1)2 or m ≥ (
√
2− 1)n+

√
2−1
2t .
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Corollary 3. Let m and n be two positive integers such that m ≤ n. The graph
Km,n ×C4 is a distance magic graph if and only if the following conditions hold:

• m+ n ≡ 0 (mod 2), and

• 1 = 2(8n+ 1)2 − (8m+ 8n+ 1)2 or m ≥ (
√
2− 1)n+

√
2−1
8 .

Proof. Since Km,n × C4
∼= 2K2m,2n we are done by Theorem 2.

We now show that there does not exist a distance magic labeling for C
(t)
3 ×C4.

Theorem 8. The graph C
(t)
3 × C4 is not a distance magic graph.

Proof. Let C
(t)
3 have the central vertex x and let vertices yi, zi belong to ith copy

of a cycle C3. Let C4 = v0v1v2v3v0. Suppose that l is a distance magic labeling

of the graph H = C
(t)
3 ×C4 and k = w(x), for all vertices x ∈ V

(

C
(t)
3 × C4

)

. Let

• l(x, v0) + l(x, v2) = s1,

• l(x, v1) + l(x, v3) = s2,

• l(yi, v
0) + l(yi, v

2) = a1i ,

• l(yi, v
1) + l(yi, v

3) = a2i ,

• l(zi, v
0) + l(zi, v

2) = b1i ,

• l(zi, v
1) + l(zi, v

3) = b2i ,

for 0 ≤ i ≤ t− 1.

Since k = a1i+s2 = b1i+s2 and k = a2i+s1 = b2i+s1, we observe that l(yi, v
0)+

l(yi, v
2) = l(zi, v

0)+l(zi, v
2) = a1 and l(yi, v

1)+l(yi, v
3) = l(zi, v

1)+l(zi, v
3) = a2

for 0 ≤ i ≤ t− 1. Furthermore, since k = w(x, v0) = 2ta2 = w(x, v1) = 2ta1, we
have a1 = a2 = a and hence s1 = s2 = s.

Notice that 2s + 4ta =
∑

x∈V (H) l(x) =
∑8t+4

i=1 i = (4t + 2)(8t + 5). Since
k = 2ta = a + s, we obtain that (4t − 1)a = (2t + 1)(8t + 5). Recall that
a needs to be an integer, hence (4t − 1) needs to divide (22t + 5). Therefore
we obtain that t ∈ {1, 2}. Suppose that t = 2 then |V (H)| = 20, a = 15,
s = 45, then l(x, vi) = 15 for some i = 0, 1, 2, 3 and thus l(x, vi+2) = 30 > 20, a
contradiction.

Notice that if we want to find the values of m and n such that Km,n ×C4 is
a distance magic graph we need to solve the Diophantine equation

(1) α = 2(4n+ 1)2 − (4m+ 4n+ 1)2

for some integer α ≤ 1. For instance if α = 1, then the equation (1) is a Pell’s
equation, thus for example K102,246 × C4 is a distance magic graph.
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