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1. Introduction

One of the fundamental notions of metric graph theory is that of the interval

function I:V × V → 2V of a graph G with vertex set V , where I(u, v) is the set
of vertices on shortest paths between u and v in G. The term interval function was
coined in [10], which is the first extensive study of this function. Some properties
of the interval function have been singled out to define generalizations, such as
transit functions, see [11], and the notion of betweenness, see [9]. A main problem
in this area is, given a function R:V ×V → 2V on a finite set V , what properties
should R have such that it is the interval function of some connected graph with
vertex set V . Nebeský has obtained many nice such characterizations, see for
instance [13–16]. In Proposition 1.1.2 of [10] the first simple properties of the
interval function of a connected graph were presented. Nebeský named these
five properties the classical axioms. These five axioms do not yet characterize
the interval function of a connected graph. In [12] an interesting enquiry was
undertaken. First the question was addressed how much of the output of a
function R:V × V → 2V is determined if we assume that only the five classical
axioms are satisfied. Second, the minimal ‘road blocks’ were determined that
prevent such a function to be the interval function of a connected graph. These
road blocks were overcome by requiring two additional axioms (s1) and (s2).
The axioms are indeed minimal in the sense that weaker axioms than (s1) or (s2)
would not do the trick.

So far connectedness has always been an essential part of the research. In
this note we want to study the case where we drop the requirement of connected-
ness. One thing is clear: the first classical axiom has to be weakened to include
disconnected graphs. But this is not enough. It turns out that we need a new
extra axiom to make things work. In the literature the axioms that we use have
been denoted in various ways. For our purposes here we follow that of [12] as
closely as possible. For axioms not in that paper, we follow the notation of [11]
and [1].

2. Preliminaries

Transit functions were introduced by Mulder in 1998 to generalize three basic
notions on discrete structures, namely, interval, convexity and betweenness. This
was eventually published in [11]. Let V be a nonempty finite set, and let 2V be
the power set of V . A transit function on V is a function R:V × V → 2V that
has the following three properties.

(c1) u ∈ R(u, v), for all u, v in V .

(c2) R(u, v) = R(v, u), for all u, v in V .

(t3) R(u, u) = {u}, for all u in V .
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We call such properties of a function on V transit axioms. If G is a graph
with vertex set V , then we say that R is a transit function on G. Basically, a
transit function on a graph G describes how we can get from vertex u to vertex
v: via vertices in R(u, v). In other words, a transit function is a very general
notion that unifies many ways how one could move around in a graph and other
discrete structures. Transit functions particularly captured attention on discrete
structures like graphs, partially ordered sets, hypergraphs, etc. Graph transit
functions (transit functions defined on the vertex set of a connected graph) and
their associated convexities have been studied extensively from different perspec-
tives. For instance, on betweenness [3, 6, 7, 9, 10] and on convexity [2, 4, 8, 9, 10].
Three well studied transit functions on connected graphs are the interval function
[1, 2, 6, 10, 12, 13, 14, 16], the induced-path function [3, 5, 6, 7, 9, 17] and the
all-paths function [2]. One of the main problems on transit functions is the char-
acterization of such functions by what we call transit axioms, see [11] for many
possible questions in this area. Our focus here is the interval function.

The underlying graph GR of a transit function R is the graph with vertex
set V , where two distinct vertices u and v are joined by an edge if and only if
R(u, v) = {u, v}. Note that, in general, G and GR need not be isomorphic graphs,
see [11].

Let G be a graph with vertex set V and distance function d, and let u and v
be vertices of G. The interval between u and v is the set

IG(u, v) = {x | d(u, x) + d(x, v) = d(u, v)},

that is, the set of vertices lying on shortest paths between u and v. When no
confusion arises we write I instead of IG. Then I:V × V → 2V is the interval

function of G. The interval function on a connected graph is the prime example
of a transit function.

In [9] a betweenness was introduced that can be phrased in the terminology
of transit functions. It is a transit function R on V satisfying the following two
additional axioms, called the betweenness axioms.

