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Abstract

A Roman dominating function (or just RDF) on a graph G = (V,E) is
a function f : V −→ {0, 1, 2} satisfying the condition that every vertex u
for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2.
The weight of an RDF f is the value f(V (G)) =

∑
u∈V (G) f(u). An RDF

f can be represented as f = (V0, V1, V2), where Vi = {v ∈ V : f(v) = i} for
i = 0, 1, 2. An RDF f = (V0, V1, V2) is called a locating Roman dominating
function (or just LRDF) if N(u) ∩ V2 6= N(v) ∩ V2 for any pair u, v of
distinct vertices of V0. The locating Roman domination number γL

R
(G) is

the minimum weight of an LRDF of G. In this paper, we study the locating
Roman domination number in trees. We obtain lower and upper bounds for
the locating Roman domination number of a tree in terms of its order and
the number of leaves and support vertices, and characterize trees achieving
equality for the bounds.

Keywords: Roman domination number, locating domination number, lo-
cating Roman domination number, tree.
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1. Introduction

In this paper, we continue the study of a variant of Roman dominating func-
tions, namely, locating Roman dominating functions introduced in [16]. We first
present some necessary definitions and notations. For notation and graph theory
terminology not given here, we follow [13]. We consider finite, undirected, and
simple graphs G with vertex set V = V (G) and edge set E = E(G). The number
of vertices of a graph G is called the order of G and is denoted by n = n(G). The
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open neighborhood of a vertex v ∈ V is N(v) = NG(v) = {u ∈ V : uv ∈ E}, and
the degree of v, denoted by degG(v), is the cardinality of its open neighborhood.
A leaf of a tree T is a vertex of degree one, while a support vertex of T is a vertex
adjacent to a leaf. A strong support vertex is a support vertex adjacent to at least
two leaves. In this paper, we denote the set of all strong support vertices of T by
S(T ) and the set of leaves by L(T ). We denote ℓ(T ) = |L(T )| and s(T ) = |S(T )|.
We also denote by L(x) the set of leaves adjacent to a support vertex x, and
denote ℓx = |L(x)|. If T is a rooted tree then for any vertex v we denote by Tv

the subtree rooted at v. A subset S ⊆ V is a dominating set of G if every vertex
in V − S has a neighbor in S. The domination number γ(G) is the minimum
cardinality of a dominating set of G.

The study of locating dominating sets in graphs was pioneered by Slater
[21, 22]. For many problems related to graphs, various types of protection sets are
studied where the objective is to precisely locate an “intruder”. It is considered
that a detection device at a vertex v is able to determine if the intruder is at
v or if it is in N(v), but at which vertex in N(v), it cannot be determined. A
locating-dominating set D ⊆ V (G) is a dominating set with the property that for
each vertex x ∈ V (G)−D the set N(x) ∩D is unique. That is, any two vertices
x, y in V (G) − D are distinguished in the sense that there is a vertex v ∈ D
with |N(v) ∩ {x, y}| = 1. The minimum size of a locating-dominating set for a
graph G is the locating-domination number of G, denoted γL(G). The concept of
locating domination has been considered for several domination parameters, see
for example [4, 5, 6, 8, 9, 11, 12, 14, 15, 18, 23].

For a graph G, let f : V (G) → {0, 1, 2} be a function, and let (V0, V1, V2) be
the ordered partition of V (G) induced by f , where Vi = {v ∈ V (G) : f(v) = i}
for i = 0, 1, 2. There is a 1− 1 correspondence between the functions f : V (G) →
{0, 1, 2} and the ordered partitions (V0, V1, V2) of V (G). So we will write f =
(V0, V1, V2). A function f : V (G) → {0, 1, 2} is a Roman dominating function

(or just RDF) if every vertex u for which f(u) = 0 is adjacent to at least one
vertex v for which f(v) = 2. The weight of an RDF f is w(f) = f(V (G)) =∑

u∈V (G) f(u). The Roman domination number of a graph G, denoted by γR(G),
is the minimum weight of an RDF on G. A function f = (V0, V1, V2) is called a
γR-function (or γR(G)-function when we want to refer f to G), if it is an RDF
and f(V (G)) = γR(G), see [10, 19, 24].

Roman dominating functions with several further conditions have been stud-
ied, for example, among other types, see for example [1, 2, 3, 7, 17, 20].

It is known [10] that if f = (V0, V1, V2) is an RDF in a graph G then V2 is a
dominating set for G[V0∪V2]. Jafari Rad, Rahbani and Volkmann [16] considered
Roman dominating functions f = (V0, V1, V2) with a further condition that for
each vertex x ∈ V0 the set N(x)∩V2 is unique. That is, any two vertices x, y in V0

are distinguished in the sense that there is a vertex v ∈ V2 with |N(v)∩{x, y}| = 1.
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An RDF f = (V0, V1, V2) is called a locating Roman dominating function (or just
LRDF) if N(v) ∩ V2 6= N(u) ∩ V2 for any pair u, v of distinct vertices of V0. The
locating Roman domination number γLR(G) is the minimum weight of an LRDF.
Note that γLR(G) is defined for any graph G, since (∅, V (G), ∅) is an LRDF for G.
We refer to a γLR(G)-function as an LRDF of G with minimum weight. It is shown
in [16] that the decision problem for the locating Roman domination problem is
NP-complete for bipartite graphs and chordal graphs. Moreover, several bounds
and characterizations are given for the locating Roman domination number of a
graph.

In this paper we study the locating Roman domination number in trees. In
Section 2, we show that for any tree T of order n ≥ 2 with ℓ leaves and s support
vertices, γLR(T ) ≥ (2n + (ℓ − s) + 2)/3, and characterize all trees that achieve
equality for this bound. In Section 3, we show that for any tree T of order n ≥ 2,
with l leaves and s support vertices, γLR(T ) ≤ (4n+ l+ s)/5, and characterize all
trees that achieve equality for this bound.

