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Abstract

Complete multipartite graphs range from complete graphs (with every
partite set a singleton) to edgeless graphs (with a unique partite set). Re-
quiring minimal separators to all induce one or the other of these extremes
characterizes, respectively, the classical chordal graphs and the emergent
unichord-free graphs. New theorems characterize several subclasses of the
graphs whose minimal separators induce complete multipartite subgraphs,
in particular the graphs that are 2-clique sums of complete, cycle, wheel,
and octahedron graphs.
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1. INTRODUCTION AND TERMINOLOGY

Define a complete-multipartite-separator graph to be a graph in which every min-
imal separator (as defined later in this section) induces a complete multipartite
subgraph. As one special case, the graphs in which every minimal separator in-
duces a complete graph are precisely the chordal graphs, a classic graph class with
many characterizations, the most common being that every cycle of length 4 or
more has at least one chord; see [1, 7]. At the other extreme, the graphs for which
every minimal separator induces an edgeless subgraph are precisely the unichord-
free graphs, a recent graph class whose name comes from the characterization
that no cycle has exactly one chord; see [2, 3, 4, 6, §].

Section 2 will characterize the complete-multipartite-separator graphs, which
include all complete multipartite graphs, all chordal graphs, and all unichord-free
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graphs. But this characterization fails to generalize the existing characterizations
of chordal graphs and unichord-free graphs. Section 3 will remedy this, along with
generalizing these previously studied classes to increasingly larger subclasses of
complete-multipartite-separator graphs.

For any set S of vertices of a graph G, let G[S| denote the subgraph of
G induced by S and let G — S denote G[V(G) — S]. Let G denote the graph
complement of G and, for every graph H, define G to be H-free if no induced
subgraph of G is isomorphic to H. A chord of a cycle C is an edge vw with
v,w € V(C) and yet vw ¢ E(C). Let C, and P, denote, respectively, the cycle
and path of order n (so P, has length n — 1). For any z-to-y path m, let 7° =
V(m) — {x,y} be the set of internal vertices of m.

For nonadjacent vertices v and w in a connected graph G, a v,w-separator of G
isaset S C V(G)—{v,w} such that v and w are in different components (maximal
connected subgraphs) of G — S, and a vertez separator of G is a v,w-separator for
some v,w € V(G). A minimal v,w-separator of G is a v,w-separator that is not a
proper subset of another v,w-separator, and a minimal separator of G is a minimal
v,w-separator for some v, w € V(G). This means that one minimal separator can
be contained in another one, since a minimal v, w-separator might be contained in
a minimal v/, w'separator. See [1] for more about minimal separators, including
that a vertex separator S of GG is a minimal separator of G if and only if, for some
two components G1 and Gy of G — S, each vertex in S has a neighbor in each G;.

A complete k-partite graph G has V(G) partitioned into & > 1 nonempty
partite sets Vi,..., Vi where E(G) = {zy : (z,y) € V; x V; with i # j}; denote
G by K(ni,...,n;) where each n; = |Vi] and 1 < nj; < --- < ng. A complete
multipartite graph is a complete k-partite graph for some k > 1. Therefore—as
will be used several times in the following sections—a graph is complete multi-
partite if and only if it has no induced subgraph H = P3 = K; U K (if, say,
V(H) =A{z,y, 2} with E(H) = {2y}, then z and y would have to be in the same
partite set as z in a complete multipartite graph, but then they would not be
adjacent to each other.) The two extremes among complete multipartite graphs
are the complete graphs K,, = K(1,...,1) (n-partite with each n; = 1) and the
edgeless graphs K,, = K(n) (1-partite with the unique n; = n; = n).

2. WHEN EacH G[S] 1S COMPLETE MULTIPARTITE

Lemma 1. Fvery minimal separator of an induced subgraph of G is contained in
a minimal separator of G.
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Proof. Suppose Sp is a minimal v,w-separator of an induced subgraph Hg of G
such that Hy — Sp has components Hy[Ry] and Hy[R{] where v € Ry, w € Ry,
and each vertex in Sy has neighbors in both Ry and Ry,.