(b1) x ∈ R(u, v), x 6= v ⇒ v /∈ R(u, x), for all u, v, x in V .

(c3) x ∈ R(u, v) ⇒ R(u, x) ⊆ R(u, v), for all u, v, x in V .

Clearly, the interval function of a connected graph is a betweenness.
In Proposition 1.1.2 of [10] the first simple properties of the interval function

of a connected graph were presented. These five properties are the above transit
axioms (c1), (c2), the betweenness axiom (c3), and the following two axioms.

(c4) x ∈ R(u, v) ⇒ R(u, x) ∩R(x, v) = {x}, for all u, v, x in V .

(c5) x ∈ R(u, v), y ∈ R(u, x) ⇒ x ∈ R(y, v), for all u, v, x, y in V .

Because they played a key role in his many studies of the interval function,
Nebeský named these properties the five classical axioms. In [1] it was shown that
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a transit function satisfying the five classical axioms is a betweenness. Also in [1]
examples were presented that show that the five classical axioms are independent,
that is, for each axiom we have a function that does not satisfy this axiom but
satisfies the other four axioms. As said above, the five classical axioms do not
yet characterize the interval function of a connected graph.

In [13] two additional axioms were introduced that, together with the five
classical axioms, characterize the interval function of a connected graph.

(s1) If R(u, ū) = {u, ū}, R(v, v̄) = {v, v̄}, ū, v̄ ∈ R(u, v) and u ∈ R(ū, v̄), then
v ∈ R(ū, v̄), for all u, ū, v, v̄ in V with u 6= ū and v 6= v̄.

(s2) If R(u, ū) = {u, ū}, R(v, v̄) = {v, v̄}, ū ∈ R(u, v), v̄ /∈ R(u, v), and v /∈
R(ū, v̄), then ū ∈ R(u, v̄), for all u, ū, v, v̄ in V with u 6= ū and v 6= v̄.

To get a feeling for these two axioms, let R be the interval function of a
connected graph G. In the case of (s1), let u and v be vertices at distance k in
G, let ū be a neighbor of u in I(u, v) and v̄ be a neighbor of v in I(u, v) such
that d(ū, v̄) = k as well. Such a situation can be found for instance in an even
isometric cycle of G. In the case of (s2), let v and v̄ be two adjacent vertices,
and let u be a vertex at distance k from both v and v̄, and let ū be a neighbor of
u at distance k − 1 from both v and v̄.

The main result in [12] is the following theorem, which gives a characteriza-
tion of the interval function of a connected graph in terms of transit axioms.

Theorem A. Let R:V × V → 2V be a function on the nonempty set V with

underlying graph G. Then G is connected and R is the interval function of G if

and only if R satisfies the five classical axioms and (s1) and (s2).

In [12] it was shown that these axioms are minimal in the sense that the five
classical axioms are all needed, and weaker versions of (s1) and/or (s2) do not
suffice.

3. The Disconnected Case

So far, all the papers on characterizing the interval function deal exclusively with
connected graphs. What happens on disconnected graphs? If u and v are vertices
in different components, then by definition, we have I(u, v) = ∅. Hence axiom
(c1) does not hold anymore. But a weaker axiom still holds.

(c1∗) If R(u, v) 6= ∅ then u ∈ R(u, v), for all u, v in V .

An immediate question arises: what are the consequences if we replace axiom (c1)
by (c1∗). In the literature various implications were derived, where (c1) together
with some of the axioms from Section 2 implied one of the other axioms. Here
are some pertinent instances.
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(i1): (c1) and (c4) ⇒ (t3) (obvious).

(i2): (c1) and (b1) ⇒ (t3) (see [1]).

(i3): (c1), (c2), (t3) and (c5) ⇒ (c4) (see [12]).

It turns out that none of these implications holds when we replace (c1) by (c1∗),
see Example 1 for the counterpart of implications (i1) and (i2), and Example 2
for the counterpart of implication (i3).

Example 1. R(u, v) = ∅, for all u and v in V .

Clearly, R satisfies (c1∗), (c2), (c3), (c4), (c5), (b1), (s1) and (s2), but R does
not satisfy (t3).