If f = (V0, V1, V2) is a γR(G)-function, then for any vertex v ∈ V2, we define
pn(v, V0) = {u ∈ V0 : N(u)∩V2 = {v}}. The following theorem was proved in [4].

Theorem 1 (Blidia et al. [4]). For any tree T of order n ≥ 2, γL(T ) ≥ ⌈(n +
1)/3⌉.

2. Lower Bound

We begin with the following lemma.

Lemma 2. If T is a tree with ℓ leaves and s support vertices, and f = (V0, V1, V2)
is a γLR(T )-function, then |V1| ≥ ℓ− s.

Proof. For any support vertex x, |L(x)∩V1| ≥ ℓx−1, thus |V1| ≥
∑

x∈S(ℓx−1) =∑
x∈S ℓx −

∑
x∈S 1 = ℓ− s.

Theorem 3. For any tree T of order n ≥ 2 with ℓ leaves and s support vertices,

γLR(T ) ≥ (2n+ (ℓ− s) + 2)/3.

Proof. Let T be a tree of order n, and f = (V0, V1, V2) be a γLR(T )-function.
Let T1, T2, . . . , Tk be the components of T [V0 ∪ V2], and let |V (Ti)| = ni for
i = 1, 2, . . . , k. Let Di = V2∩V (Ti) for i = 1, 2, . . . , k. Clearly, Di is a LDS for Ti,
and so γL(Ti) ≤ |Di|, for i = 1, 2, . . . , k. By Theorem 1, |Di| ≥ γL(Ti) ≥ (ni+1)/3
for i = 1, 2, . . . , k. Hence, (n − |V1| + k)/3 ≤

∑k
i=1 γL(Ti) ≤

∑k
i=1 |Di| = |V2|.

Now since |V1| ≥ ℓ − s by Lemma 2, we conclude that γLR(T ) = |V1| + 2|V2| ≥
|V1|+ (2(n− |V1|+ k))/3 ≥ (2n+ |V1|+ 2k)/3 ≥ (2n+ (ℓ− s) + 2)/3.
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Corollary 4. For any tree T of order n > 2, γLR(T ) ≥ (2n+ 2)/3.

We next aim to characterize trees achieving equality in the bound of Theo-
rem 3. For this purpose for each integer r ≥ 0, we construct a family Tr of trees
as follows.

• Let T0 be the collection of trees T that can be obtained from a sequence
T1, T2, . . . , Tk = T (k ≥ 1) of trees, where T1 = P5, and Ti+1 can be obtained
recursively from Ti by the following operation for 1 ≤ i ≤ k − 1.

Operation O1. Join a support vertex of Ti to a leaf of a path P3.

• For r ≥ 1, let Tr be the class of trees T that can be obtained from a tree
T0 ∈ T0 by adding r leaves to at most r support vertices of T0.

The following lemma plays a key role for the next section.

Lemma 5. Let T be a tree of order n ≥ 3 with γLR(T ) = (2n+ 2)/3. Then

(1) |V1| = 0 for every γLR(T )-function f = (V0, V1, V2).

(2) T has no strong support vertex.

(3) If P = x0 − x1 − · · · − xd is a diametrical path of T, then deg(xd−1) =
deg(xd−2) = 2, and xd−3 is a support vertex.

(4) If P = x0 − x1 − · · · − xd is a diametrical path of T , and T ′ = T −{xd, xd−1,
xd−2}, then γLR(T

′) = (2|V (T ′)|+ 2)/3.

Proof. (1) Suppose that f = (V0, V1, V2) is a γLR(T )-function such that |V1| > 0.
Let v ∈ V1. If v is a leaf then by Corollary 4, we have 2n

3 ≤ γLR(T − v) ≤
w(f) − 1 = (2n − 1)/3, a contradiction. Thus v is not a leaf. Let T1, T2, . . . , Tk

(k ≥ 2) be the components of T − {v}, and |V (Ti)| = ni for i = 1, . . . , k. For
i = 1, . . . , k, since f |V (Ti) is an LRDF for Ti, by Corollary 4 we obtain that
2n+2

3 ≤
∑k

i=1
2ni+2

3 ≤
∑k

i=1 γ
L
R(Ti) ≤ w(f)− 1 = (2n− 1)/3, a contradiction.

(2) The result follows from Lemma 2 and part (1).
(3) By part (2), deg(xd−1) = 2. Let f = (V0, V1, V2) be a γLR(T )-function.

Moreover, by parts (1) and (2) we may assume that f(u) = 0 for any leaf u, and
f(u) = 2 for any support vertex u. Assume that deg(xd−2) ≥ 3. If xd−2 is a
support vertex then replacing f(xd) and f(xd−1) by 1 yields a γLR(T )-function, a
contradiction to part (1). Thus xd−2 is not a support vertex. Then any vertex
of N(xd−2) − {xd−3} is a support vertex of degree two. If deg(xd−2) ≥ 4 then
replacing f(xd) and f(xd−1) by 1 yields an LRDF for T , a contradiction to
part (1). Assume that deg(xd−2) = 3. Observe that f(xd−2) = 0. Let T ′ be
the component of T − xd−2xd−3 that contains xd−3. By Corollary 4, γLR(T

′) ≥
(2(n − 5) + 2)/3. But f |V (T ′) is an LRDF for T ′, and thus (2(n − 5) + 2)/3 ≤