Suppose Sy is not a v,w-separator of G, which means that G — Sy is connected
by a v-to-w path 7 containing some z1 € V(n§) — V(Hy). Thus, Sp U {z1} is
contained in a v,w-separator S7 of an induced subgraph H; of G such that H; — 5}
has components Hi[R;] and Hy[R]] with Ry = Ry U 7° where 7 is the v-to-zy
subpath of 71, and R} = R{ U (7')° where 7’ is the z1-to-w subpath of ;. As
in [1], S} is a minimal v,w-separator since each vertex of Sp has neighbors in both
Ry and Rj, (and so in both R; and R}), and each vertex of S — Sy has neighbors
in both 7 and 7" (and so in both Ry and RY).

Repeat this, sequentially forming larger sets S; by choosing x; € V(x7) in
connected graphs G — S;_1. As soon as G — .5; stops being connected, S; will be
a minimal separator of G that contains Sp. [

If vw is a chord of C' and z,y € V(C) — {v,w}, say that vw crosses {z,y}
if the four vertices v, z,w,y come in that order around C. For disjoint subsets
51,82 C V(C), define an S;-to-Sy chord of C to be a chord zy where x € S and
y € So. A theta graph © = O(u,w;m,mo, m3) of a graph G consists of nonadjacent
vertices u and w along with three internally-disjoint chordless u-to-w paths w1,
m, and m3. Define a chord of © to be a chord of a cycle m; U m; with i # j,
and define a transversal of © to be any {z1, 22, 23} where each z; € 7. Thus a
transversal of © is a minimal u, v-separator of © (but not necessarily of G[V(0)],
because chords of © will be edges of G[V(0)]). Say that a transversal {z1, 22, 23}
of © is crossed by a chord of O if some zy € E(G) has = an internal vertex of
some u-to-z; subpath of m; and y an internal vertex of some z;-to-w subpath of
Tj # ;.

Recall that complete-multipartite-separator graphs are those in which every
minimal separator induces a complete multipartite subgraph. Theorem 2 is equiv-
alent to a result in [5] (which contains a more general discussion of restrictions
on minimal separators).

Theorem 2. A graph G is a complete-multipartite-separator graph if and only
if, for every theta subgraph © of G with transversal S, if G[S] = Ps, then S is
crossed by a chord of ©.

Proof. First, suppose G is a complete-multipartite-separator graph containing
a theta subgraph © = O (u,w; 7, me, 73) with transversal S where G[S] = Ps.
Since complete multipartite graphs are Ps-free, S cannot be contained in a min-
imal separator of G[V(©)] by Lemma 1. Therefore, since each 7; is chordless, S
is crossed by a chord of ©.

Conversely, suppose G' has a minimal separator S such that G[S] is not
complete multipartite. Thus, there exists Sy = {x,y,2} C S that induces a P
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subgraph, say with edge xry and isolated vertex z. Let 7 and 7 be x-to-y paths
with 77 and 73, respectively, inside distinct components G and Gy of G — S, and
let C' be the cycle 71 U Te. Let 7 be a chordless 77-to-75 path through z with
endpoints v and w and with 7° N V(C) = . If m; and 7y are the two u-to-w
subpaths of C' and 73 = 7, then Sy is a transversal of © (u,w;m, 2, m3) of G.
But then G[Sp] & P3, and yet, since S is a minimal separator of G, the transversal
Sp is not crossed by a chord of ©. |

Although it follows directly from the Ps-free characterization of complete
multipartite graphs in the final paragraph of Section 1, Theorem 2 fails to display
how unichord-free graphs and chordal graphs are the fundamental special cases
of the class of complete-multipartite-separator graphs. Theorems 3 and 5 will
do this by introducing parameters that stratify this class so that unichord-free
graphs and chordal graphs are the parameter-1 cases. Finally, Theorems 7 and
10 will characterize a new graph class that is the conjunction of the parameter-2
cases.

3. WHEN EAcH G[S] 1S INDEPENDENT OR IS COMPLETE

Motivated by theta graphs (which are sometimes called “3-skeins”), define a
generalized k-skein © = O (T, Ty; 71, ..., m) of G to consist of disjoint subtrees
Ty and T5 of G with no vertex of T7 adjacent to a vertex of T together with k > 2
internally-disjoint, chordless Tj-to-T5 paths 71, ..., 7 such that each 77 # 0,
each leaf of each T; is the endpoint of at least two of the paths 71, ..., 7%, and no
v € V(T1) UV(T3) is adjacent to any internal vertex of any of my,..., 7, except
when v is an endpoint of such a path. (The subtrees T} and T5 are not necessarily
induced subgraphs of GG, and an endpoint of 7; does not have to be a leaf of T} or
T5.) Theta graphs are generalized 3-skeins with V(71) = {u} and V(T3) = {w},
and a cycle C' with nonconsecutive vertices u and w is a generalized 2-skein with
V(T1) ={u} and V(T2) = {w} where C = 71 U ma.

