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Abstract

Complete multipartite graphs range from complete graphs (with every
partite set a singleton) to edgeless graphs (with a unique partite set). Re-
quiring minimal separators to all induce one or the other of these extremes
characterizes, respectively, the classical chordal graphs and the emergent
unichord-free graphs. New theorems characterize several subclasses of the
graphs whose minimal separators induce complete multipartite subgraphs,
in particular the graphs that are 2-clique sums of complete, cycle, wheel,
and octahedron graphs.
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1. Introduction and Terminology

Define a complete-multipartite-separator graph to be a graph in which every min-
imal separator (as defined later in this section) induces a complete multipartite
subgraph. As one special case, the graphs in which every minimal separator in-
duces a complete graph are precisely the chordal graphs, a classic graph class with
many characterizations, the most common being that every cycle of length 4 or
more has at least one chord; see [1, 7]. At the other extreme, the graphs for which
every minimal separator induces an edgeless subgraph are precisely the unichord-
free graphs, a recent graph class whose name comes from the characterization
that no cycle has exactly one chord; see [2, 3, 4, 6, 8].

Section 2 will characterize the complete-multipartite-separator graphs, which
include all complete multipartite graphs, all chordal graphs, and all unichord-free
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graphs. But this characterization fails to generalize the existing characterizations
of chordal graphs and unichord-free graphs. Section 3 will remedy this, along with
generalizing these previously studied classes to increasingly larger subclasses of
complete-multipartite-separator graphs.

For any set S of vertices of a graph G, let G[S] denote the subgraph of
G induced by S and let G − S denote G[V (G) − S]. Let G denote the graph
complement of G and, for every graph H, define G to be H-free if no induced
subgraph of G is isomorphic to H. A chord of a cycle C is an edge vw with
v, w ∈ V (C) and yet vw 6∈ E(C). Let Cn and Pn denote, respectively, the cycle
and path of order n (so Pn has length n − 1). For any x-to-y path π, let π◦ =
V (π)− {x, y} be the set of internal vertices of π.

For nonadjacent vertices v and w in a connected graphG, a v,w-separator ofG
is a set S ⊆ V (G)−{v, w} such that v and w are in different components (maximal
connected subgraphs) of G−S, and a vertex separator of G is a v,w-separator for
some v, w ∈ V (G). A minimal v,w-separator of G is a v,w-separator that is not a
proper subset of another v,w-separator, and aminimal separator of G is a minimal
v,w-separator for some v, w ∈ V (G). This means that one minimal separator can
be contained in another one, since a minimal v, w-separator might be contained in
a minimal v′, w′-separator. See [1] for more about minimal separators, including
that a vertex separator S of G is a minimal separator of G if and only if, for some
two components G1 and G2 of G−S, each vertex in S has a neighbor in each Gi.

A complete k-partite graph G has V (G) partitioned into k ≥ 1 nonempty
partite sets V1, . . . , Vk where E(G) = {xy : (x, y) ∈ Vi × Vj with i 6= j}; denote
G by K(n1, . . . , nk) where each ni = |Vi| and 1 ≤ n1 ≤ · · · ≤ nk. A complete

multipartite graph is a complete k-partite graph for some k ≥ 1. Therefore—as
will be used several times in the following sections—a graph is complete multi-
partite if and only if it has no induced subgraph H ∼= P3 = K1 ∪ K2 (if, say,
V (H) = {x, y, z} with E(H) = {xy}, then x and y would have to be in the same
partite set as z in a complete multipartite graph, but then they would not be
adjacent to each other.) The two extremes among complete multipartite graphs
are the complete graphs Kn = K(1, . . . , 1) (n-partite with each ni = 1) and the
edgeless graphs Kn = K(n) (1-partite with the unique ni = n1 = n).

2. When Each G[S] is Complete Multipartite

Lemma 1. Every minimal separator of an induced subgraph of G is contained in

a minimal separator of G.



Complete Multipartite Minimal Separators ... 265

Proof. Suppose S0 is a minimal v,w-separator of an induced subgraph H0 of G
such that H0 − S0 has components H0[R0] and H0[R

′

0] where v ∈ R0, w ∈ R′

0,
and each vertex in S0 has neighbors in both R0 and R′

0.
Suppose S0 is not a v,w-separator of G, which means that G−S0 is connected

by a v-to-w path π1 containing some x1 ∈ V (π◦

1) − V (H0). Thus, S0 ∪ {x1} is
contained in a v,w-separator S1 of an induced subgraph H1 of G such that H1−S1

has components H1[R1] and H1[R
′

1] with R1 = R0 ∪ τ◦ where τ is the v-to-x1
subpath of π1, and R′

1 = R′

0 ∪ (τ ′)◦ where τ ′ is the x1-to-w subpath of π1. As
in [1], S1 is a minimal v,w-separator since each vertex of S0 has neighbors in both
R0 and R′

0 (and so in both R1 and R′

1), and each vertex of S1−S0 has neighbors
in both τ and τ ′ (and so in both R1 and R′

1).
Repeat this, sequentially forming larger sets Si by choosing xi ∈ V (π◦

i ) in
connected graphs G− Si−1. As soon as G− Si stops being connected, Si will be
a minimal separator of G that contains S0.