γLR(T
′) ≤ w(f |V (T ′)) = γLR(T ) − 4 = (2n + 2)/3 − 4, a contradiction. Thus

deg(xd−2) = 2. Since f(xd−1) = 2, from part (1) we obtain that f(xd−2) = 0,
and thus f(xd−3) = 2.
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Suppose now that xd−3 is not a support vertex. Assume that deg(xd−3) = 2.
Clearly, we may assume that f(xd−4) = 0, since otherwise replacing f(xd) and
f(xd−1) by 1 yields an γLR(T )-function, a contradiction. By the same reason,
we obtain that N(xd−4) ∩ V2 = {xd−3}. So xd−4 is neither a support vertex nor
adjacent to a support vertex. Let T0, T1, T2, . . . , Tl be the components of T−xd−4,
where T0 contains xd−3. Clearly, f |V (Ti) is an LRDF for Ti, and by Corollary 4,

w(f |V (Ti)) ≥ γLR(Ti) ≥ (2|V (Ti)|+ 2)/3 for i = 1, 2, . . . , l. Thus

(2n− 8)/3 ≤ (2(n− 5) + 2l)/3 =
l∑

i=1

(2|V (Ti)|+ 2)/3 ≤
l∑

i=1

γLR(Ti)

≤
l∑

i=1

w(f |V (Ti)) = w(f)− 4 = (2n+ 2)/3− 4 = (2n− 10)/3,

a contradiction. Thus deg(xd−3) ≥ 3. Let a1 be a leaf of T such that the
d(xd−3, a1) is minimum and the shortest path from a1 to xd−3 does not intersect
P . Clearly, d(xd−3, a1) ∈ {2, 3}. Assume that d(xd−3, a1) = 2. Let b1 ∈ N(a1) ∩
N(xd−3). Thus deg(b1) = 2 by part (2). Then f(b1) = 2, and so replacing f(a1)
and f(b1) by 1 yields a γLR(T )-function, a contradiction. Thus d(xd−3, a) = 3.
Therefore, any vertex of N(xd−3) − {xd−4} has degree two and is adjacent to a
support vertex of degree two. Let N(xd−3)− {xd−4, xd−2} = {c1, . . . , ck}, where
k = deg(xd−3) − 2. Then ci is adjacent to a support vertex bi with deg(bi) = 2,
for i = 1, 2, . . . , k. Let ai be the leaf adjacent to bi for i = 1, 2, . . . , k. Then
f(bi) = 2 and f(ai) = f(ci) = 0 for i = 1, 2, . . . , k. Note that we may assume that
f(xd−4) = 0, since otherwise replacing f(xd−1) and f(xd) by 1 yields a γLR(T )-
function, a contradiction. Thus xd−4 is neither a support vertex nor adjacent to a
support vertex. By the same reason, N(xd−4)∩V2 = {xd−3}. Let T0, T1, T2, . . . , Tl

be the components of T − xd−4, where T0 contains xd−3. Clearly, f |V (Ti) is an

LRDF for Ti, and by Corollary 4, w(f |V (Ti)) ≥ γLR(Ti) ≥ (2|V (Ti)| + 2)/3 for
i = 1, 2, . . . , l. Thus

(2n− 6k − 8)/3 ≤ 2/3 + 2/3(n− 3k − 5) ≤ 2/3 + 2/3
l∑

i=1

|V (Ti)|

≤
l∑

i=1

(2|V (Ti)|+ 2)/3 ≤
l∑

i=1

w(f |V (Ti)) = w(f)− 2(k + 1)− 2

= (2n+ 2)/3− 2k − 4 = (2n− 6k − 10)/3,

a contradiction.
(4) By part (3), deg(xd−1) = deg(xd−2) = 2 and xd−3 is a support vertex.

Let f = (V0, V1, V2) be a γLR(T )-function. As seen earlier, |V1| = 0, f(xd) =
f(xd−2) = 0 and f(xd−1) = 2. Therefore, f |T ′ is an LRDF for T ′. By Corollary 4,
(2|V (T ′)|+2)/3 ≤ γLR(T

′) ≤ w(f |T ′) = γLR(T )− 2 = (2n+2)/3− 2 = (2|V (T ′)|+
2)/3. Therefore, γLR(T

′) = (2|V (T ′)|+ 2)/3.
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We are now ready to characterize trees achieving equality in the bound of
Theorem 3.

Theorem 6. For a tree T of order n ≥ 2 with ℓ leaves and s support vertices,

γLR(T ) = (2n + (ℓ − s) + 2)/3 if and only if T = K2 or T ∈ Tk for some integer

k ≥ 0.

Proof. Let T 6= K2 be a tree of order n with ℓ leaves and s support vertices. We
proceed with two claims.

Claim 1. γLR(T ) = (2n+ 2)/3 if and only if T ∈ T0.

Proof. Assume that γLR(T ) = (2n + 2)/3. We show by induction on n that
T ∈ T0. For the base step of the induction it is easy to see that P5 is the smallest
tree T for which γLR(T ) = (2n+2)/3. Assume that any tree T ′ of order 5 < n′ < n
and such that γLR(T

′) = (2n′ + 2)/3 belongs to T0. Let P = x0 − x1 − · · · − xd
be a diametrical path of T . By Lemma 5(3), deg(xd−1) = deg(xd−2) = 2, and
xd−3 is a support vertex. Let T1 = T − {xd, xd−1, xd−2}. By Lemma 5(4),
γLR(T1) = (2|V (T1)| + 2)/3. By the inductive hypothesis, T1 ∈ T0. Hence T is
obtained from T1 by Operation O1, and thus T ∈ T0. For the converse it is
sufficient to show that if γLR(Ti) = (2|V (Ti)|+ 2)/3 and Ti+1 is obtained from Ti

by the operation O1, then γLR(Ti+1) = (2|V (Ti+1)| + 2)/3, and then the result
follows by an induction on the number of operations performed to construct a
tree T ∈ T0. Let γLR(Ti) = (2|V (Ti)| + 2)/3, and Ti+1 be obtained from Ti by
joining a support vertex v ∈ V (Ti) to the leaf x of a path P3 : xyz. Let f be a
γLR(Ti)-function. By Lemma 5(1) and (2), we may assume that f(v) = 2. Then
g : V (Ti+1) −→ {0, 1, 2} defined by g(x) = g(z) = 0, g(y) = 2 and g(u) = f(u)
for any u ∈ V (Ti), is an LRDF for Ti+1. By Corollary 4, (2|V (Ti+1)| + 2)/3 ≤
γLR(Ti+1) ≤ w(g) = γLR(T ) + 2 = (2|V (Ti)| + 2)/3 + 2 = (2|V (Ti+1) + 2)/3.
Therefore, γLR(Ti+1) = (2|V (Ti+1)|+ 2)/3. �

Claim 2. γLR(T ) = (2n + (ℓ − s) + 2)/3, with ℓ 6= s, if and only if T ∈ Tk for

some integer k ≥ 1.