Define a chord of ©® = © (Ty,T5;m,...,m) to be an edge with endpoints
in each of @7 and 77 where i # j, and define a transversal of © to be any set
{#1,..., 2t} where each z; € 7; thus {z1,...,2;} is a minimal separator of ©
(but not necessarily of G[V(©)], because chords of © will be edges of G[V (0)]).
Say that a transversal {z1,..., 2} of © is crossed by a chord of © if some chord
xy of © has x an internal vertex of the Ti-to-z; subpath of m; and y an internal
vertex of the z;-to-T, subpath of 7; # ;.

A simple result from [4] is that a graph is unichord-free if and only if every
chord zy of every cycle C has {z, y} crossed by a chord of C'. This characterization
will be the p = 1 case of Theorem 3, in Corollary 4.

The clique number w = w(G) of a graph G is the largest order of a complete
subgraph of GG. Thus, for each p > 1, saying that a complete multipartite graph
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G has clique number w < p in Theorem 3 is equivalent to saying that G is
complete k-partite for some k < p (which happens to be how complete p-partite
graphs would be defined if the partite sets V1,...,V,_1 had been allowed to be
empty). Thus, G is complete multipartite with clique number w < p if and only
if G is Ps-free (to ensure G is complete multipartite) and K,1-free (to ensure
w(G) < p).

Theorem 3. Suppose G is a complete-multipartite-separator graph. Every min-
imal separator of G induces a complete multipartite subgraph with clique number
w < p if and only if, for every generalized (p + 1)-skein © with transversal S, if
G[S] = Kp41, then S is crossed by a chord of ©.

Proof. First, suppose every minimal separator of G induces a complete multipar-
tite subgraph with clique number w < p and © = (11, T; 71, ..., Tp41) is a gen-
eralized (p + 1)-skein of G with transversal S = {z1,..., 21} where G[S] = K.
Since K1 has clique number w > p, the transversal S cannot be contained in a
minimal separator of G[V(0)] by Lemma 1. Therefore, S is crossed by a chord
of © (since each m; is chordless and no vertex of T is adjacent in G to a vertex
of Tg).

Conversely, suppose G is a complete-multipartite-separator graph with a
minimal separator S’ such that G[S’] has clique number w > p > 1, say with
S ={z1,..., 241} € 5 where G[S] = K, 1. Let 0 and 7 be z1-to-z paths with
0° and 7° respectively, inside distinct components G[U] and G[W] of G — S’ such
that each z; € S has neighbors in both U and W.

Let C be the cycle o Ut with u; € ¢° and w; € 7° and let 7] and 75 be
the ui-to-w; subpaths of C through, respectively, z; and z9. Let Il = my U mo
and let w3 be a chordless us-to-wo path where us € U and we € W are both
vertices of Il such that 75 NS’ = {23} and 75NV (Ilz) = 0. Let T} be the trivial
subtree ug of G[U], let Ty be the trivial subtree we of G[W], and let m and 7o
be the us-to-wy paths of IIs. This makes © (ug, wa; 71, T2, m3) a theta graph and
O (11, Ty; w1, o, m3) & generalized 3-skein.

For 3 < ¢ < p, continue recursively by letting II; = m; U --- U m; and letting
mi+1 be a chordless u;-to-w; path where u; € U and w; € W are vertices of
II; such that 77 ; NS" = {211} and 77 ; NV (II;) = 0. Enlarge T to become
a minimal subtree of G[U] N II; that contains {us,...,u;}, and enlarge T5 to
become a minimal subtree of G[W]N1I; that contains {ws,...,w;}. This makes
O (T, To; 71, Mo, ..., mi+1) a generalized (i + 1)-skein.

This process ends with a generalized (p + 1)-skein © = © (T1,T5; m, ...,
Tp+1), With 2z; € w7 whenever 1 <i < p+ 1, such that © has transversal S. But
then G[S] = Kp41 and yet S is not crossed by a chord of © (since S’ is a minimal
separator of G with T} and T3 in, respectively, the components G[U] and G[W]
of G- 95"). [ |
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Corollary 4. A graph is unichord-free if and only if every chord xy in every
cycle C has {x,y} crossed by a chord of C.