If vw is a chord of C and x, y ∈ V (C) − {v, w}, say that vw crosses {x, y}
if the four vertices v, x, w, y come in that order around C. For disjoint subsets
S1, S2 ⊂ V (C), define an S1-to-S2 chord of C to be a chord xy where x ∈ S1 and
y ∈ S2. A theta graph Θ = Θ(u,w;π1, π2, π3) of a graph G consists of nonadjacent
vertices u and w along with three internally-disjoint chordless u-to-w paths π1,
π2, and π3. Define a chord of Θ to be a chord of a cycle πi ∪ πj with i 6= j,
and define a transversal of Θ to be any {z1, z2, z3} where each zi ∈ π◦

i . Thus a
transversal of Θ is a minimal u, v-separator of Θ (but not necessarily of G[V (Θ)],
because chords of Θ will be edges of G[V (Θ)]). Say that a transversal {z1, z2, z3}
of Θ is crossed by a chord of Θ if some xy ∈ E(G) has x an internal vertex of
some u-to-zi subpath of πi and y an internal vertex of some zj-to-w subpath of
πj 6= πi.

Recall that complete-multipartite-separator graphs are those in which every
minimal separator induces a complete multipartite subgraph. Theorem 2 is equiv-
alent to a result in [5] (which contains a more general discussion of restrictions
on minimal separators).

Theorem 2. A graph G is a complete-multipartite-separator graph if and only

if, for every theta subgraph Θ of G with transversal S, if G[S] ∼= P3, then S is

crossed by a chord of Θ.

Proof. First, suppose G is a complete-multipartite-separator graph containing
a theta subgraph Θ = Θ (u,w;π1, π2, π3) with transversal S where G[S] ∼= P3.
Since complete multipartite graphs are P3-free, S cannot be contained in a min-
imal separator of G[V (Θ)] by Lemma 1. Therefore, since each πi is chordless, S
is crossed by a chord of Θ.

Conversely, suppose G has a minimal separator S such that G[S] is not
complete multipartite. Thus, there exists S0 = {x, y, z} ⊆ S that induces a P3
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subgraph, say with edge xy and isolated vertex z. Let τ1 and τ2 be x-to-y paths
with τ◦1 and τ◦2 , respectively, inside distinct components G1 and G2 of G−S, and
let C be the cycle τ1 ∪ τ2. Let π be a chordless τ◦1 -to-τ

◦

2 path through z with
endpoints u and w and with π◦ ∩ V (C) = ∅. If π1 and π2 are the two u-to-w
subpaths of C and π3 = π, then S0 is a transversal of Θ (u,w;π1, π2, π3) of G.
But then G[S0] ∼= P3, and yet, since S is a minimal separator of G, the transversal
S0 is not crossed by a chord of Θ.

Although it follows directly from the P3-free characterization of complete
multipartite graphs in the final paragraph of Section 1, Theorem 2 fails to display
how unichord-free graphs and chordal graphs are the fundamental special cases
of the class of complete-multipartite-separator graphs. Theorems 3 and 5 will
do this by introducing parameters that stratify this class so that unichord-free
graphs and chordal graphs are the parameter-1 cases. Finally, Theorems 7 and
10 will characterize a new graph class that is the conjunction of the parameter-2
cases.

3. When Each G[S] is Independent or is Complete

Motivated by theta graphs (which are sometimes called “3-skeins”), define a
generalized k-skein Θ = Θ(T1, T2;π1, . . . , πk) of G to consist of disjoint subtrees
T1 and T2 of G with no vertex of T1 adjacent to a vertex of T2 together with k ≥ 2
internally-disjoint, chordless T1-to-T2 paths π1, . . . , πk such that each π◦

i 6= ∅,
each leaf of each Ti is the endpoint of at least two of the paths π1, . . . , πk, and no
v ∈ V (T1) ∪ V (T2) is adjacent to any internal vertex of any of π1, . . . , πk except
when v is an endpoint of such a path. (The subtrees T1 and T2 are not necessarily
induced subgraphs of G, and an endpoint of πi does not have to be a leaf of T1 or
T2.) Theta graphs are generalized 3-skeins with V (T1) = {u} and V (T2) = {w},
and a cycle C with nonconsecutive vertices u and w is a generalized 2-skein with
V (T1) = {u} and V (T2) = {w} where C = π1 ∪ π2.

Define a chord of Θ = Θ(T1, T2;π1, . . . , πk) to be an edge with endpoints
in each of π◦

i and π◦

j where i 6= j, and define a transversal of Θ to be any set
{z1, . . . , zk} where each zi ∈ π◦

i ; thus {z1, . . . , zk} is a minimal separator of Θ
(but not necessarily of G[V (Θ)], because chords of Θ will be edges of G[V (Θ)]).
Say that a transversal {z1, . . . , zk} of Θ is crossed by a chord of Θ if some chord
xy of Θ has x an internal vertex of the T1-to-zi subpath of πi and y an internal
vertex of the zj-to-T2 subpath of πj 6= πi.