Proof. Assume that γLR(T ) = (2n+(ℓ−s)+2)/3, and ℓ 6= s. Let f = (V0, V1, V2)
be a γLR(T )-function. For any support vertex x, f(u) = 1 for at least ℓx−1 leaves
u ∈ N(x) by Lemma 2. Let T ′ be a tree obtained from T by removing ℓx − 1
leaves u of any strong support vertex x with f(u) = 1. Then f |T ′ is a LRDF for
T ′, and so γLR(T

′) ≤ γLR(T )− (l − s) = (2(n− (l − s) + 2))/3 = (2|V (T ′)|+ 2)/3.
Corollary 4 implies that γLR(T

′) = (2|V (T ′)| + 2)/3. Now Claim 1 implies that
T ′ ∈ T0, and so T ∈ Tk, where k = l − s. Conversely, let T ∈ Tk for some integer
k ≥ 1. Thus T is obtained from a tree T ′ ∈ T0 by adding k leaves to at most
k support vertices of T ′. By Claim 1, γLR(T

′) = (2|V (T ′)| + 2)/3. Let f ′ be a
γLR(T

′)-function. We extend f ′ to a LRDF for T by assigning 1 to any vertex of
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V (T ) − V (T ′), and thus γLR(T ) ≤ γLR(T
′) + l − s = (2|V (T ′)| + 2)/3 + l − s =

(2(|V (T ′)| + l − s) + l − s + 2)/3 = (2|V (T )| + (ℓ − s) + 2)/3. Now Theorem 3
implies that γLR(T ) = (2n+ (ℓ− s) + 2)/3. �

Now the proof follows by Claims 1 and 2.

3. Upper Bound

Lemma 7. If T ′ is a tree and T is obtained from T ′ by joining a leaf of T ′ to a

leaf of a path P5, then γLR(T ) = γLR(T
′) + 4.

Proof. Let T be obtained from a tree T ′ by joining a leaf v of T ′ to the leaf
a of a path P5 : abcde. If f = (V0, V1, V2) is a γLR(T

′)-function, then g = (V0 ∪
{a, c, e}, V1, V2 ∪ {b, d}) is an LRDF for T , and so γLR(T ) ≤ γLR(T

′) + 4. Let
h = (V0, V1, V2) be a γLR(T )-function. If a 6∈ V2, then h(a) + h(b) + h(c) + h(d) +
h(e) = 4 and h|V (T ′) is an LRDF for T ′, so γLR(T

′) ≤ γLR(T ) − 4. If a ∈ V2, then

h(a) + h(b) + h(c) + h(d) + h(e) = 5, so γLR(T
′) ≤ w(h|V (T ′)) + 1 = γLR(T ) − 4.

Thus γLR(T ) = γLR(T
′) + 4.

Similarly the following is verified.

Lemma 8. Let T ′ be a tree with a vertex w of degree at least two and γLR(T
′−w) ≥

γLR(T
′). If T is obtained from T ′ by joining w to the center of a path P9, then

γLR(T ) = γLR(T
′) + 8.

Theorem 9. For any tree T of order n ≥ 2, with ℓ leaves and s support vertices,

γLR(T ) ≤ (4n+ ℓ+ s)/5.

Proof. We use an induction on the order n = n(T ) of a tree T . The base step
is obvious for n ≤ 4. Assume that for any tree T ′ of order n′ < n, with ℓ′

leaves and s′ support vertices, γLR(T
′) ≤ (4n′ + ℓ′ + s′)/5. Now consider the

tree T of order n ≥ 5, with ℓ leaves and s support vertices. Assume that T
has a strong support vertex v, and u is a leaf adjacent to v. Let T ′ = T − u.
Clearly, γLR(T ) ≤ γLR(T

′)+1. By the induction hypothesis, γLR(T ) ≤ γLR(T
′)+1 ≤

(4n′+ ℓ′+ s′)/5+1 = (4(n−1)+(l−1)+ s)/5+1 = (4n+ l+ s)/5. Next assume
that T has an edge e = uv with deg(u) ≥ 3 and deg(v) ≥ 3. Let T1 and T2 be the
components of T − e, with u ∈ V (T1) and v ∈ V (T2). Assume that Ti has order
ni, ℓi leaves and si support vertices, for i = 1, 2. By the induction hypothesis,
γLR(T ) ≤ γLR(T1)+γLR(T2) ≤ (4n1+ ℓ1+s1)/5+(4n2+ ℓ2+s2)/5 = (4n+ ℓ+s)/5.
Thus the following claims hold.

Claim 1. T has no strong support vertex.

Claim 2. For each edge e = uv, deg(u) ≤ 2 or deg(v) ≤ 2.
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We root T at a leaf x0 of a diametrical path x0x1 · · ·xd from x0 to a leaf xd
farthest from x0. By Claim 1, d ≥ 3. If d = 3 then T is a double-star, and it can
be easily seen that γLR(T ) = (4n+ ℓ+ s)/5. Thus assume that d ≥ 4.

