BOUNDS ON THE LOCATING ROMAN DOMINATION NUMBER IN TREES

Nader Jafari Rad and Hadi Rahbani
Department of Mathematics
Shahrood University of Technology
Shahrood, Iran
e-mail: n.jafarirad@gmail.com

Abstract

A Roman dominating function (or just RDF) on a graph $G=(V, E)$ is a function $f: V \longrightarrow\{0,1,2\}$ satisfying the condition that every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of an RDF f is the value $f(V(G))=\sum_{u \in V(G)} f(u)$. An RDF f can be represented as $f=\left(V_{0}, V_{1}, V_{2}\right)$, where $V_{i}=\{v \in V: f(v)=i\}$ for $i=0,1,2$. An RDF $f=\left(V_{0}, V_{1}, V_{2}\right)$ is called a locating Roman dominating function (or just LRDF) if $N(u) \cap V_{2} \neq N(v) \cap V_{2}$ for any pair u, v of distinct vertices of V_{0}. The locating Roman domination number $\gamma_{R}^{L}(G)$ is the minimum weight of an LRDF of G. In this paper, we study the locating Roman domination number in trees. We obtain lower and upper bounds for the locating Roman domination number of a tree in terms of its order and the number of leaves and support vertices, and characterize trees achieving equality for the bounds.

Keywords: Roman domination number, locating domination number, locating Roman domination number, tree.
2010 Mathematics Subject Classification: 05C69.

1. Introduction

In this paper, we continue the study of a variant of Roman dominating functions, namely, locating Roman dominating functions introduced in [16]. We first present some necessary definitions and notations. For notation and graph theory terminology not given here, we follow [13]. We consider finite, undirected, and simple graphs G with vertex set $V=V(G)$ and edge set $E=E(G)$. The number of vertices of a graph G is called the order of G and is denoted by $n=n(G)$. The
open neighborhood of a vertex $v \in V$ is $N(v)=N_{G}(v)=\{u \in V: u v \in E\}$, and the degree of v, denoted by $\operatorname{deg}_{G}(v)$, is the cardinality of its open neighborhood. A leaf of a tree T is a vertex of degree one, while a support vertex of T is a vertex adjacent to a leaf. A strong support vertex is a support vertex adjacent to at least two leaves. In this paper, we denote the set of all strong support vertices of T by $S(T)$ and the set of leaves by $L(T)$. We denote $\ell(T)=|L(T)|$ and $s(T)=|S(T)|$. We also denote by $L(x)$ the set of leaves adjacent to a support vertex x, and denote $\ell_{x}=|L(x)|$. If T is a rooted tree then for any vertex v we denote by T_{v} the subtree rooted at v. A subset $S \subseteq V$ is a dominating set of G if every vertex in $V-S$ has a neighbor in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G.

The study of locating dominating sets in graphs was pioneered by Slater [21, 22]. For many problems related to graphs, various types of protection sets are studied where the objective is to precisely locate an "intruder". It is considered that a detection device at a vertex v is able to determine if the intruder is at v or if it is in $N(v)$, but at which vertex in $N(v)$, it cannot be determined. A locating-dominating set $D \subseteq V(G)$ is a dominating set with the property that for each vertex $x \in V(G)-D$ the set $N(x) \cap D$ is unique. That is, any two vertices x, y in $V(G)-D$ are distinguished in the sense that there is a vertex $v \in D$ with $|N(v) \cap\{x, y\}|=1$. The minimum size of a locating-dominating set for a graph G is the locating-domination number of G, denoted $\gamma_{L}(G)$. The concept of locating domination has been considered for several domination parameters, see for example $[4,5,6,8,9,11,12,14,15,18,23]$.

For a graph G, let $f: V(G) \rightarrow\{0,1,2\}$ be a function, and let $\left(V_{0}, V_{1}, V_{2}\right)$ be the ordered partition of $V(G)$ induced by f, where $V_{i}=\{v \in V(G): f(v)=i\}$ for $i=0,1,2$. There is a $1-1$ correspondence between the functions $f: V(G) \rightarrow$ $\{0,1,2\}$ and the ordered partitions $\left(V_{0}, V_{1}, V_{2}\right)$ of $V(G)$. So we will write $f=$ $\left(V_{0}, V_{1}, V_{2}\right)$. A function $f: V(G) \rightarrow\{0,1,2\}$ is a Roman dominating function (or just RDF) if every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of an RDF f is $w(f)=f(V(G))=$ $\sum_{u \in V(G)} f(u)$. The Roman domination number of a graph G, denoted by $\gamma_{R}(G)$, is the minimum weight of an RDF on G. A function $f=\left(V_{0}, V_{1}, V_{2}\right)$ is called a γ_{R}-function (or $\gamma_{R}(G)$-function when we want to refer f to G), if it is an RDF and $f(V(G))=\gamma_{R}(G)$, see [10, 19, 24].

Roman dominating functions with several further conditions have been studied, for example, among other types, see for example $[1,2,3,7,17,20]$.

It is known [10] that if $f=\left(V_{0}, V_{1}, V_{2}\right)$ is an RDF in a graph G then V_{2} is a dominating set for $G\left[V_{0} \cup V_{2}\right]$. Jafari Rad, Rahbani and Volkmann [16] considered Roman dominating functions $f=\left(V_{0}, V_{1}, V_{2}\right)$ with a further condition that for each vertex $x \in V_{0}$ the set $N(x) \cap V_{2}$ is unique. That is, any two vertices x, y in V_{0} are distinguished in the sense that there is a vertex $v \in V_{2}$ with $|N(v) \cap\{x, y\}|=1$.

An RDF $f=\left(V_{0}, V_{1}, V_{2}\right)$ is called a locating Roman dominating function (or just LRDF) if $N(v) \cap V_{2} \neq N(u) \cap V_{2}$ for any pair u, v of distinct vertices of V_{0}. The locating Roman domination number $\gamma_{R}^{L}(G)$ is the minimum weight of an LRDF. Note that $\gamma_{R}^{L}(G)$ is defined for any graph G, since $(\emptyset, V(G), \emptyset)$ is an LRDF for G. We refer to a $\gamma_{R}^{L}(G)$-function as an LRDF of G with minimum weight. It is shown in [16] that the decision problem for the locating Roman domination problem is NP-complete for bipartite graphs and chordal graphs. Moreover, several bounds and characterizations are given for the locating Roman domination number of a graph.

In this paper we study the locating Roman domination number in trees. In Section 2, we show that for any tree T of order $n \geq 2$ with ℓ leaves and s support vertices, $\gamma_{R}^{L}(T) \geq(2 n+(\ell-s)+2) / 3$, and characterize all trees that achieve equality for this bound. In Section 3, we show that for any tree T of order $n \geq 2$, with l leaves and s support vertices, $\gamma_{R}^{L}(T) \leq(4 n+l+s) / 5$, and characterize all trees that achieve equality for this bound.

If $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a $\gamma_{R}(G)$-function, then for any vertex $v \in V_{2}$, we define $p n\left(v, V_{0}\right)=\left\{u \in V_{0}: N(u) \cap V_{2}=\{v\}\right\}$. The following theorem was proved in [4].

Theorem 1 (Blidia et al. [4]). For any tree T of order $n \geq 2, \gamma_{L}(T) \geq\lceil(n+$ 1) $/ 3\rceil$.

2. Lower Bound

We begin with the following lemma.
Lemma 2. If T is a tree with ℓ leaves and s support vertices, and $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a $\gamma_{R}^{L}(T)$-function, then $\left|V_{1}\right| \geq \ell-s$.

Proof. For any support vertex $x,\left|L(x) \cap V_{1}\right| \geq \ell_{x}-1$, thus $\left|V_{1}\right| \geq \sum_{x \in S}\left(\ell_{x}-1\right)=$ $\sum_{x \in S} \ell_{x}-\sum_{x \in S} 1=\ell-s$.

Theorem 3. For any tree T of order $n \geq 2$ with ℓ leaves and s support vertices, $\gamma_{R}^{L}(T) \geq(2 n+(\ell-s)+2) / 3$.