Example 2. Let V = {u, v, w}. Define R(u, v) = R(v, u) = R(u,w) = R(w, u) =
∅, R(v, w) = R(w, v) = V , and R(x, x) = {x} for all x in V .

It is easy to see that R satisfies axioms (c1∗), (c2), (c3), (c5), (s1), (s2) and (t3)
but does not satisfy axiom (c4): we have u ∈ R(v, w), but R(v, u)∩R(u,w) = ∅.

In [1] it was proved that (c1), (c2) and (c4) imply (b1). In this case the
implication still holds when we replace (c1) by (c1∗). This implication is an
essential first step for the disconnected case.

Lemma 3. Axioms (c1∗), (c2) and (c4) imply axiom (b1).

Proof. Let R:V × V → 2V be a function on V satisfying axioms (c1∗), (c2) and
(c4). Assume that x is in R(u, v) with x 6= v. By (c4), we have R(u, x)∩R(x, v) =
{x}. From (c1∗) and (c2), it follows that v lies in R(x, v). Since v 6= x, we have
that v is not in R(u, x).

For the disconnected case, it becomes important to determine for a function
R on V what the components are in GR.

Lemma 4. Let R:V × V → 2V be a function on V satisfying the axioms (c1∗),
(c2), (c3) and (c4). If R(u, v) 6= ∅, then the set R(u, v) induces a connected sub-

graph in GR.

Proof. By Lemma 3, R satisfies (b1). Let u and v be vertices with R(u, v) 6= ∅.
By (c1∗) and (c2), we have that u and v are in R(u, v). Hence, if u 6= v, then
|R(u, v)| ≥ 2.

We prove the lemma by induction on |R(u, v)|. If |R(u, v)| = 1, then neces-
sarily u = v, so we have R(u, v) = R(u, u) = {u}.

Assume that |R(u, v)| = 2. If u = v, then there would exist a vertex x in
R(u, u) distinct from u. By (c4), we would have R(u, x) ∩ R(x, v) = {x}. So we
would have R(u, x) 6= ∅, whence u ∈ R(u, x) by (c1∗). But by (b1), we would
have that u, being equal to v, is not in R(u, x). This contradiction shows that
u 6= v. Hence we have R(u, v) = {u, v}, so that u and v are adjacent in GR.
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Now let |R(u, v)| > 2. Take any vertex x in R(u, v) with x 6= u, v. Such
a vertex must exist. Then, by (c4), we have R(u, x) ∩ R(x, v) = {x}. So
R(u, x) 6= ∅ as well as R(x, v) 6= ∅. By (c3), we have R(u, x) ⊆ R(u, v) as
well as R(x, v) ⊆ R(u, v). By (b1) and (c2), we have u /∈ R(v, x) = R(x, v) and
v /∈ R(u, x), and hence |R(u, x)| < |R(u, v)| and |R(x, v)| < |R(u, v)|. So, by the
induction hypothesis, the sets R(u, x) and R(x, v) induce connected subgraphs in
GR. Hence there is a path from x to u as well as to v in R(u, x)∪R(x, v) ⊆ R(u, v).
Since this is true for every x in R(u, v), it follows that the set R(u, v) induces a
connected subgraph in GR.

An immediate consequence of this lemma is that R(u, v) = ∅, for any two
vertices u and v in different components of GR. Note that the converse need not
be true, as is shown by the following example.

Example 5. Let V = {u, v, w} and define R on V as follows: R(x, x) = {x}
for all x in V , R(u, v) = R(v, u) = {u, v}, R(v, w) = R(w, v) = {v, w} and
R(u,w) = R(w, u) = ∅.

It is easy to see that R satisfies (c1∗), (c2), (c3), (c4), (c5). Moreover, we have
R(u,w) = ∅, but u,w are in the same component of GR.

In the proof of Lemma 4 we came across an important detail. If R(u, u) 6= ∅
then R(u, u) = {u}. But, as Example 1 shows, R(u, u) might be empty, even
though all other axioms in Theorem A are satisfied. So we also need an axiom to
avoid this case. We call it (t3∗) because it is a weaker axiom than (t3), but still
serves the purpose.