By Claim 1, deg(xd−1) = 2. Assume that deg(xd−2) ≥ 3. Assume that xd−2

is a support vertex. Let u be the unique leaf adjacent to xd−2. Let T
′ = T−u. By

the inductive hypothesis, γLR(T ) ≤ γLR(T
′)+1 ≤ (4(n−1)+(ℓ−1)+(s−1))/5+1 <

(4n+ ℓ+ s)/5. Thus assume that xd−2 is not a support vertex. Let u be a child
of xd−2 different from xd−1. By Claim 1, deg(u) = 2. Let v be the child of u, and
T ′ = T − {u, v}. By the inductive hypothesis, γLR(T ) ≤ γLR(T

′) + 2 ≤ (4(n − 2)
+(ℓ− 1) + s− 1)/5 + 2 = (4n+ ℓ+ s)/5. We thus assume that deg(xd−2) = 2.

Assume that deg(xd−3) ≥ 3. Assume that xd−3 is a support vertex. Let u be
the unique leaf adjacent to xd−3. Let T ′ = T − u. By the inductive hypothesis,
γLR(T ) ≤ γLR(T

′) + 1 ≤ (4(n− 1) + (ℓ− 1) + s− 1)/5 + 1 < (4n+ ℓ+ s)/5. Thus
assume that xd−3 is not a support vertex. Let u be a child of xd−3 different
from xd−2. Assume that u is a support vertex. By Claim 1, deg(u) = 2. Let v
be the child of u. Let T ′ = T − {u, v}. By the inductive hypothesis, γLR(T ) ≤
γLR(T

′)+2 ≤ (4(n−2)+(ℓ−1)+s−1)/5+2 = (4n+ ℓ+s)/5. Thus assume that
u is not a support vertex. Thus any child of u is a support vertex of degree two
by Claim 1. Furthermore, since deg(xd−3) ≥ 3, we deduce that d ≥ 6, and this
implies that xd−5 6= x0. Let deg(xd−3) = k + 1. By Claim 2, deg(xd−4) = 2. Let
T ′ = T −Txd−4

. Assume that T ′ has n′ vertices, ℓ′ leaves and s′ support vertices.
By the inductive hypothesis, γLR(T

′) ≤ (4n′ + ℓ′ + s′)/5. But ℓ′ ≤ ℓ − k + 1,
s′ ≤ s− k + 1, and n′ = n− 3k − 2. Let f be a γLR(T

′)-function. We extend f to
an LRDF for T by assigning 2 to xd−3 and any vertex of Txd−4

at distance two
from xd−3, and 0 to any other vertex of Txd−4

. Thus γLR(T ) ≤ γLR(T
′) + 2k + 2 ≤

(4n′+ ℓ′+ s′)/5+2k+2 ≤ (4n+ ℓ+ s− 4k+4)/5 ≤ (4n+ ℓ+ s)/5. Thus assume
that deg(xd−3) = 2.

Assume that deg(xd−4) ≥ 3. As before, we can assume that xd−4 is not a
support vertex, and is not adjacent to a support vertex of degree two. By Claim
2, deg(xd−5) = 2, and also any child of xd−4 has degree two. If there is a leaf
u 6= xd of Txd−5

at distance four from xd−4 then any internal vertex in the path
from u to xd−4 has degree two, since u plays the same role of xd. Thus any
leaf u of Txd−4

is at distance 3 or 4 from Xd−4, and any internal vertex in the
path from u to xd−4 has degree two. Let k1 be the number of leaves of Txd−5

at distance four from xd−4, and k2 be the number of leaves of Txd−5
at distance

three from xd−4. Then deg(xd−4) = k1 + k2 + 1. Since deg(xd−4) ≥ 3, we obtain
that d ≥ 7, and this implies that xd−6 6= x0. Let T ′ = T − Txd−5

. Assume that
T ′ has n′ vertices, ℓ′ leaves and s′ support vertices. By the inductive hypothesis,
γLR(T

′) ≤ (4n′ + ℓ′ + s′)/5. But ℓ′ ≤ ℓ − k1 − k2 + 1, s′ ≤ s − k1 − k2 + 1, and
n′ = n − 4k1 − 3k2 − 2. Let f be a γLR(T

′)-function. We extend f to an LRDF
for T by assigning 2 to xd−4 and any vertex of Txd−5

at distance two from xd−4,
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1 to any vertex of Txd−5
at distance four from xd−4, and 0 to any other vertex of

Txd−5
. Thus γLR(T ) ≤ γLR(T

′)+ 3k1+2k2+2 ≤ (4n′+ ℓ′+ s′)/5+3k1+2k2+2 ≤
(4n+ ℓ+ s− 3k1 − 4k2 + 4)/5 < (4n+ ℓ+ s)/5.

Thus assume that deg(xd−4) = 2. Let T ′ = T −Txd−5
. Assume that T ′ has n′

vertices, ℓ′ leaves and s′ support vertices. By the inductive hypothesis, γLR(T
′) ≤

(4n′+ℓ′+s′)/5. But ℓ′ ≤ ℓ, s′ ≤ s, and n′ = n−5. Let f be a γLR(T
′)-function. We

extend f to an LRDF for T by assigning 2 to xd−3 and xd−1, and 0 to xd−4, xd−2

and xd. Thus γ
L
R(T ) ≤ γLR(T

′) + 4 ≤ (4n′ + ℓ′ + s′)/5 + 4 ≤ (4n+ ℓ+ s)/5.

We next aim to characterize trees achieving equality for the bound of Theo-
rem 3. A vertex w of degree at least two in a tree T is called a special vertex if
the following conditions hold:

(1) If f(w) = 2 for a γLR(T )-function h = (V0, V1, V2), then pn(w, V0) 6= ∅.
(2) If f(w) = 1 for a γLR(T )-function h = (V0, V1, V2), then N(w) ∩ V2 = ∅.

Let T be the collection of trees T that can be obtained from a sequence T1, T2,
. . . , Tk = T (k ≥ 1) of trees, where T1 = P4, and Ti+1 can be obtained recursively
from Ti by one of the following operations for 1 ≤ i ≤ k − 1.

Operation O1. Assume that w is a support vertex of Ti. Then Ti+1 is obtained
from Ti by adding a leaf to w.