Proof. Let T be a tree of order n, and $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}^{L}(T)$-function. Let $T_{1}, T_{2}, \ldots, T_{k}$ be the components of $T\left[V_{0} \cup V_{2}\right]$, and let $\left|V\left(T_{i}\right)\right|=n_{i}$ for $i=1,2, \ldots, k$. Let $D_{i}=V_{2} \cap V\left(T_{i}\right)$ for $i=1,2, \ldots, k$. Clearly, D_{i} is a LDS for T_{i}, and so $\gamma_{L}\left(T_{i}\right) \leq\left|D_{i}\right|$, for $i=1,2, \ldots, k$. By Theorem $1,\left|D_{i}\right| \geq \gamma_{L}\left(T_{i}\right) \geq\left(n_{i}+1\right) / 3$ for $i=1,2, \ldots, k$. Hence, $\left(n-\left|V_{1}\right|+k\right) / 3 \leq \sum_{i=1}^{k} \gamma_{L}\left(T_{i}\right) \leq \sum_{i=1}^{k}\left|D_{i}\right|=\left|V_{2}\right|$. Now since $\left|V_{1}\right| \geq \ell-s$ by Lemma 2, we conclude that $\gamma_{R}^{L}(T)=\left|V_{1}\right|+2\left|V_{2}\right| \geq$ $\left|V_{1}\right|+\left(2\left(n-\left|V_{1}\right|+k\right)\right) / 3 \geq\left(2 n+\left|V_{1}\right|+2 k\right) / 3 \geq(2 n+(\ell-s)+2) / 3$.

Corollary 4. For any tree T of order $n \geq 2, \gamma_{R}^{L}(T) \geq(2 n+2) / 3$.
We next aim to characterize trees achieving equality in the bound of Theorem 3. For this purpose for each integer $r \geq 0$, we construct a family \mathcal{T}_{r} of trees as follows.

- Let \mathcal{T}_{0} be the collection of trees T that can be obtained from a sequence $T_{1}, T_{2}, \ldots, T_{k}=T(k \geq 1)$ of trees, where $T_{1}=P_{5}$, and T_{i+1} can be obtained recursively from T_{i} by the following operation for $1 \leq i \leq k-1$.
Operation \mathcal{O}_{1}. Join a support vertex of T_{i} to a leaf of a path P_{3}.
- For $r \geq 1$, let \mathcal{T}_{r} be the class of trees T that can be obtained from a tree $T_{0} \in \mathcal{T}_{0}$ by adding r leaves to at most r support vertices of T_{0}.

The following lemma plays a key role for the next section.
Lemma 5. Let T be a tree of order $n \geq 3$ with $\gamma_{R}^{L}(T)=(2 n+2) / 3$. Then
(1) $\left|V_{1}\right|=0$ for every $\gamma_{R}^{L}(T)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$.
(2) T has no strong support vertex.
(3) If $P=x_{0}-x_{1}-\cdots-x_{d}$ is a diametrical path of T, then $\operatorname{deg}\left(x_{d-1}\right)=$ $\operatorname{deg}\left(x_{d-2}\right)=2$, and x_{d-3} is a support vertex.
(4) If $P=x_{0}-x_{1}-\cdots-x_{d}$ is a diametrical path of T, and $T^{\prime}=T-\left\{x_{d}, x_{d-1}\right.$, $\left.x_{d-2}\right\}$, then $\gamma_{R}^{L}\left(T^{\prime}\right)=\left(2\left|V\left(T^{\prime}\right)\right|+2\right) / 3$.
Proof. (1) Suppose that $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a $\gamma_{R}^{L}(T)$-function such that $\left|V_{1}\right|>0$. Let $v \in V_{1}$. If v is a leaf then by Corollary 4, we have $\frac{2 n}{3} \leq \gamma_{R}^{L}(T-v) \leq$ $w(f)-1=(2 n-1) / 3$, a contradiction. Thus v is not a leaf. Let $T_{1}, T_{2}, \ldots, T_{k}$ $(k \geq 2)$ be the components of $T-\{v\}$, and $\left|V\left(T_{i}\right)\right|=n_{i}$ for $i=1, \ldots, k$. For $i=1, \ldots, k$, since $\left.f\right|_{V\left(T_{i}\right)}$ is an LRDF for T_{i}, by Corollary 4 we obtain that $\frac{2 n+2}{3} \leq \sum_{i=1}^{k} \frac{2 n_{i}+2}{3} \leq \sum_{i=1}^{k} \gamma_{R}^{L}\left(T_{i}\right) \leq w(f)-1=(2 n-1) / 3$, a contradiction.
(2) The result follows from Lemma 2 and part (1).
(3) By part (2), $\operatorname{deg}\left(x_{d-1}\right)=2$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}^{L}(T)$-function. Moreover, by parts (1) and (2) we may assume that $f(u)=0$ for any leaf u, and $f(u)=2$ for any support vertex u. Assume that $\operatorname{deg}\left(x_{d-2}\right) \geq 3$. If x_{d-2} is a support vertex then replacing $f\left(x_{d}\right)$ and $f\left(x_{d-1}\right)$ by 1 yields a $\gamma_{R}^{L}(T)$-function, a contradiction to part (1). Thus x_{d-2} is not a support vertex. Then any vertex of $N\left(x_{d-2}\right)-\left\{x_{d-3}\right\}$ is a support vertex of degree two. If $\operatorname{deg}\left(x_{d-2}\right) \geq 4$ then replacing $f\left(x_{d}\right)$ and $f\left(x_{d-1}\right)$ by 1 yields an LRDF for T, a contradiction to part (1). Assume that $\operatorname{deg}\left(x_{d-2}\right)=3$. Observe that $f\left(x_{d-2}\right)=0$. Let T^{\prime} be the component of $T-x_{d-2} x_{d-3}$ that contains x_{d-3}. By Corollary $4, \gamma_{R}^{L}\left(T^{\prime}\right) \geq$ $(2(n-5)+2) / 3$. But $\left.f\right|_{V\left(T^{\prime}\right)}$ is an LRDF for T^{\prime}, and thus $(2(n-5)+2) / 3 \leq$ $\gamma_{R}^{L}\left(T^{\prime}\right) \leq w\left(\left.f\right|_{V\left(T^{\prime}\right)}\right)=\gamma_{R}^{L}(T)-4=(2 n+2) / 3-4$, a contradiction. Thus $\operatorname{deg}\left(x_{d-2}\right)=2$. Since $f\left(x_{d-1}\right)=2$, from part (1) we obtain that $f\left(x_{d-2}\right)=0$, and thus $f\left(x_{d-3}\right)=2$.

Suppose now that x_{d-3} is not a support vertex. Assume that $\operatorname{deg}\left(x_{d-3}\right)=2$. Clearly, we may assume that $f\left(x_{d-4}\right)=0$, since otherwise replacing $f\left(x_{d}\right)$ and $f\left(x_{d-1}\right)$ by 1 yields an $\gamma_{R}^{L}(T)$-function, a contradiction. By the same reason, we obtain that $N\left(x_{d-4}\right) \cap V_{2}=\left\{x_{d-3}\right\}$. So x_{d-4} is neither a support vertex nor adjacent to a support vertex. Let $T_{0}, T_{1}, T_{2}, \ldots, T_{l}$ be the components of $T-x_{d-4}$, where T_{0} contains x_{d-3}. Clearly, $\left.f\right|_{V\left(T_{i}\right)}$ is an LRDF for T_{i}, and by Corollary 4, $w\left(\left.f\right|_{V\left(T_{i}\right)}\right) \geq \gamma_{R}^{L}\left(T_{i}\right) \geq\left(2\left|V\left(T_{i}\right)\right|+2\right) / 3$ for $i=1,2, \ldots, l$. Thus

$$
\begin{aligned}
(2 n-8) / 3 & \leq(2(n-5)+2 l) / 3=\sum_{i=1}^{l}\left(2\left|V\left(T_{i}\right)\right|+2\right) / 3 \leq \sum_{i=1}^{l} \gamma_{R}^{L}\left(T_{i}\right) \\
& \leq \sum_{i=1}^{l} w\left(\left.f\right|_{V\left(T_{i}\right)}\right)=w(f)-4=(2 n+2) / 3-4=(2 n-10) / 3
\end{aligned}
$$