(t3∗) R(u, u) 6= ∅, for all u in V .

Note that the function R in Example 5 satisfies (t3∗), but R is not the interval
function of its underlying graph GR. This graph is the path u → v → w, whereas
R(u,w) = ∅ 6= {u, v, w}. So we still need an extra axiom.

(Compt) If R(u, v) 6= ∅ and R(v, w) 6= ∅, then R(u,w) 6= ∅.

Clearly, the interval function of a graph satisfies this axiom, in the connected
case as well as in the disconnected case. If R satisfies the three axioms (c2), (t3∗)
and (Compt) then we can define the equivalence relation ∼R on V by

u ∼R v if R(u, v) 6= ∅.

Thus we get the following lemma as an immediate consequence of Lemma 4.

Lemma 6. Let R:V × V → 2V be a function on V satisfying the axioms (c1∗),
(c2), (c3), (c4), (t3∗) and (Compt). Then the components of GR are the subgraphs

induced by the equivalence classes of ∼R.
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Now we are ready for the characterization of the interval function that also
holds for disconnected graphs.

Theorem 7. Let R:V × V → 2V be a function on the finite nonempty set V .

Then R satisfies the axioms (c1∗), (c2), (c3), (c4), (c5), (s1), (s2), (t3∗) and

(Compt) if and only if R is the interval function of GR.

Proof. Clearly, the interval function of a graph G = (V,E) satisfies all the
axioms and its underlying graph is G.

Conversely, let R be a function on V satisfying all the axioms. Let GR be
its underlying graph, and let I be the interval function of GR. Let W be an
equivalence class of ∼R. Then, by Lemma 6, the set W induces a component of
GR. Let I|W be the restriction of I to W . The restriction R|W of R to W is
a function on W that satisfies (c1), (c2), (c3), (c4), (c5), (s1) and (s2), so, by
Theorem A, R|W is the interval function I|W of the subgraph of GR induced by
W . Let u1 and u2 be vertices in different components ofGR, and hence in different
equivalence classes. Then, by definition, we have I(u1, u2) = ∅ = R(u1, u2). So
R = I.

4. Independence of the Axioms

Finally we need to show that all the axioms in Theorem 7 are independent,
and hence necessary. Example 1 satisfies trivially also (Compt) but not (t3∗).
So axiom (t3∗) is independent. Example 2 also satisfies (Compt). So (c4) is
independent. In [12] Mulder and Nebeský gave two examples that showed the
independence of, respectively, (s1) and (s2) from the other axioms in Theorem
A. These examples also satisfy trivially axioms (t3∗) and (Compt). So also (s1)
and (s2) are independent. We refer the reader to [12] for the details.

Example 8. Let V be a set with |V | ≥ 3, and let z be a fixed vertex in V . Define
R on V by R(x, x) = {x} for all x in V , and R(x, y) = {z} for all distinct x and
y in V .

Clearly, R satisfies (c2), (c3), (c4), (c5), (t3∗) and (Compt), but not (c1∗). Since
there are no edges in GR, axioms (s1) and (s2) are trivially satisfied. So axiom
(c1∗) is independent.

In the other examples most of the work goes into checking whether (s1) and
(s2) are satisfied. So let us first have a closer look at these two axioms. We
presume axioms (c1∗), (c2), (t3∗) and (c4). We consider two edges uū and vv̄. If
{u, ū} = {v, v̄}, then (s1) and (s2) are trivially satisfied. Assume that the two
edges have exactly one vertex in common. First consider (s1). Then ū, v̄ ∈ R(u, v)
implies that u and v are in R(u, v) as well. Hence uv is not an edge. So the only
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way that uū and vv̄ have a vertex in common is that ū = v̄. Note that we have
{u, ū} = R(u, ū) = R(ū, u). If we would have u ∈ R(ū, v̄) = R(ū, ū), then (c4)
would imply that R(ū, u) ∩ R(u, ū) = {u}. This contradiction shows that u is
not in R(ū, v̄). Hence (s1) is satisfied. Next consider (s2). Assume that ū is in
R(u, v) and v̄ is not in R(u, v). Then v̄ 6= u, v, so, for the two edges to have a
vertex in common, we must have ū = v. Now v lies in R(ū, v̄). Hence (s2) is
satisfied. So below we only need to check (s1) and (s2) in the case of two disjoint
edges uū and vv̄. In the case of (s1), we only need to check the sets R(x, y) that
contain two disjoint edges.