Operation O2. Assume that w is a leaf of Ti. Then Ti+1 is obtained from Ti

by joining w to a leaf of a path P5.

Operation O3. Assume that w is a specialvertex of Ti. Then Ti+1 is obtained
from Ti by joining w to a leaf of a path P2.

Operation O4. Assume that w is a vertex of Ti of degree at least two and
γLR(Ti − w) ≥ γLR(Ti). Then Ti+1 is obtained from Ti by joining w to the center
of a path P9.

Lemma 10. If γLR(Ti) = (4n(Ti)+ℓ(Ti)+s(Ti))/5, and Ti+1 is obtained from Ti by

Operation Oj, for j = 1, 2, 3, 4, then γLR(Ti+1) = (4n(Ti+1)+ℓ(Ti+1)+s(Ti+1))/5.

Proof. Let γLR(Ti) = (4ni + ℓi − 2 + si)/5, where ni = n(Ti), ℓi = ℓ(Ti) and
si = s(Ti). Assume that Ti+1 is obtained from Ti by Operation O1. Let Ti+1

be obtained from Ti by adding a leaf v to a support vertex w of Ti. Then
γLR(Ti+1) ≤ γLR(Ti) + 1. Let f = (V0, V1, V2) be a γLR(Ti+1)-function, without loss
of generality, we may assume that v ∈ V1. Then f = (V0, V1−{v}, V2) is an LRDF
for Ti, implying that γLR(Ti) ≤ γLR(Ti+1) − 1. Thus γLR(Ti+1) = γTR(Ti) + 1. Now
γLR(Ti+1) = (4n(Ti)+ℓ(Ti)+s(Ti))/5+1 = (4(n(Ti)+1)+(ℓ(Ti)+1)+s(Ti))/5 =
(4n(Ti+1) + ℓ(Ti+1) + s(Ti+1))/5.

Next assume that Ti+1 is obtained from Ti by Operation O2. By Lemma 7,
γLR(Ti+1) = γLR(Ti)+4. Now γLR(Ti+1) = (4n(Ti)+ℓ(Ti)+s(Ti))/5+4 = (4(n(Ti)+
5) + ℓ(Ti) + s(Ti))/5 = (4n(Ti+1) + ℓ(Ti+1) + s(Ti+1))/5.
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Now assume that Ti+1 is obtained from Ti by Operation O3. Let Ti+1 be
obtained from Ti by joining a special vertex v of Ti to the leaf a of a path P2 : ab.
Suppose that γLR(Ti+1) = γLR(Ti)+ 1. Let h be a γLR(Ti+1)-function. Assume that
h(a) = 2. Clearly, we may assume that h(b) = 0. If h(v) 6= 0, then h|V (Ti) is an

LRDF for Ti of weight less than γLR(Ti), a contradiction. Thus h(v) = 0. Since
h is an LRDF for Ti+1, there is a vertex w ∈ N(v) − {a} such that h(w) = 2.
Now h′ defined on V (Ti) by h′(v) = 1 and h′(x) = h(x) otherwise, is an LRDF
for Ti. Clearly, h′ is a γLR(Ti)-function. This is a contradiction, since v is a
special vertex of Ti. If h(a) = 1, then h(b) = 1 and we can replace h(a) by 2
and h(b) by 0, and as before, get a contradiction. Thus h(a) = 0. If h(b) = 2,
then we replace h(a) by 2 and h(b) by 0, and as before, get a contradiction.
Thus h(b) = 1, and so h(v) = 2. Thus h|V (Ti) = (V0, V1, V2) is a γLR(Ti)-function
with pn(v, V0) = ∅. This is a contradiction, since v is a special vertex of Ti. Thus
γLR(Ti+1) = γLR(Ti)+2. Now γLR(Ti+1) = (4(n(Ti)+2)+(ℓ(Ti)+1)+(s(Ti)+1))/5 =
(4n(Ti+1) + ℓ(Ti+1) + s(Ti+1))/5.

Finally assume that Ti+1 is obtained from Ti by Operation O4. By Lemma 8,
γLR(Ti+1) = γLR(Ti)+8. Now γLR(Ti+1) = (4n(Ti)+ℓ(Ti)+s(Ti))/5+8 = (4(n(Ti)+
9) + (ℓ(Ti) + 2) + (s(Ti) + 2))/5 = (4n(Ti+1) + ℓ(Ti+1) + s(Ti+1))/5.

By a simple induction on the operations performed to construct a tree T ∈ T
and Lemma 10 we obtain the following.

Lemma 11. For any tree T ∈ T of order n ≥ 2 with ℓ leaves and s support

vertices, γLR(T ) = (4n+ ℓ+ s)/5.

Theorem 12. For a tree T of order n ≥ 2 with ℓ leaves and s support vertex,

γLR(T ) = (4n+ ℓ+ s)/5 if and only if T = K1,n−1 or T ∈ T .

Proof. We use an induction on the order n of a tree T 6= K1,n−1 with ℓ leaves,
s support vertices and γLR(T ) = (4n + ℓ + s)/5 to show that T ∈ T . Since
T 6= K1,n−1, for the basic step consider a path P4, and note that P4 ∈ T .
Assume that any tree T of order n′ < n, with ℓ′ leaves, s′ support vertices and
γL(T

′) = (4n′ + ℓ′ + s′)/5 belongs to T . Let n = n(T ) ≥ 5.
Assume that T has a support vertex u with deg(u) ≥ 3. Let v be a leaf

adjacent to u, and T ′ = T − v. We can easily see that γLR(T ) = γLR(T
′) + 1. If u

is not a strong support vertex, then γLR(T ) ≤ γLR(T
′) + 1 = (4(n − 1) + ℓ − 1 +

s− 1)/5+1 < (4n+ ℓ+ s)/5, a contradiction. Thus u is a strong support vertex.
Then γLR(T

′) = γLR(T ) − 1 = (4n + ℓ + s)/5 − 1 = (4(n − 1) + (ℓ − 1) + s)/5 =
(4n(T ′)+ℓ(T ′)+s(T ′))/5. By the inductive hypothesis, T ′ ∈ T . Hence T is obta-
ined from T ′ by Operation O1. Thus we assume that the following claim holds.