a contradiction. Thus $\operatorname{deg}\left(x_{d-3}\right) \geq 3$. Let a_{1} be a leaf of T such that the $d\left(x_{d-3}, a_{1}\right)$ is minimum and the shortest path from a_{1} to x_{d-3} does not intersect P. Clearly, $d\left(x_{d-3}, a_{1}\right) \in\{2,3\}$. Assume that $d\left(x_{d-3}, a_{1}\right)=2$. Let $b_{1} \in N\left(a_{1}\right) \cap$ $N\left(x_{d-3}\right)$. Thus $\operatorname{deg}\left(b_{1}\right)=2$ by part (2). Then $f\left(b_{1}\right)=2$, and so replacing $f\left(a_{1}\right)$ and $f\left(b_{1}\right)$ by 1 yields a $\gamma_{R}^{L}(T)$-function, a contradiction. Thus $d\left(x_{d-3}, a\right)=3$. Therefore, any vertex of $N\left(x_{d-3}\right)-\left\{x_{d-4}\right\}$ has degree two and is adjacent to a support vertex of degree two. Let $N\left(x_{d-3}\right)-\left\{x_{d-4}, x_{d-2}\right\}=\left\{c_{1}, \ldots, c_{k}\right\}$, where $k=\operatorname{deg}\left(x_{d-3}\right)-2$. Then c_{i} is adjacent to a support vertex b_{i} with $\operatorname{deg}\left(b_{i}\right)=2$, for $i=1,2, \ldots, k$. Let a_{i} be the leaf adjacent to b_{i} for $i=1,2, \ldots, k$. Then $f\left(b_{i}\right)=2$ and $f\left(a_{i}\right)=f\left(c_{i}\right)=0$ for $i=1,2, \ldots, k$. Note that we may assume that $f\left(x_{d-4}\right)=0$, since otherwise replacing $f\left(x_{d-1}\right)$ and $f\left(x_{d}\right)$ by 1 yields a $\gamma_{R}^{L}(T)$ function, a contradiction. Thus x_{d-4} is neither a support vertex nor adjacent to a support vertex. By the same reason, $N\left(x_{d-4}\right) \cap V_{2}=\left\{x_{d-3}\right\}$. Let $T_{0}, T_{1}, T_{2}, \ldots, T_{l}$ be the components of $T-x_{d-4}$, where T_{0} contains x_{d-3}. Clearly, $\left.f\right|_{V\left(T_{i}\right)}$ is an LRDF for T_{i}, and by Corollary 4 , $w\left(\left.f\right|_{V\left(T_{i}\right)}\right) \geq \gamma_{R}^{L}\left(T_{i}\right) \geq\left(2\left|V\left(T_{i}\right)\right|+2\right) / 3$ for $i=1,2, \ldots, l$. Thus

$$
\begin{aligned}
(2 n-6 k-8) / 3 & \leq 2 / 3+2 / 3(n-3 k-5) \leq 2 / 3+2 / 3 \sum_{i=1}^{l}\left|V\left(T_{i}\right)\right| \\
& \leq \sum_{i=1}^{l}\left(2\left|V\left(T_{i}\right)\right|+2\right) / 3 \leq \sum_{i=1}^{l} w\left(\left.f\right|_{V\left(T_{i}\right)}\right)=w(f)-2(k+1)-2 \\
& =(2 n+2) / 3-2 k-4=(2 n-6 k-10) / 3
\end{aligned}
$$

a contradiction.
(4) By part (3), $\operatorname{deg}\left(x_{d-1}\right)=\operatorname{deg}\left(x_{d-2}\right)=2$ and x_{d-3} is a support vertex. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}^{L}(T)$-function. As seen earlier, $\left|V_{1}\right|=0, f\left(x_{d}\right)=$ $f\left(x_{d-2}\right)=0$ and $f\left(x_{d-1}\right)=2$. Therefore, $\left.f\right|_{T^{\prime}}$ is an LRDF for T^{\prime}. By Corollary 4, $\left(2\left|V\left(T^{\prime}\right)\right|+2\right) / 3 \leq \gamma_{R}^{L}\left(T^{\prime}\right) \leq w\left(\left.f\right|_{T^{\prime}}\right)=\gamma_{R}^{L}(T)-2=(2 n+2) / 3-2=\left(2\left|V\left(T^{\prime}\right)\right|+\right.$ 2) $/ 3$. Therefore, $\gamma_{R}^{L}\left(T^{\prime}\right)=\left(2\left|V\left(T^{\prime}\right)\right|+2\right) / 3$.

We are now ready to characterize trees achieving equality in the bound of Theorem 3.

Theorem 6. For a tree T of order $n \geq 2$ with ℓ leaves and s support vertices, $\gamma_{R}^{L}(T)=(2 n+(\ell-s)+2) / 3$ if and only if $T=K_{2}$ or $T \in \mathcal{T}_{k}$ for some integer $k \geq 0$.

Proof. Let $T \neq K_{2}$ be a tree of order n with ℓ leaves and s support vertices. We proceed with two claims.
Claim 1. $\gamma_{R}^{L}(T)=(2 n+2) / 3$ if and only if $T \in \mathcal{T}_{0}$.
Proof. Assume that $\gamma_{R}^{L}(T)=(2 n+2) / 3$. We show by induction on n that $T \in \mathcal{T}_{0}$. For the base step of the induction it is easy to see that P_{5} is the smallest tree T for which $\gamma_{R}^{L}(T)=(2 n+2) / 3$. Assume that any tree T^{\prime} of order $5<n^{\prime}<n$ and such that $\gamma_{R}^{L}\left(T^{\prime}\right)=\left(2 n^{\prime}+2\right) / 3$ belongs to \mathcal{T}_{0}. Let $P=x_{0}-x_{1}-\cdots-x_{d}$ be a diametrical path of T. By Lemma $5(3), \operatorname{deg}\left(x_{d-1}\right)=\operatorname{deg}\left(x_{d-2}\right)=2$, and x_{d-3} is a support vertex. Let $T_{1}=T-\left\{x_{d}, x_{d-1}, x_{d-2}\right\}$. By Lemma 5(4), $\gamma_{R}^{L}\left(T_{1}\right)=\left(2\left|V\left(T_{1}\right)\right|+2\right) / 3$. By the inductive hypothesis, $T_{1} \in \mathcal{T}_{0}$. Hence T is obtained from T_{1} by Operation \mathcal{O}_{1}, and thus $T \in \mathcal{T}_{0}$. For the converse it is sufficient to show that if $\gamma_{R}^{L}\left(T_{i}\right)=\left(2\left|V\left(T_{i}\right)\right|+2\right) / 3$ and T_{i+1} is obtained from T_{i} by the operation \mathcal{O}_{1}, then $\gamma_{R}^{L}\left(T_{i+1}\right)=\left(2\left|V\left(T_{i+1}\right)\right|+2\right) / 3$, and then the result follows by an induction on the number of operations performed to construct a tree $T \in \mathcal{T}_{0}$. Let $\gamma_{R}^{L}\left(T_{i}\right)=\left(2\left|V\left(T_{i}\right)\right|+2\right) / 3$, and T_{i+1} be obtained from T_{i} by joining a support vertex $v \in V\left(T_{i}\right)$ to the leaf x of a path $P_{3}: x y z$. Let f be a $\gamma_{R}^{L}\left(T_{i}\right)$-function. By Lemma $5(1)$ and (2), we may assume that $f(v)=2$. Then $g: V\left(T_{i+1}\right) \longrightarrow\{0,1,2\}$ defined by $g(x)=g(z)=0, g(y)=2$ and $g(u)=f(u)$ for any $u \in V\left(T_{i}\right)$, is an LRDF for T_{i+1}. By Corollary 4, $\left(2\left|V\left(T_{i+1}\right)\right|+2\right) / 3 \leq$ $\gamma_{R}^{L}\left(T_{i+1}\right) \leq w(g)=\gamma_{R}^{L}(T)+2=\left(2\left|V\left(T_{i}\right)\right|+2\right) / 3+2=\left(2 \mid V\left(T_{i+1}\right)+2\right) / 3$. Therefore, $\gamma_{R}^{L}\left(T_{i+1}\right)=\left(2\left|V\left(T_{i+1}\right)\right|+2\right) / 3$.

Claim 2. $\gamma_{R}^{L}(T)=(2 n+(\ell-s)+2) / 3$, with $\ell \neq s$, if and only if $T \in \mathcal{T}_{k}$ for some integer $k \geq 1$.
Proof. Assume that $\gamma_{R}^{L}(T)=(2 n+(\ell-s)+2) / 3$, and $\ell \neq s$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}^{L}(T)$-function. For any support vertex $x, f(u)=1$ for at least $\ell_{x}-1$ leaves $u \in N(x)$ by Lemma 2. Let T^{\prime} be a tree obtained from T by removing $\ell_{x}-1$ leaves u of any strong support vertex x with $f(u)=1$. Then $\left.f\right|_{T^{\prime}}$ is a LRDF for T^{\prime}, and so $\gamma_{R}^{L}\left(T^{\prime}\right) \leq \gamma_{R}^{L}(T)-(l-s)=(2(n-(l-s)+2)) / 3=\left(2\left|V\left(T^{\prime}\right)\right|+2\right) / 3$. Corollary 4 implies that $\gamma_{R}^{L}\left(T^{\prime}\right)=\left(2\left|V\left(T^{\prime}\right)\right|+2\right) / 3$. Now Claim 1 implies that $T^{\prime} \in \mathcal{T}_{0}$, and so $T \in \mathcal{T}_{k}$, where $k=l-s$. Conversely, let $T \in \mathcal{T}_{k}$ for some integer $k \geq 1$. Thus T is obtained from a tree $T^{\prime} \in \mathcal{T}_{0}$ by adding k leaves to at most k support vertices of T^{\prime}. By Claim 1, $\gamma_{R}^{L}\left(T^{\prime}\right)=\left(2\left|V\left(T^{\prime}\right)\right|+2\right) / 3$. Let f^{\prime} be a $\gamma_{R}^{L}\left(T^{\prime}\right)$-function. We extend f^{\prime} to a LRDF for T by assigning 1 to any vertex of
$V(T)-V\left(T^{\prime}\right)$, and thus $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+l-s=\left(2\left|V\left(T^{\prime}\right)\right|+2\right) / 3+l-s=$ $\left(2\left(\left|V\left(T^{\prime}\right)\right|+l-s\right)+l-s+2\right) / 3=(2|V(T)|+(\ell-s)+2) / 3$. Now Theorem 3 implies that $\gamma_{R}^{L}(T)=(2 n+(\ell-s)+2) / 3$.