Proof. Recall that G is unichord-free if and only if every minimal separator in-
duces an edgeless subgraph (a complete multipartite subgraph with clique number
w = 1). The “only if” direction follows from a cycle C' with a chord zy corre-
sponding to a generalized 2-skein with each |V (T;)| = 1 of which S = {x,y} is
a transversal (with G[S] = P,). Therefore, by the p = 1 case of Theorem 3,
S = {x,y} is crossed by a chord of C'.

For the “if” direction, a graph that is not unichord-free has a cycle C with a
unique chord xy, where C corresponds to a generalized 2-skein © with transversal
S = {x,y} that has G[S] = P, and yet S is not crossed by a chord of O. |

Now consider chordal graphs, at the other extreme of complete multipartite
graphs from unichord-free graphs. A simple inductive argument on the length of
cycles show that a graph is chordal if and only if every two nonadjacent vertices x
and y of every cycle C has {x,y} crossed by a chord of C. This characterization
will be the ¢ = 1 case of Theorem 5, in Corollary 6.

The independence number o = a(G) of a graph G is the largest order of an
edgeless induced subgraph of G. Thus, G is complete multipartite graph with
independence number o < ¢ if and only if G is Ps-free (to ensure G is complete
multipartite) and K, ;1-free (to ensure o(G) < q).

Theorem 5. Suppose G is a complete-multipartite-separator graph. Every min-
imal separator of G induces a complete multipartite subgraph with independence
number o < q if and only if, for every generalized (q+1)-skein © with transversal
S, if G[S] = Kq11, then S is crossed by a chord of ©.

Proof. This follows by the same proof as Theorem 3, replacing mentions of clique
number with independence number, p with ¢, and K41 with K 4. [

Corollary 6. A graph is chordal if and only if every two nonadjacent vertices x
and y of every cycle C has {x,y} crossed by a chord of C.

Proof. Recall that G is chordal if and only if every minimal separator induces
a complete subgraph (a complete multipartite graph with independence number
a =1). The “only if” direction follows as in the proof of Corollary 4, except now
G[S] = P, and the q = 1 case of Theorem 5 is used.

For the “if” direction, a graph that is not chordal has a chordless cycle C
of length at least 4, where C' corresponds to a generalized 2-skein © with (each)
transversal S = {z,y} that has G[S] & P,, and yet S is not crossed by a chord
of ©. [
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As an easy joint consequence of the p = 1 and ¢ = 1 cases of Theorems 3
and 5, a graph G is simultaneously unichord-free and chordal if and only if, for
every two nonconsecutive vertices x and y (adjacent or not) of every cycle C' of
G, there is a chord that crosses {z, y}—in other words, every pair of vertices of C
that might be crossed by a chord of C' is crossed by a chord of C'. The following
two conditions are trivially equivalent to that characterization:

(C1) Every 2-connected subgraph of G is complete (such a G is often called a
block graph).
(C2) Every minimal separator of G is a singleton.

Section 4 will consider a more interesting joint consequence of Theorems 3
and 5, except now of the p = 2 and ¢ = 2 cases.

4. WHEN EAcH G]S] 1S AN INDUCED SUBGRAPH OF Cy

Define an induced-sub-Cy-separator graph to be a graph G in which every minimal
separator S of GG induces a graph H that is isomorphic to an induced subgraph of
Cy = K(2,2)—equivalently, H is one of the five graphs in Figure 1. It is simple
to check that H being an induced subgraph of Cj is also equivalent to every
three vertices of H inducing a path; or, alternatively, to H being simultaneously
Ps-free, Ks-free, and K3-free. Theorems 7 and 10 will characterize the induced-
sub-Cy-separator graphs (with the G[S] & P5 condition of Theorem 2 becoming
G[S] % Ps in clause (2) of Theorem 7).

N

K Ky Ky Ps Cy

Figure 1. The five induced subgraphs of the complete bipartite graph Cj.

Theorem 7. Each of the following is equivalent to a graph G being an induced-

sub-Cy-separator graph:

(1) Every minimal separator of G induces a complete multipartite subgraph with
clique number w < 2 and independence number a < 2.