Claim 1. Any support vertex of T is of degree two.

We root T at a leaf x0 of a diametrical path x0x1 · · ·xd from x0 to a leaf xd
farthest from x0. Clearly, d ≥ 3. Since n > 4 and T has no strong support vertex,
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we find that d ≥ 4. Clearly, deg(x1) = deg(xd−1) = 2. Assume that d = 4. If
deg(x2) = 2 then T = P5, and γLR(T ) = 4 < (4n + ℓ + s)/5, a contradiction.
Thus deg(x2) > 2. By Claim 1, x2 is not a support vertex. Then T has deg(x2)
support vertices of degree two, and we can see that (L(T ) ∪ {x2}, ∅, S(T )) is an
LRDF for T , implying that γLR(T ) ≤ 2s < (4n + ℓ + s)/5, since n = 2s + 1 and
ℓ = s. This is a contradiction. Thus d ≥ 5.

We show that deg(xd−2) = 2. Assume that 3 ≤ deg(xd−2) = k+1. By Claim
1, xd−2 is not a support vertex. Thus any child of xd−2 is a support vertex of
degree two. Let T ′ = T − Txd−2

, and f = (V0, V1, V2) be a γLR(T
′)-function. Then

h = (V0 ∪ S(Txd−2
) ∪ {xd−2}, V1, V2 ∪ S(Txd−2

)) is an LRDF for T , implying by
Theorem 9 that γLR(T ) ≤ γLR(T

′) + 2k ≤ (4(n − 2k − 1) + (ℓ − k + 1) + (s − k +
1))/5 + 2k < (4n+ ℓ+ s)/5, a contradiction. Thus deg(xd−2) = 2.

We next show that deg(xd−3) = 2. Suppose that deg(xd−3) ≥ 3. By Claim
1, xd−3 is not a support vertex. If there is a leaf v of Txd−3

different from xd at
distance three from xd−3, then any internal vertex in the path from v to xd−3

is of degree two, since v plays the same role of xd. Then any child of xd−3 is
a support vertex of degree two or is a vertex of degree two and adjacent to a
support vertex of degree two. Let k1 be the number of leaves of Txd−3

at distance
three from xd−3 and k2 be the number of leaves of Txd−3

at distance two from
xd−3. Note that deg(xd−3) = k1 + k2 + 1. Assume that deg(xd−4) ≥ 3. Let
T ′ = T − Txd−3

, and let f = (V0, V1, V2) be a γLR(T
′)-function. If k2 = 0 then

h = (V0∪V (Txd−2
)− (S(Txd−3

)∪{xd−3}), V1, V2∪S(Txd−3
)∪{xd−3}) is an LRDF

for T , implying by Theorem 9 that γLR(T ) ≤ γLR(T
′) + 2k1 + 2 < (4n + ℓ + s)/5,

a contradiction. Thus assume that k2 > 0. Let u be a leaf at distance two
from xd−3 and v be the father of u. Then h = (V0 ∪ V (Txd−2

) − (S(Txd−3
−

{v}) ∪ {xd−3, u}), V1 ∪ {u}, V2 ∪ S(Txd−3
− {v}) ∪ {xd−3}) is an LRDF for T ,

implying by Theorem 9 that γLR(T ) ≤ γLR(T
′) + 2k1 + 2k2 + 1 < (4n + ℓ + s)/5,

a contradiction. We deduce that deg(xd−4) = 2. Assume that k2 = 0. Let
T ′ = T − Txd−4

, and let f = (V0, V1, V2) be a γLR(T
′)-function. Then h = (V0 ∪

V (Txd−2
)−S(Txd−4

), V1, V2∪S(Txd−4
)) is an LRDF for T , implying by Theorem 9

that γLR(T ) ≤ γLR(T
′)+2k1+2k2+2 < (4n+ℓ+s)/5, a contradiction. Thus assume

that k2 > 0. Let T ′ = T − Txd−3
, and let f = (V0, V1, V2) be a γLR(T

′)-function.
Let u be a leaf at distance two from xd−3 and v be the father of u. Then h =
(V0∪V (Txd−2

)−(S(Txd−3
−{v})∪{xd−3, u}), V1∪{u}, V2∪S(Txd−3

−{v})∪{xd−3})
is an LRDF for T , implying by Theorem 9 that γLR(T ) ≤ γLR(T

′)+2k1+2k2+1 <
(4n+ ℓ+ s)/5, a contradiction. We conclude that deg(xd−3) = 2.

Assume that deg(xd−4) = 2. If deg(xd−5) ≥ 3, then let T ′ = T − Txd−4
and

f = (V0, V1, V2) be a γLR(T
′)-function. Then h = (V0 ∪ {xd, xd−2, xd−4}, V1, V2 ∪

{xd−1, xd−3}) is a LRDF function for T . Hence γLR(T ) ≤ γLR(T
′) + 4 < (4n+ ℓ+

s)/5, a contradiction. Thus deg(xd−5) = 2. Since γLR(P7) = 6 < (4(7) + 2+ 2)/5,
we find that deg(xd−6) ≥ 2. Since γLR(P8) = 7 < (4(8) + 2 + 2)/5, we find
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that deg(xd−7) ≥ 2. Thus xd−6 is not a support vertex. By Lemma 7, γLR(T
′) =

γLR(T )−4 = (4n+ℓ+s)/5−4 = (4(n−5)+ℓ+s)/5 = (4n(T ′)+ℓ(T ′)+s(T ′))/5. By
the inductive hypothesis, T ′ ∈ T . Now T is obtained from T ′ by Operation O2.