Now the proof follows by Claims 1 and 2 .

3. Upper Bound

Lemma 7. If T^{\prime} is a tree and T is obtained from T^{\prime} by joining a leaf of T^{\prime} to a leaf of a path P_{5}, then $\gamma_{R}^{L}(T)=\gamma_{R}^{L}\left(T^{\prime}\right)+4$.

Proof. Let T be obtained from a tree T^{\prime} by joining a leaf v of T^{\prime} to the leaf a of a path $P_{5}: a b c d e$. If $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a $\gamma_{R}^{L}\left(T^{\prime}\right)$-function, then $g=\left(V_{0} \cup\right.$ $\left.\{a, c, e\}, V_{1}, V_{2} \cup\{b, d\}\right)$ is an LRDF for T, and so $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+4$. Let $h=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}^{L}(T)$-function. If $a \notin V_{2}$, then $h(a)+h(b)+h(c)+h(d)+$ $h(e)=4$ and $\left.h\right|_{V\left(T^{\prime}\right)}$ is an LRDF for T^{\prime}, so $\gamma_{R}^{L}\left(T^{\prime}\right) \leq \gamma_{R}^{L}(T)-4$. If $a \in V_{2}$, then $h(a)+h(b)+h(c)+h(d)+h(e)=5$, so $\gamma_{R}^{L}\left(T^{\prime}\right) \leq w\left(\left.h\right|_{V\left(T^{\prime}\right)}\right)+1=\gamma_{R}^{L}(T)-4$. Thus $\gamma_{R}^{L}(T)=\gamma_{R}^{L}\left(T^{\prime}\right)+4$.

Similarly the following is verified.
Lemma 8. Let T^{\prime} be a tree with a vertex w of degree at least two and $\gamma_{R}^{L}\left(T^{\prime}-w\right) \geq$ $\gamma_{R}^{L}\left(T^{\prime}\right)$. If T is obtained from T^{\prime} by joining w to the center of a path P_{9}, then $\gamma_{R}^{L}(T)=\gamma_{R}^{L}\left(T^{\prime}\right)+8$.

Theorem 9. For any tree T of order $n \geq 2$, with ℓ leaves and s support vertices, $\gamma_{R}^{L}(T) \leq(4 n+\ell+s) / 5$.

Proof. We use an induction on the order $n=n(T)$ of a tree T. The base step is obvious for $n \leq 4$. Assume that for any tree T^{\prime} of order $n^{\prime}<n$, with ℓ^{\prime} leaves and s^{\prime} support vertices, $\gamma_{R}^{L}\left(T^{\prime}\right) \leq\left(4 n^{\prime}+\ell^{\prime}+s^{\prime}\right) / 5$. Now consider the tree T of order $n \geq 5$, with ℓ leaves and s support vertices. Assume that T has a strong support vertex v, and u is a leaf adjacent to v. Let $T^{\prime}=T-u$. Clearly, $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+1$. By the induction hypothesis, $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+1 \leq$ $\left(4 n^{\prime}+\ell^{\prime}+s^{\prime}\right) / 5+1=(4(n-1)+(l-1)+s) / 5+1=(4 n+l+s) / 5$. Next assume that T has an edge $e=u v$ with $\operatorname{deg}(u) \geq 3$ and $\operatorname{deg}(v) \geq 3$. Let T_{1} and T_{2} be the components of $T-e$, with $u \in V\left(T_{1}\right)$ and $v \in V\left(T_{2}\right)$. Assume that T_{i} has order n_{i}, ℓ_{i} leaves and s_{i} support vertices, for $i=1,2$. By the induction hypothesis, $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T_{1}\right)+\gamma_{R}^{L}\left(T_{2}\right) \leq\left(4 n_{1}+\ell_{1}+s_{1}\right) / 5+\left(4 n_{2}+\ell_{2}+s_{2}\right) / 5=(4 n+\ell+s) / 5$. Thus the following claims hold.
Claim 1. T has no strong support vertex.
Claim 2. For each edge $e=u v, \operatorname{deg}(u) \leq 2$ or $\operatorname{deg}(v) \leq 2$.

We root T at a leaf x_{0} of a diametrical path $x_{0} x_{1} \cdots x_{d}$ from x_{0} to a leaf x_{d} farthest from x_{0}. By Claim $1, d \geq 3$. If $d=3$ then T is a double-star, and it can be easily seen that $\gamma_{R}^{L}(T)=(4 n+\ell+s) / 5$. Thus assume that $d \geq 4$.

By Claim 1, $\operatorname{deg}\left(x_{d-1}\right)=2$. Assume that $\operatorname{deg}\left(x_{d-2}\right) \geq 3$. Assume that x_{d-2} is a support vertex. Let u be the unique leaf adjacent to x_{d-2}. Let $T^{\prime}=T-u$. By the inductive hypothesis, $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+1 \leq(4(n-1)+(\ell-1)+(s-1)) / 5+1<$ $(4 n+\ell+s) / 5$. Thus assume that x_{d-2} is not a support vertex. Let u be a child of x_{d-2} different from x_{d-1}. By Claim 1, $\operatorname{deg}(u)=2$. Let v be the child of u, and $T^{\prime}=T-\{u, v\}$. By the inductive hypothesis, $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+2 \leq(4(n-2)$ $+(\ell-1)+s-1) / 5+2=(4 n+\ell+s) / 5$. We thus assume that $\operatorname{deg}\left(x_{d-2}\right)=2$.

Assume that $\operatorname{deg}\left(x_{d-3}\right) \geq 3$. Assume that x_{d-3} is a support vertex. Let u be the unique leaf adjacent to x_{d-3}. Let $T^{\prime}=T-u$. By the inductive hypothesis, $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+1 \leq(4(n-1)+(\ell-1)+s-1) / 5+1<(4 n+\ell+s) / 5$. Thus assume that x_{d-3} is not a support vertex. Let u be a child of x_{d-3} different from x_{d-2}. Assume that u is a support vertex. By Claim 1, $\operatorname{deg}(u)=2$. Let v be the child of u. Let $T^{\prime}=T-\{u, v\}$. By the inductive hypothesis, $\gamma_{R}^{L}(T) \leq$ $\gamma_{R}^{L}\left(T^{\prime}\right)+2 \leq(4(n-2)+(\ell-1)+s-1) / 5+2=(4 n+\ell+s) / 5$. Thus assume that u is not a support vertex. Thus any child of u is a support vertex of degree two by Claim 1. Furthermore, $\operatorname{since} \operatorname{deg}\left(x_{d-3}\right) \geq 3$, we deduce that $d \geq 6$, and this implies that $x_{d-5} \neq x_{0}$. Let $\operatorname{deg}\left(x_{d-3}\right)=k+1$. By Claim 2 , $\operatorname{deg}\left(x_{d-4}\right)=2$. Let $T^{\prime}=T-T_{x_{d-4}}$. Assume that T^{\prime} has n^{\prime} vertices, ℓ^{\prime} leaves and s^{\prime} support vertices. By the inductive hypothesis, $\gamma_{R}^{L}\left(T^{\prime}\right) \leq\left(4 n^{\prime}+\ell^{\prime}+s^{\prime}\right) / 5$. But $\ell^{\prime} \leq \ell-k+1$, $s^{\prime} \leq s-k+1$, and $n^{\prime}=n-3 k-2$. Let f be a $\gamma_{R}^{L}\left(T^{\prime}\right)$-function. We extend f to an LRDF for T by assigning 2 to x_{d-3} and any vertex of $T_{x_{d-4}}$ at distance two from x_{d-3}, and 0 to any other vertex of $T_{x_{d-4}}$. Thus $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+2 k+2 \leq$ $\left(4 n^{\prime}+\ell^{\prime}+s^{\prime}\right) / 5+2 k+2 \leq(4 n+\ell+s-4 k+4) / 5 \leq(4 n+\ell+s) / 5$. Thus assume that $\operatorname{deg}\left(x_{d-3}\right)=2$.