(2) G is a complete-multipartite-separator graph and, for every theta subgraph
© of G with transversal S, if G[S] 2 Ps, then S is crossed by a chord of ©.

Proof. The equivalence with (1) follows from the graphs in Figure 1 being the
complete multipartite graphs K(1), K(1,1), K(2), K(1,2), and K(2,2), which
are the only complete multipartite graphs that have both o, w < 2.
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For the necessity of (2), suppose G is an induced-sub-Cjy-separator graph that
contains a theta subgraph © with transversal S (so |S| = 3) such that G[S] 2 Ps.
Theorem 2 implies G[S] % Ps, and so G[S] is isomorphic to K3 or K3. Therefore,
S is crossed by a chord of © using, respectively, the w = p = 2 case of Theorem 3
or the a = ¢ = 2 case of Theorem 5.

For the sufficiency of (2), suppose some minimal separator R of G has G[R)]
that is not an induced subgraph of Cy. Thus |R| > 3 (since K7, K2, and K5 are
induced subgraphs of C4) and there exists an S = {z,y, 2} C R with G[S] 2 Ps.
Let 71 and 7 be z-to-y paths with 7 and 75 inside different components of G— R,
let 73 be a chordless 77-to-75 path through z with 7§ NV (r U 2) = 0 (using
that R is a minimal separator of ), let u and w be the endpoints of 73, and let
w1 and 7o be the two u-to-w subpaths of 74 U 19. Thus S is a transversal of the
theta subgraph ©(u,w; 1, ma, m3) of G and G[S] # P3, and yet S is not crossed
by a chord of © (since R is a minimal separator of G). |

Lemma 8 will characterize the 3-connected induced-sub-Cy-separator graphs
in the style of condition (C1) at the end of Section 3. A wheel graph consists of
a chordless cycle and a vertex that is adjacent to every vertex of that cycle.

Lemma 8. A 3-connected graph is an induced-sub-Cy-separator graph if and only
if it is either complete, a wheel, or the octahedron K(2,2,2).

Proof. First, suppose G is a 3-connected induced-sub-Cy-separator graph. Thus,
every minimal separator S of G has |S| > 3 and so induces a P3 or Cy subgraph.
Also suppose G is not complete.

Case 1. S = {a,b,c} is a minimal separator of G with G[S] = Ps having
the edges ab and bc. Let G; and G2 be components of G — S such that every
vertex of S has a neighbor in each of them, and let 71 and 79 be chordless a-to-c
paths with each 77 in G;. Say 71 = vg,v1,v2,...,v; with vg = a and vy = ¢ has
length t > 2, and let @’ be the neighbor of a in 7. If ¢t > 3, then 77 C N(b) (to
prevent, when 1 < j <t —1, either {a,b,v;} being in a minimal ¢, v;_;-separator
of G[SUTUT3] or {b, c,v;} being in a minimal a, vj;i-separator of G[SUTY UTs],
either of which would, by Lemma 1, be in a minimal separator of G and induce
a P3 subgraph of G). If, instead, t = 2, then 77 C N(b) (to prevent {b,v1,a'}
from being a minimal a, c-separator of G[S U7y U 75| that would, by Lemma 1, be
in a minimal separator of G' and induce a P3 or a K3 subgraph of G, depending
on whether or not @’ is adjacent to b). Either way, 7¥ C N(b) and, similarly,
75 C N(b). Therefore, S is in the wheel Hg = G[S U 17 U 73], centered at b.

If G — S has a third component G3, then G being 3-connected ensures there
exists a chordless a-to-c¢ path 73 with 75 in G5, and so 75 C N(b) (as in the
preceding paragraph) and x,z2,23 € N(a) with each z; € 77 would form a
minimal a, c-separator of G| Ure UTs] that would, by Lemma 1, be in a minimal
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separator of G and induce a K3 subgraph of G. Therefore, G — S has only the
two components G1 and Go.