Example 3 trivially does not satisfy (Compt). With the above considerations
it is also trivial that this example satisfies (s1) and (s2). So also (Compt) is an
independent axiom. To show the independence of (c2) and (c3) we present two
new examples.

Example 9. Let V = {u, v, w} and let R be the function on V defined as follows:
R(x, x) = {x} for all x in V , R(u,w) = {u}, R(w, u) = {w}, R(u, v) = R(v, u) =
{u, v} and R(v, w) = R(w, v) = {v, w}.

It is easy to see that R satisfies axioms (c1∗), (c3), (c4), (c5), (s1), (s2), (t3∗)
and (Compt), but that R does not satisfy (c2), since R(u,w) 6= R(w, u).

Example 10. Let V = {w, x, y, z} and let R be the function defined as follows:
R(w, y) = {w, x, y}, R(w, z) = {w, y, z}, R(x, z) = {x, y, z}, and R(p, q) = {p, q}
for every other distinct pair p, q in V , and R(p, p) = {p} for all p in V .

Note that GR is the path w → x → y → z. It is easy to see that R satisfies
axioms (c1∗), (c2), (c4), (c5), (t3∗) and (Compt). Clearly, R does not satisfy
axiom (c3), since y is in R(w, z) but R(w, y) * R(w, z). We still have to check
that R satisfies (s1) and (s2). First, there is no set R(p, q) containing two disjoint
edges, so (s1) is satisfied. For (s2) we have to consider two disjoint edges uū and
vv̄. If u = w, then ū = x. To get ū ∈ R(u, v), we must have v = y. Hence
v̄ = z and v lies in R(ū, v̄), so that (s2) is satisfied. If u = x, then, to get the two
disjoint edges, we must have ū = w and v is y or z. Now ū cannot anymore be in
R(u, v). So (s2) is satisfied. If u = y, then ū = z, and (s2) is satisfied. Finally,
if u = z, then ū = y and v = x. Now v̄ = w and v̄ /∈ R(u, v), but v ∈ R(ū, v̄), so
again (s2) is satisfied.

In [1] an example is given to show that (c5) is independent of the other four
classical axioms. The underlying graph in this example is the 4-fan F4, which
consists of a path P = w → x → y → z on four vertices and an extra vertex s
adjacent to all vertices on the path. The function R is the induced path function
on F4, that is, R(u, v) consists of all vertices on induced paths between u and v.
In [1] it is shown that R satisfies (c1), (c2), (c3) and (c4) but not (c5), Obviously
R satisfies (t3∗) and (Compt). What is left is to check that it also satisfies (s1)
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and (s2). First take (s1). We have to take two disjoint edges uū and vv̄ such that
ū, v̄ ∈ R(u, v). There are three possible choices for u and v, viz. {u, v} = {w, y},
{u, v} = {w, z}, and {u, v} = {x, z}. In all cases u /∈ R(ū, v̄). So (s1) is satisfied.
In the case of (s2), to get ū ∈ R(u, v), the vertices u and v cannot be adjacent.
To get v̄ /∈ R(u, v), two choices remain: viz. u = w and v = y or u = z and v = x.
Without loss of generality let u = w and v = y, so that v̄ = z. To get v /∈ R(ū, v̄)
we have ū = s. But now ū ∈ R(w, z) = R(u, v̄). So also (s2) is satisfied.

Thus we have shown the independence of all axioms in Theorem 7. Due to
the ‘minimality’ result of Mulder-Nebeský in [12] we know that the axiom set in
Theorem 7 is also such a minimal set: no weaker axioms would do the trick.
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