Assume that $\operatorname{deg}\left(x_{d-4}\right) \geq 3$. As before, we can assume that x_{d-4} is not a support vertex, and is not adjacent to a support vertex of degree two. By Claim 2 , $\operatorname{deg}\left(x_{d-5}\right)=2$, and also any child of x_{d-4} has degree two. If there is a leaf $u \neq x_{d}$ of $T_{x_{d-5}}$ at distance four from x_{d-4} then any internal vertex in the path from u to x_{d-4} has degree two, since u plays the same role of x_{d}. Thus any leaf u of $T_{x_{d-4}}$ is at distance 3 or 4 from X_{d-4}, and any internal vertex in the path from u to x_{d-4} has degree two. Let k_{1} be the number of leaves of $T_{x_{d-5}}$ at distance four from x_{d-4}, and k_{2} be the number of leaves of $T_{x_{d-5}}$ at distance three from x_{d-4}. Then $\operatorname{deg}\left(x_{d-4}\right)=k_{1}+k_{2}+1$. Since $\operatorname{deg}\left(x_{d-4}\right) \geq 3$, we obtain that $d \geq 7$, and this implies that $x_{d-6} \neq x_{0}$. Let $T^{\prime}=T-T_{x_{d-5}}$. Assume that T^{\prime} has n^{\prime} vertices, ℓ^{\prime} leaves and s^{\prime} support vertices. By the inductive hypothesis, $\gamma_{R}^{L}\left(T^{\prime}\right) \leq\left(4 n^{\prime}+\ell^{\prime}+s^{\prime}\right) / 5$. But $\ell^{\prime} \leq \ell-k_{1}-k_{2}+1, s^{\prime} \leq s-k_{1}-k_{2}+1$, and $n^{\prime}=n-4 k_{1}-3 k_{2}-2$. Let f be a $\gamma_{R}^{L}\left(T^{\prime}\right)$-function. We extend f to an LRDF for T by assigning 2 to x_{d-4} and any vertex of $T_{x_{d-5}}$ at distance two from x_{d-4},

1 to any vertex of $T_{x_{d-5}}$ at distance four from x_{d-4}, and 0 to any other vertex of $T_{x_{d-5}}$. Thus $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+3 k_{1}+2 k_{2}+2 \leq\left(4 n^{\prime}+\ell^{\prime}+s^{\prime}\right) / 5+3 k_{1}+2 k_{2}+2 \leq$ $\left(4 n+\ell+s-3 k_{1}-4 k_{2}+4\right) / 5<(4 n+\ell+s) / 5$.

Thus assume that $\operatorname{deg}\left(x_{d-4}\right)=2$. Let $T^{\prime}=T-T_{x_{d-5}}$. Assume that T^{\prime} has n^{\prime} vertices, ℓ^{\prime} leaves and s^{\prime} support vertices. By the inductive hypothesis, $\gamma_{R}^{L}\left(T^{\prime}\right) \leq$ $\left(4 n^{\prime}+\ell^{\prime}+s^{\prime}\right) / 5$. But $\ell^{\prime} \leq \ell, s^{\prime} \leq s$, and $n^{\prime}=n-5$. Let f be a $\gamma_{R}^{L}\left(T^{\prime}\right)$-function. We extend f to an LRDF for T by assigning 2 to x_{d-3} and x_{d-1}, and 0 to x_{d-4}, x_{d-2} and x_{d}. Thus $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+4 \leq\left(4 n^{\prime}+\ell^{\prime}+s^{\prime}\right) / 5+4 \leq(4 n+\ell+s) / 5$.

We next aim to characterize trees achieving equality for the bound of Theorem 3. A vertex w of degree at least two in a tree T is called a special vertex if the following conditions hold:
(1) If $f(w)=2$ for a $\gamma_{R}^{L}(T)$-function $h=\left(V_{0}, V_{1}, V_{2}\right)$, then $p n\left(w, V_{0}\right) \neq \emptyset$.
(2) If $f(w)=1$ for a $\gamma_{R}^{L}(T)$-function $h=\left(V_{0}, V_{1}, V_{2}\right)$, then $N(w) \cap V_{2}=\emptyset$.

Let \mathcal{T} be the collection of trees T that can be obtained from a sequence T_{1}, T_{2}, $\ldots, T_{k}=T(k \geq 1)$ of trees, where $T_{1}=P_{4}$, and T_{i+1} can be obtained recursively from T_{i} by one of the following operations for $1 \leq i \leq k-1$.

Operation \mathcal{O}_{1}. Assume that w is a support vertex of T_{i}. Then T_{i+1} is obtained from T_{i} by adding a leaf to w.

Operation \mathcal{O}_{2}. Assume that w is a leaf of T_{i}. Then T_{i+1} is obtained from T_{i} by joining w to a leaf of a path P_{5}.
Operation \mathcal{O}_{3}. Assume that w is a specialvertex of T_{i}. Then T_{i+1} is obtained from T_{i} by joining w to a leaf of a path P_{2}.

Operation \mathcal{O}_{4}. Assume that w is a vertex of T_{i} of degree at least two and $\gamma_{R}^{L}\left(T_{i}-w\right) \geq \gamma_{R}^{L}\left(T_{i}\right)$. Then T_{i+1} is obtained from T_{i} by joining w to the center of a path P_{9}.
Lemma 10. If $\gamma_{R}^{L}\left(T_{i}\right)=\left(4 n\left(T_{i}\right)+\ell\left(T_{i}\right)+s\left(T_{i}\right)\right) / 5$, and T_{i+1} is obtained from T_{i} by Operation \mathcal{O}_{j}, for $j=1,2,3,4$, then $\gamma_{R}^{L}\left(T_{i+1}\right)=\left(4 n\left(T_{i+1}\right)+\ell\left(T_{i+1}\right)+s\left(T_{i+1}\right)\right) / 5$.
Proof. Let $\gamma_{R}^{L}\left(T_{i}\right)=\left(4 n_{i}+\ell_{i}-2+s_{i}\right) / 5$, where $n_{i}=n\left(T_{i}\right), \ell_{i}=\ell\left(T_{i}\right)$ and $s_{i}=s\left(T_{i}\right)$. Assume that T_{i+1} is obtained from T_{i} by Operation \mathcal{O}_{1}. Let T_{i+1} be obtained from T_{i} by adding a leaf v to a support vertex w of T_{i}. Then $\gamma_{R}^{L}\left(T_{i+1}\right) \leq \gamma_{R}^{L}\left(T_{i}\right)+1$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}^{L}\left(T_{i+1}\right)$-function, without loss of generality, we may assume that $v \in V_{1}$. Then $f=\left(V_{0}, V_{1}-\{v\}, V_{2}\right)$ is an LRDF for T_{i}, implying that $\gamma_{R}^{L}\left(T_{i}\right) \leq \gamma_{R}^{L}\left(T_{i+1}\right)-1$. Thus $\gamma_{R}^{L}\left(T_{i+1}\right)=\gamma_{R}^{T}\left(T_{i}\right)+1$. Now $\gamma_{R}^{L}\left(T_{i+1}\right)=\left(4 n\left(T_{i}\right)+\ell\left(T_{i}\right)+s\left(T_{i}\right)\right) / 5+1=\left(4\left(n\left(T_{i}\right)+1\right)+\left(\ell\left(T_{i}\right)+1\right)+s\left(T_{i}\right)\right) / 5=$ $\left(4 n\left(T_{i+1}\right)+\ell\left(T_{i+1}\right)+s\left(T_{i+1}\right)\right) / 5$.

Next assume that T_{i+1} is obtained from T_{i} by Operation \mathcal{O}_{2}. By Lemma 7, $\gamma_{R}^{L}\left(T_{i+1}\right)=\gamma_{R}^{L}\left(T_{i}\right)+4$. Now $\gamma_{R}^{L}\left(T_{i+1}\right)=\left(4 n\left(T_{i}\right)+\ell\left(T_{i}\right)+s\left(T_{i}\right)\right) / 5+4=\left(4\left(n\left(T_{i}\right)+\right.\right.$ $\left.5)+\ell\left(T_{i}\right)+s\left(T_{i}\right)\right) / 5=\left(4 n\left(T_{i+1}\right)+\ell\left(T_{i+1}\right)+s\left(T_{i+1}\right)\right) / 5$.