If G # Hg, then there exists z € V(G) — V(Hg), say with z € V(G;) — 77.
Form a new graph G1 by appending one new vertex v to G such that N(v) =
V(7). Since G™ is also 3-connected, Menger’s Theorem ensures that G* has three
internally-disjoint v-to-z paths that intersect 7 at three vertices in a minimal v, 2-
separator S’ of GT; moreover, since |S’| > 3, at least one of these three vertices,
say v, is in 7. But then vertices a/,v;, and b would be internal vertices of,
respectively, the a-to-c paths 71, 79, and the length-2 path a,b, ¢, along with z
being an internal vertex of an additional a-to-c¢ path with internal vertices in
G1 (using that G is 3-connected). Thus {d/, b, v;, 2} would be in a minimal a, c-
separator of GG that does not induce a Cy subgraph. Therefore, G is the wheel Hg.

Case 2. S = {a,b,c,d} is a minimal separator of G with G[S] = C4 having
the edges ab, be, cd, and ad. Let G1 and G5 be components of G — .S such that
every vertex of S has a neighbor in each of them, and let 71 and 7 be chordless
a-to-c paths with each 77 in G;. As in the argument for Case 1, ¥ C N(b) (using
Gl{a,b,c}] = P3) and 77 C N(d) (using G[{a,d,c}] = Ps). Pick any x; € 77
and let 71 be the b-to-d path b,x1,d in G;. As in the argument for Case 1,
(11)° € N(c) (using G[{b,c,d}] = Ps) and (71)° C N(a) (using G[{b,a,d}] = Ps).
Thus S C N(x1), and similarly S C N(z2) for some x2 in Ga. Therefore, S is in
the octahedron Hg = G[S U {x1,z2}].

If G — S has a third component G3, then G being 3-connected ensures there
exists a chordless a-to-c or b-to-d path 73 with 75 in G'3; without loss of generality,
say 73 is an a-to-c path. Thus, as in Case 1, x1,x2 and any x3 € 73 would form
a minimal a, c-separator of G[r{ U 75 U 75] that would induce a K3 subgraph of
G. Therefore, G — S has only the two components GG; and Go.

If G # Hg, then there exists z € V(G) — V(Hg), say with z € V(G1) — {z1}.
Since G is 3-connected, Menger’s Theorem requires G to have three internally-
disjoint z-to-zo paths that intersect S at three vertices in a minimal z, z9-sep-
arator of G; without loss of generality, say these three vertices of S are a,b,c.
But then vertices x1,x2, and b would be internal vertices of, respectively, the
length-2 a-to-c paths a,z1,c and a, z2,b and a, b, ¢, along with z being an internal
vertex of an additional a-to-c path with internal vertices in G; (using that G is
3-connected). Thus {b,z1,x2, 2z} would be in a minimal a, c-separator of G that
does not induce a Cy subgraph. Therefore, GG is the octahedron Hg.

Conversely, complete graphs have no minimal separators at all, and each
minimal separator of a wheel or octahedron induces, respectively, a P3 or Cy
subgraph. [

Lemma 9. A 2-connected graph in which no minimal separator induces a Ko
subgraph is an induced-sub-Cy-separator graph if and only if it is either complete,
a cycle, a wheel, or the octahedron.
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Proof. First, suppose G is a 2-connected induced-sub-Cy-separator graph in
which no minimal separator induces a Ky subgraph. If G is 3-connected, then G
is either complete, a wheel, or the octahedron by Lemma 8.

Hence, assume G is not complete and has a minimal separator S = {a, b}
with G[S] = K,. Since a minimal a, b-separator of G must be one of the graphs
in Figure 1 and cannot be K; (using that G is 2-connected) or any of K», P3 or
Cy (using that S is a minimal separator of G), every minimal a, b-separator of G
must induce a Ky subgraph of G where G — S has exactly two components G
and G and each minimal a, b-separator of each subgraph G;" = G[V(G;) U S] is
a singleton. Since no minimal separator of GG induces a K; or Ky subgraph, Gf
and G;’ are internally-disjoint a-to-b paths. Therefore, G is a cycle.

Conversely, each minimal separator of a cycle induces a K, subgraph, and the
minimal separators of complete graphs, wheels, and the octahedron are covered
by Lemma 8. [

In Theorem 10, the 2-clique-sum of vertex-disjoint graphs H; and Hs results
from identifying a clique of order at most 2 from each of H; and Hy (in other
words, identifying an edge of H; with an edge of Hs, or a vertex of Hy with a
vertex of Ha).

Theorem 10. A graph is an induced-sub-Cy-separator graph if and only if it can
be built from complete graphs, cycles, octahedra, and wheels by repeatedly forming
2-clique-sums.

Proof. This follows from Lemma 9. [
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