Next assume that deg(xd−4) ≥ 3. By Claim 1, xd−4 is not a support vertex.
Suppose that there is a leaf v of Txd−4

at distance two from xd−4. Let u be
the father of v. Clearly, deg(u) = 2. Let T ′ = T − {u, v}. Suppose that there
is a γLR(T

′) function f = (V0, V1, V2) with f(xd−4) = 2 and pn(xd−4, V0) = ∅.
Then (V0 ∪ {u}, V1 ∪ {v}, V2) is an LRDF for T , and so γLR(T ) ≤ γLR(T

′) +
1 < (4n + ℓ + s)/5, a contradiction. Thus there is no γLR(T

′) function f =
(V0, V1, V2) with f(xd−4) = 2 and pn(xd−4, V0) = ∅. Suppose that there is a
γLR(T

′) function f = (V0, V1, V2) with f(xd−4) = 1, and N(xd−4) ∩ V2 6= ∅. Then
(V0∪{v, xd−4}, V1−{xd−4}, V2∪{u}) is an LRDF for T , and so γLR(T ) ≤ γLR(T

′)+
1 < (4n+ ℓ+ s)/5, a contradiction. Thus xd−4 is a special vertex of T ′. Clearly,
γLR(T

′) + 1 ≤ γLR(T ) ≤ γLR(T
′) + 2. Suppose that γLR(T ) = γLR(T

′) + 1. Let
h be a γLR(T )-function. Assume that h(u) = 2. Clearly, we may assume that
h(v) = 0. If h(xd−4) 6= 0, then h|V (T ′) is an LRDF for T ′ of weight less than

γLR(T
′), a contradiction. Thus h(xd−4) = 0. Since h is an LRDF for T , there is

a vertex w ∈ N(xd−4) − {u} such that h(w) = 2. Now h′ defined on V (T ′) by
h′(xd−4) = 1 and h′(x) = h(x) otherwise, is an LRDF for T ′. Clearly, that h′ is
a γLR(T

′)-function. This is a contradiction, since xd−4 is a special vertex of T ′. If
h(u) = 1, then h(v) = 1 and we can replace h(u) by 2 and h(v) by 0, and as before,
get a contradiction. Thus h(u) = 0. If h(v) = 2, then we replace h(u) by 2 and
h(v) by 0, and as before, get a contradiction. Thus h(v) = 1, and so h(xd−4) = 2.
Thus h|V (T ′) = (V0, V1, V2) is a γLR(T

′)-function with pn(xd−4, V0) = ∅. This is

a contradiction, since xd−4 is a special vertex of T ′. Thus γLR(T ) = γLR(T
′) + 2.

Now γLR(T
′) = γLR(T ) − 2 = (4n+ ℓ + s)/5 − 2 = (4(n − 2) + ℓ − 1 + s − 1)/5 =

(4n(T ′) + ℓ(T ′) + s(T ′))/5. By the inductive hypothesis, T ′ ∈ T . Thus T is
obtained from T ′ by Operation O3.

Now, we assume that any leaf of Txd−4
has distance three or four from xd−4.

If there is a leaf v of Txd−4
at distance four from xd−4, then any internal vertex in

the path from v to xd−4 is of degree two, since v plays the role of xd. Moreover,
by Claim 1, if v is a leaf of Txd−4

at distance three from xd−4, then any internal
vertex in the path from v to xd−4 is of degree two. Let k1 be the number of leaves
of Txd−4

at distance four from xd−4 and k2 be the number of leaves of Txd−3
at

distance three from xd−4. Note that deg(xd−4) = k1 + k2 + 1. Suppose that
deg(xd−5) = 2. Let T ′ = T − Txd−5

and f = (V0, V1, V2) be a γLR(T
′)-function.

Then h = (V0∪W,V1∪Z, V2∪U) is a LRDF for T , where W is the set of vertices
of Txd−4

at distance one or three of xd−4, Z is the set of vertices at distance
four from xd−4, and U contains xd−4 and all vertices at distance two from xd−4.
Hence γLR(T ) ≤ γLR(T

′) + 3k1 + 2k2 + 2 < (4n + ℓ + s)/5, a contradiction. Thus
deg(xd−5) ≥ 3. Let T ′ = T − Txd−4

and f = (V0, V1, V2) be a γLR(T
′)-function.
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Then h = (V0 ∪ W,V1 ∪ Z, V2 ∪ U) is a γLR(T )-function, where W is the set of
vertices at distance one or three of xd−4, Z is the set of vertices at distance
four from xd−4, and U contains xd−4 and vertices at distance two from xd−4.
Hence γLR(T ) ≤ γLR(T

′) + 3k1 + 2k2 + 2. If k2 6= 0 or k1 ≥ 3, then γLR(T ) ≤
γLR(T

′)+3k1+2k2+2 < (4n+ ℓ+ s)/5, a contradiction. Thus k2 = 0 and k1 = 2.
By Lemma 8, γLR(T ) = γLR(T

′)+8. Thus γLR(T
′) = γLR(T )−8 = (4n+ℓ+s)/5−8 =

(4(n − 9) + (ℓ − 2) + (s − 2))/5 = (4n(T ′) + ℓ(T ′) + s(T ′))/5. By the inductive
hypothesis, T ′ ∈ T . Suppose γLR(T

′ − xd−5) < γLR(T
′). Let g be a γLR(T

′ − xd−5)-
function. We extend g to an LRDF for T by assigning 0 to xd−5 and the vertices
of Txd−4

at distance one or three from xd−4, 2 to xd−4 and the vertices of Txd−4

at distance two. Thus γLR(T ) ≤ γLR(T
′ − xd−5) + 8 < γLR(T

′) + 8 < (4n+ ℓ+ s)/5,
a contradiction. Hence γLR(T

′ − xd−5) ≥ γLR(T
′). Now T is obtained from T ′ by

Operation O4. The converse follows by Lemma 11.
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