Now assume that T_{i+1} is obtained from T_{i} by Operation \mathcal{O}_{3}. Let T_{i+1} be obtained from T_{i} by joining a special vertex v of T_{i} to the leaf a of a path $P_{2}: a b$. Suppose that $\gamma_{R}^{L}\left(T_{i+1}\right)=\gamma_{R}^{L}\left(T_{i}\right)+1$. Let h be a $\gamma_{R}^{L}\left(T_{i+1}\right)$-function. Assume that $h(a)=2$. Clearly, we may assume that $h(b)=0$. If $h(v) \neq 0$, then $\left.h\right|_{V\left(T_{i}\right)}$ is an LRDF for T_{i} of weight less than $\gamma_{R}^{L}\left(T_{i}\right)$, a contradiction. Thus $h(v)=0$. Since h is an LRDF for T_{i+1}, there is a vertex $w \in N(v)-\{a\}$ such that $h(w)=2$. Now h^{\prime} defined on $V\left(T_{i}\right)$ by $h^{\prime}(v)=1$ and $h^{\prime}(x)=h(x)$ otherwise, is an LRDF for T_{i}. Clearly, h^{\prime} is a $\gamma_{R}^{L}\left(T_{i}\right)$-function. This is a contradiction, since v is a special vertex of T_{i}. If $h(a)=1$, then $h(b)=1$ and we can replace $h(a)$ by 2 and $h(b)$ by 0 , and as before, get a contradiction. Thus $h(a)=0$. If $h(b)=2$, then we replace $h(a)$ by 2 and $h(b)$ by 0 , and as before, get a contradiction. Thus $h(b)=1$, and so $h(v)=2$. Thus $\left.h\right|_{V\left(T_{i}\right)}=\left(V_{0}, V_{1}, V_{2}\right)$ is a $\gamma_{R}^{L}\left(T_{i}\right)$-function with $p n\left(v, V_{0}\right)=\emptyset$. This is a contradiction, since v is a special vertex of T_{i}. Thus $\gamma_{R}^{L}\left(T_{i+1}\right)=\gamma_{R}^{L}\left(T_{i}\right)+2$. Now $\gamma_{R}^{L}\left(T_{i+1}\right)=\left(4\left(n\left(T_{i}\right)+2\right)+\left(\ell\left(T_{i}\right)+1\right)+\left(s\left(T_{i}\right)+1\right)\right) / 5=$ $\left(4 n\left(T_{i+1}\right)+\ell\left(T_{i+1}\right)+s\left(T_{i+1}\right)\right) / 5$.

Finally assume that T_{i+1} is obtained from T_{i} by Operation \mathcal{O}_{4}. By Lemma 8, $\gamma_{R}^{L}\left(T_{i+1}\right)=\gamma_{R}^{L}\left(T_{i}\right)+8$. Now $\gamma_{R}^{L}\left(T_{i+1}\right)=\left(4 n\left(T_{i}\right)+\ell\left(T_{i}\right)+s\left(T_{i}\right)\right) / 5+8=\left(4\left(n\left(T_{i}\right)+\right.\right.$ $\left.9)+\left(\ell\left(T_{i}\right)+2\right)+\left(s\left(T_{i}\right)+2\right)\right) / 5=\left(4 n\left(T_{i+1}\right)+\ell\left(T_{i+1}\right)+s\left(T_{i+1}\right)\right) / 5$.

By a simple induction on the operations performed to construct a tree $T \in \mathcal{T}$ and Lemma 10 we obtain the following.
Lemma 11. For any tree $T \in \mathcal{T}$ of order $n \geq 2$ with ℓ leaves and support vertices, $\gamma_{R}^{L}(T)=(4 n+\ell+s) / 5$.
Theorem 12. For a tree T of order $n \geq 2$ with ℓ leaves and s support vertex, $\gamma_{R}^{L}(T)=(4 n+\ell+s) / 5$ if and only if $T=K_{1, n-1}$ or $T \in \mathcal{T}$.
Proof. We use an induction on the order n of a tree $T \neq K_{1, n-1}$ with ℓ leaves, s support vertices and $\gamma_{R}^{L}(T)=(4 n+\ell+s) / 5$ to show that $T \in \mathcal{T}$. Since $T \neq K_{1, n-1}$, for the basic step consider a path P_{4}, and note that $P_{4} \in \mathcal{T}$. Assume that any tree T of order $n^{\prime}<n$, with ℓ^{\prime} leaves, s^{\prime} support vertices and $\gamma_{L}\left(T^{\prime}\right)=\left(4 n^{\prime}+\ell^{\prime}+s^{\prime}\right) / 5$ belongs to \mathcal{T}. Let $n=n(T) \geq 5$.

Assume that T has a support vertex u with $\operatorname{deg}(u) \geq 3$. Let v be a leaf adjacent to u, and $T^{\prime}=T-v$. We can easily see that $\gamma_{R}^{L}(T)=\gamma_{R}^{L}\left(T^{\prime}\right)+1$. If u is not a strong support vertex, then $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+1=(4(n-1)+\ell-1+$ $s-1) / 5+1<(4 n+\ell+s) / 5$, a contradiction. Thus u is a strong support vertex. Then $\gamma_{R}^{L}\left(T^{\prime}\right)=\gamma_{R}^{L}(T)-1=(4 n+\ell+s) / 5-1=(4(n-1)+(\ell-1)+s) / 5=$ $\left(4 n\left(T^{\prime}\right)+\ell\left(T^{\prime}\right)+s\left(T^{\prime}\right)\right) / 5$. By the inductive hypothesis, $T^{\prime} \in \mathcal{T}$. Hence T is obtained from T^{\prime} by Operation \mathcal{O}_{1}. Thus we assume that the following claim holds.

Claim 1. Any support vertex of T is of degree two.
We root T at a leaf x_{0} of a diametrical path $x_{0} x_{1} \cdots x_{d}$ from x_{0} to a leaf x_{d} farthest from x_{0}. Clearly, $d \geq 3$. Since $n>4$ and T has no strong support vertex,
we find that $d \geq 4$. Clearly, $\operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{d-1}\right)=2$. Assume that $d=4$. If $\operatorname{deg}\left(x_{2}\right)=2$ then $T=P_{5}$, and $\gamma_{R}^{L}(T)=4<(4 n+\ell+s) / 5$, a contradiction. Thus $\operatorname{deg}\left(x_{2}\right)>2$. By Claim 1, x_{2} is not a support vertex. Then T has $\operatorname{deg}\left(x_{2}\right)$ support vertices of degree two, and we can see that $\left(L(T) \cup\left\{x_{2}\right\}, \emptyset, S(T)\right)$ is an LRDF for T, implying that $\gamma_{R}^{L}(T) \leq 2 s<(4 n+\ell+s) / 5$, since $n=2 s+1$ and $\ell=s$. This is a contradiction. Thus $d \geq 5$.

We show that $\operatorname{deg}\left(x_{d-2}\right)=2$. Assume that $3 \leq \operatorname{deg}\left(x_{d-2}\right)=k+1$. By Claim $1, x_{d-2}$ is not a support vertex. Thus any child of x_{d-2} is a support vertex of degree two. Let $T^{\prime}=T-T_{x_{d-2}}$, and $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}^{L}\left(T^{\prime}\right)$-function. Then $h=\left(V_{0} \cup S\left(T_{x_{d-2}}\right) \cup\left\{x_{d-2}\right\}, V_{1}, V_{2} \cup S\left(T_{x_{d-2}}\right)\right)$ is an LRDF for T, implying by Theorem 9 that $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+2 k \leq(4(n-2 k-1)+(\ell-k+1)+(s-k+$ $1)) / 5+2 k<(4 n+\ell+s) / 5$, a contradiction. Thus $\operatorname{deg}\left(x_{d-2}\right)=2$.

We next show that $\operatorname{deg}\left(x_{d-3}\right)=2$. Suppose that $\operatorname{deg}\left(x_{d-3}\right) \geq 3$. By Claim $1, x_{d-3}$ is not a support vertex. If there is a leaf v of $T_{x_{d-3}}$ different from x_{d} at distance three from x_{d-3}, then any internal vertex in the path from v to x_{d-3} is of degree two, since v plays the same role of x_{d}. Then any child of x_{d-3} is a support vertex of degree two or is a vertex of degree two and adjacent to a support vertex of degree two. Let k_{1} be the number of leaves of $T_{x_{d-3}}$ at distance three from x_{d-3} and k_{2} be the number of leaves of $T_{x_{d-3}}$ at distance two from x_{d-3}. Note that $\operatorname{deg}\left(x_{d-3}\right)=k_{1}+k_{2}+1$. Assume that $\operatorname{deg}\left(x_{d-4}\right) \geq 3$. Let $T^{\prime}=T-T_{x_{d-3}}$, and let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}^{L}\left(T^{\prime}\right)$-function. If $k_{2}=0$ then $h=\left(V_{0} \cup V\left(T_{x_{d-2}}\right)-\left(S\left(T_{x_{d-3}}\right) \cup\left\{x_{d-3}\right\}\right), V_{1}, V_{2} \cup S\left(T_{x_{d-3}}\right) \cup\left\{x_{d-3}\right\}\right)$ is an LRDF for T, implying by Theorem 9 that $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+2 k_{1}+2<(4 n+\ell+s) / 5$, a contradiction. Thus assume that $k_{2}>0$. Let u be a leaf at distance two from x_{d-3} and v be the father of u. Then $h=\left(V_{0} \cup V\left(T_{x_{d-2}}\right)-\left(S\left(T_{x_{d-3}}-\right.\right.\right.$ $\left.\left.\{v\}) \cup\left\{x_{d-3}, u\right\}\right), V_{1} \cup\{u\}, V_{2} \cup S\left(T_{x_{d-3}}-\{v\}\right) \cup\left\{x_{d-3}\right\}\right)$ is an LRDF for T, implying by Theorem 9 that $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+2 k_{1}+2 k_{2}+1<(4 n+\ell+s) / 5$, a contradiction. We deduce that $\operatorname{deg}\left(x_{d-4}\right)=2$. Assume that $k_{2}=0$. Let $T^{\prime}=T-T_{x_{d-4}}$, and let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}^{L}\left(T^{\prime}\right)$-function. Then $h=\left(V_{0} \cup\right.$ $\left.V\left(T_{x_{d-2}}\right)-S\left(T_{x_{d-4}}\right), V_{1}, V_{2} \cup S\left(T_{x_{d-4}}\right)\right)$ is an LRDF for T, implying by Theorem 9 that $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+2 k_{1}+2 k_{2}+2<(4 n+\ell+s) / 5$, a contradiction. Thus assume that $k_{2}>0$. Let $T^{\prime}=T-T_{x_{d-3}}$, and let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}^{L}\left(T^{\prime}\right)$-function. Let u be a leaf at distance two from x_{d-3} and v be the father of u. Then $h=$ $\left(V_{0} \cup V\left(T_{x_{d-2}}\right)-\left(S\left(T_{x_{d-3}}-\{v\}\right) \cup\left\{x_{d-3}, u\right\}\right), V_{1} \cup\{u\}, V_{2} \cup S\left(T_{x_{d-3}}-\{v\}\right) \cup\left\{x_{d-3}\right\}\right)$ is an LRDF for T, implying by Theorem 9 that $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+2 k_{1}+2 k_{2}+1<$ $(4 n+\ell+s) / 5$, a contradiction. We conclude that $\operatorname{deg}\left(x_{d-3}\right)=2$.

Assume that $\operatorname{deg}\left(x_{d-4}\right)=2$. If $\operatorname{deg}\left(x_{d-5}\right) \geq 3$, then let $T^{\prime}=T-T_{x_{d-4}}$ and $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}^{L}\left(T^{\prime}\right)$-function. Then $h=\left(V_{0} \cup\left\{x_{d}, x_{d-2}, x_{d-4}\right\}, V_{1}, V_{2} \cup\right.$ $\left.\left\{x_{d-1}, x_{d-3}\right\}\right)$ is a LRDF function for T. Hence $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+4<(4 n+\ell+$ $s) / 5$, a contradiction. Thus $\operatorname{deg}\left(x_{d-5}\right)=2$. Since $\gamma_{R}^{L}\left(P_{7}\right)=6<(4(7)+2+2) / 5$, we find that $\operatorname{deg}\left(x_{d-6}\right) \geq 2$. Since $\gamma_{R}^{L}\left(P_{8}\right)=7<(4(8)+2+2) / 5$, we find
that $\operatorname{deg}\left(x_{d-7}\right) \geq 2$. Thus x_{d-6} is not a support vertex. By Lemma $7, \gamma_{R}^{L}\left(T^{\prime}\right)=$ $\gamma_{R}^{L}(T)-4=(4 n+\ell+s) / 5-4=(4(n-5)+\ell+s) / 5=\left(4 n\left(T^{\prime}\right)+\ell\left(T^{\prime}\right)+s\left(T^{\prime}\right)\right) / 5$. By the inductive hypothesis, $T^{\prime} \in \mathcal{T}$. Now T is obtained from T^{\prime} by Operation \mathcal{O}_{2}.

Next assume that $\operatorname{deg}\left(x_{d-4}\right) \geq 3$. By Claim $1, x_{d-4}$ is not a support vertex. Suppose that there is a leaf v of $T_{x_{d-4}}$ at distance two from x_{d-4}. Let u be the father of v. Clearly, $\operatorname{deg}(u)=2$. Let $T^{\prime}=T-\{u, v\}$. Suppose that there is a $\gamma_{R}^{L}\left(T^{\prime}\right)$ function $f=\left(V_{0}, V_{1}, V_{2}\right)$ with $f\left(x_{d-4}\right)=2$ and $p n\left(x_{d-4}, V_{0}\right)=\emptyset$. Then $\left(V_{0} \cup\{u\}, V_{1} \cup\{v\}, V_{2}\right)$ is an LRDF for T, and so $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+$ $1<(4 n+\ell+s) / 5$, a contradiction. Thus there is no $\gamma_{R}^{L}\left(T^{\prime}\right)$ function $f=$ $\left(V_{0}, V_{1}, V_{2}\right)$ with $f\left(x_{d-4}\right)=2$ and $p n\left(x_{d-4}, V_{0}\right)=\emptyset$. Suppose that there is a $\gamma_{R}^{L}\left(T^{\prime}\right)$ function $f=\left(V_{0}, V_{1}, V_{2}\right)$ with $f\left(x_{d-4}\right)=1$, and $N\left(x_{d-4}\right) \cap V_{2} \neq \emptyset$. Then $\left(V_{0} \cup\left\{v, x_{d-4}\right\}, V_{1}-\left\{x_{d-4}\right\}, V_{2} \cup\{u\}\right)$ is an LRDF for T, and so $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+$ $1<(4 n+\ell+s) / 5$, a contradiction. Thus x_{d-4} is a special vertex of T^{\prime}. Clearly, $\gamma_{R}^{L}\left(T^{\prime}\right)+1 \leq \gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+2$. Suppose that $\gamma_{R}^{L}(T)=\gamma_{R}^{L}\left(T^{\prime}\right)+1$. Let h be a $\gamma_{R}^{L}(T)$-function. Assume that $h(u)=2$. Clearly, we may assume that $h(v)=0$. If $h\left(x_{d-4}\right) \neq 0$, then $\left.h\right|_{V\left(T^{\prime}\right)}$ is an LRDF for T^{\prime} of weight less than $\gamma_{R}^{L}\left(T^{\prime}\right)$, a contradiction. Thus $h\left(x_{d-4}\right)=0$. Since h is an LRDF for T, there is a vertex $w \in N\left(x_{d-4}\right)-\{u\}$ such that $h(w)=2$. Now h^{\prime} defined on $V\left(T^{\prime}\right)$ by $h^{\prime}\left(x_{d-4}\right)=1$ and $h^{\prime}(x)=h(x)$ otherwise, is an LRDF for T^{\prime}. Clearly, that h^{\prime} is a $\gamma_{R}^{L}\left(T^{\prime}\right)$-function. This is a contradiction, since x_{d-4} is a special vertex of T^{\prime}. If $h(u)=1$, then $h(v)=1$ and we can replace $h(u)$ by 2 and $h(v)$ by 0 , and as before, get a contradiction. Thus $h(u)=0$. If $h(v)=2$, then we replace $h(u)$ by 2 and $h(v)$ by 0 , and as before, get a contradiction. Thus $h(v)=1$, and so $h\left(x_{d-4}\right)=2$. Thus $\left.h\right|_{V\left(T^{\prime}\right)}=\left(V_{0}, V_{1}, V_{2}\right)$ is a $\gamma_{R}^{L}\left(T^{\prime}\right)$-function with $p n\left(x_{d-4}, V_{0}\right)=\emptyset$. This is a contradiction, since x_{d-4} is a special vertex of T^{\prime}. Thus $\gamma_{R}^{L}(T)=\gamma_{R}^{L}\left(T^{\prime}\right)+2$. Now $\gamma_{R}^{L}\left(T^{\prime}\right)=\gamma_{R}^{L}(T)-2=(4 n+\ell+s) / 5-2=(4(n-2)+\ell-1+s-1) / 5=$ $\left(4 n\left(T^{\prime}\right)+\ell\left(T^{\prime}\right)+s\left(T^{\prime}\right)\right) / 5$. By the inductive hypothesis, $T^{\prime} \in \mathcal{T}$. Thus T is obtained from T^{\prime} by Operation \mathcal{O}_{3}.

Now, we assume that any leaf of $T_{x_{d-4}}$ has distance three or four from x_{d-4}. If there is a leaf v of $T_{x_{d-4}}$ at distance four from x_{d-4}, then any internal vertex in the path from v to x_{d-4} is of degree two, since v plays the role of x_{d}. Moreover, by Claim 1, if v is a leaf of $T_{x_{d-4}}$ at distance three from x_{d-4}, then any internal vertex in the path from v to x_{d-4} is of degree two. Let k_{1} be the number of leaves of $T_{x_{d-4}}$ at distance four from x_{d-4} and k_{2} be the number of leaves of $T_{x_{d-3}}$ at distance three from x_{d-4}. Note that $\operatorname{deg}\left(x_{d-4}\right)=k_{1}+k_{2}+1$. Suppose that $\operatorname{deg}\left(x_{d-5}\right)=2$. Let $T^{\prime}=T-T_{x_{d-5}}$ and $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}^{L}\left(T^{\prime}\right)$-function. Then $h=\left(V_{0} \cup W, V_{1} \cup Z, V_{2} \cup U\right)$ is a LRDF for T, where W is the set of vertices of $T_{x_{d-4}}$ at distance one or three of x_{d-4}, Z is the set of vertices at distance four from x_{d-4}, and U contains x_{d-4} and all vertices at distance two from x_{d-4}. Hence $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+3 k_{1}+2 k_{2}+2<(4 n+\ell+s) / 5$, a contradiction. Thus $\operatorname{deg}\left(x_{d-5}\right) \geq 3$. Let $T^{\prime}=T-T_{x_{d-4}}$ and $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}^{L}\left(T^{\prime}\right)$-function.

Then $h=\left(V_{0} \cup W, V_{1} \cup Z, V_{2} \cup U\right)$ is a $\gamma_{R}^{L}(T)$-function, where W is the set of vertices at distance one or three of x_{d-4}, Z is the set of vertices at distance four from x_{d-4}, and U contains x_{d-4} and vertices at distance two from x_{d-4}. Hence $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}\right)+3 k_{1}+2 k_{2}+2$. If $k_{2} \neq 0$ or $k_{1} \geq 3$, then $\gamma_{R}^{L}(T) \leq$ $\gamma_{R}^{L}\left(T^{\prime}\right)+3 k_{1}+2 k_{2}+2<(4 n+\ell+s) / 5$, a contradiction. Thus $k_{2}=0$ and $k_{1}=2$. By Lemma $8, \gamma_{R}^{L}(T)=\gamma_{R}^{L}\left(T^{\prime}\right)+8$. Thus $\gamma_{R}^{L}\left(T^{\prime}\right)=\gamma_{R}^{L}(T)-8=(4 n+\ell+s) / 5-8=$ $(4(n-9)+(\ell-2)+(s-2)) / 5=\left(4 n\left(T^{\prime}\right)+\ell\left(T^{\prime}\right)+s\left(T^{\prime}\right)\right) / 5$. By the inductive hypothesis, $T^{\prime} \in \mathcal{T}$. Suppose $\gamma_{R}^{L}\left(T^{\prime}-x_{d-5}\right)<\gamma_{R}^{L}\left(T^{\prime}\right)$. Let g be a $\gamma_{R}^{L}\left(T^{\prime}-x_{d-5}\right)$ function. We extend g to an LRDF for T by assigning 0 to x_{d-5} and the vertices of $T_{x_{d-4}}$ at distance one or three from $x_{d-4}, 2$ to x_{d-4} and the vertices of $T_{x_{d-4}}$ at distance two. Thus $\gamma_{R}^{L}(T) \leq \gamma_{R}^{L}\left(T^{\prime}-x_{d-5}\right)+8<\gamma_{R}^{L}\left(T^{\prime}\right)+8<(4 n+\ell+s) / 5$, a contradiction. Hence $\gamma_{R}^{L}\left(T^{\prime}-x_{d-5}\right) \geq \gamma_{R}^{L}\left(T^{\prime}\right)$. Now T is obtained from T^{\prime} by Operation \mathcal{O}_{4}. The converse follows by Lemma 11.

Acknowledgements

The authors would like to thank both referees for their careful review of the paper.

References

[1] M. Adabi, E. Ebrahimi Targhi, N. Jafari Rad and M. Saied Moradi, Properties of independent Roman domination in graphs, Australas. J. Combin. 52 (2012) 11-18.
[2] H.A. Ahangar, M.A. Henning, V. Samodivkin and I.G. Yero, Total Roman domination in graphs, manuscript (2014).
[3] H.A. Ahangar, M.A. Henning, C. Löwenstein, Y. Zhao and V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim. 27 (2014) 241-255. doi:10.1007/s10878-012-9500-0
[4] M. Blidia, M. Chellali, F. Maffray, J. Moncel and A. Semri, Locating-domination and identifying codes in trees, Australas. J. Combin. 39 (2007) 219-232.
[5] M. Blidia, O. Favaron and R. Lounes, Locating-domination, 2-domination and independence in trees, Australas. J. Combin. 42 (2008) 309-319.
[6] M. Chellali, On locating and differentiating-total domination in trees, Discuss. Math. Graph Theory 28 (2008) 383-392. doi:10.7151/dmgt. 1414
[7] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A.A. McRae, Roman 2-domination, Discrete Appl. Math. 204 (2016) 22-28. doi:10.1016/j.dam.2015.11.013
[8] M. Chellali and N. Jafari Rad, Locating-total domination critical graphs, Australas. J. Combin. 45 (2009) 227-234.
[9] X.G. Chen and M.Y. Sohn, Bounds on the locating-total domination number of a tree, Discrete Appl. Math. 159 (2011) 769-773.
doi:10.1016/j.dam.2010.12.025
[10] E.J. Cockayne, Paul A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11-22. doi:10.1016/j.disc.2003.06.004
[11] F. Foucaud, M.A. Henning, C. Löwenstein and T. Sass, Locating-dominating sets in twin-free graphs, Discrete Appl. Math. 200 (2016) 52-58. doi:10.1016/j.dam.2015.06.038
[12] T.W. Haynes, M.A. Henning and J. Howard, Locating and total dominating sets in trees, Discrete Appl. Math. 154 (2006) 1293-1300. doi:10.1016/j.dam.2006.01.002
[13] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[14] M.A. Henning and N. Jafari Rad, Locating-total domination in graphs, Discrete Appl. Math. 160 (2012) 1986-1993.
doi:10.1016/j.dam.2012.04.004
[15] M.A. Henning and C. Löwenstein, Locating-total domination in claw-free cubic graphs, Discrete Math. 312 (2012) 3107-3116. doi:10.1016/j.disc.2012.06.024
[16] N. Jafari Rad, H. Rahbani and L. Volkmann, Locating Roman domination in graphs, manuscript (2015).
[17] K. Kammerling and L. Volkmann, Roman k-domination in graphs, J. Korean Math. Soc. 46 (2009) 1309-1318. doi:10.4134/JKMS.2009.46.6.1309
[18] J.L. Sewell and P.J. Slater, A sharp lower bound for locating-dominating sets in trees, Australas. J. Combin. 60 (2014) 136-149.
[19] C.S. ReVelle and K.E. Rosing, Defendens imperium Romanum: a classical problem in military strategy, Amer Math. Monthly 107 (2000) 585-594. doi:10.2307/2589113
[20] P. Roushini Leely Pushpam and T.N.M. Nalini Mai, Edge Roman domination in graphs, J. Combin. Math. Combin. Comput. 69 (2009) 175-182.
[21] P.J. Slater, Dominating and location in acyclic graphs, Networks 17 (1987) 55-64. doi:10.1002/net. 3230170105
[22] P.J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci. 22 (1988) 445-455.
[23] S.J. Seo and P.J. Slater, Open neighborhood locating-dominating sets, Australas. J. Combin. 46 (2010) 109-120.
[24] I. Stewart, Defend the Roman Empire!, Sci. Amer. 281 (1999) 136-139. doi:10.1038/scientificamerican1299-136