A simple result from [4] is that a graph is unichord-free if and only if every
chord xy of every cycle C has {x, y} crossed by a chord of C. This characterization
will be the p = 1 case of Theorem 3, in Corollary 4.

The clique number ω = ω(G) of a graph G is the largest order of a complete
subgraph of G. Thus, for each p ≥ 1, saying that a complete multipartite graph
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G has clique number ω ≤ p in Theorem 3 is equivalent to saying that G is
complete k-partite for some k ≤ p (which happens to be how complete p-partite
graphs would be defined if the partite sets V1, . . . , Vp−1 had been allowed to be
empty). Thus, G is complete multipartite with clique number ω ≤ p if and only
if G is P3-free (to ensure G is complete multipartite) and Kp+1-free (to ensure
ω(G) ≤ p).

Theorem 3. Suppose G is a complete-multipartite-separator graph. Every min-

imal separator of G induces a complete multipartite subgraph with clique number

ω ≤ p if and only if, for every generalized (p + 1)-skein Θ with transversal S, if

G[S] ∼= Kp+1, then S is crossed by a chord of Θ.

Proof. First, suppose every minimal separator of G induces a complete multipar-
tite subgraph with clique number ω ≤ p and Θ = Θ(T1, T2;π1, . . . , πp+1) is a gen-
eralized (p+1)-skein of G with transversal S = {z1, . . . , zk} where G[S] ∼= Kp+1.
Since Kp+1 has clique number ω > p, the transversal S cannot be contained in a
minimal separator of G[V (Θ)] by Lemma 1. Therefore, S is crossed by a chord
of Θ (since each πi is chordless and no vertex of T1 is adjacent in G to a vertex
of T2).

Conversely, suppose G is a complete-multipartite-separator graph with a
minimal separator S′ such that G[S′] has clique number ω > p ≥ 1, say with
S = {z1, . . . , zp+1} ⊆ S′ where G[S] ∼= Kp+1. Let σ and τ be z1-to-z2 paths with
σ◦ and τ◦, respectively, inside distinct components G[U ] and G[W ] of G−S′ such
that each zi ∈ S has neighbors in both U and W .

Let C be the cycle σ ∪ τ with u1 ∈ σ◦ and w1 ∈ τ◦, and let π′

1 and π′

2 be
the u1-to-w1 subpaths of C through, respectively, z1 and z2. Let Π2 = π1 ∪ π2
and let π3 be a chordless u2-to-w2 path where u2 ∈ U and w2 ∈ W are both
vertices of Π2 such that π◦

3 ∩S′ = {z3} and π◦

3 ∩V (Π2) = ∅. Let T1 be the trivial
subtree u2 of G[U ], let T2 be the trivial subtree w2 of G[W ], and let π1 and π2
be the u2-to-w2 paths of Π2. This makes Θ (u2, w2;π1, π2, π3) a theta graph and
Θ (T1, T2;π1, π2, π3) a generalized 3-skein.

For 3 ≤ i ≤ p, continue recursively by letting Πi = π1 ∪ · · · ∪ πi and letting
πi+1 be a chordless ui-to-wi path where ui ∈ U and wi ∈ W are vertices of
Πi such that π◦

i+1 ∩ S′ = {zi+1} and π◦

i+1 ∩ V (Πi) = ∅. Enlarge T1 to become
a minimal subtree of G[U ] ∩ Πi that contains {u2, . . . , ui}, and enlarge T2 to
become a minimal subtree of G[W ] ∩Πi that contains {w2, . . . , wi}. This makes
Θ (T1, T2;π1, π2, . . . , πi+1) a generalized (i+ 1)-skein.

This process ends with a generalized (p + 1)-skein Θ = Θ(T1, T2; π1, . . . ,
πp+1), with zi ∈ π◦

i whenever 1 ≤ i ≤ p+ 1, such that Θ has transversal S. But
then G[S] ∼= Kp+1 and yet S is not crossed by a chord of Θ (since S′ is a minimal
separator of G with T1 and T2 in, respectively, the components G[U ] and G[W ]
of G− S′).
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Corollary 4. A graph is unichord-free if and only if every chord xy in every

cycle C has {x, y} crossed by a chord of C.

Proof. Recall that G is unichord-free if and only if every minimal separator in-
duces an edgeless subgraph (a complete multipartite subgraph with clique number
ω = 1). The “only if” direction follows from a cycle C with a chord xy corre-
sponding to a generalized 2-skein with each |V (Ti)| = 1 of which S = {x, y} is
a transversal (with G[S] ∼= P2). Therefore, by the p = 1 case of Theorem 3,
S = {x, y} is crossed by a chord of C.

For the “if” direction, a graph that is not unichord-free has a cycle C with a
unique chord xy, where C corresponds to a generalized 2-skein Θ with transversal
S = {x, y} that has G[S] ∼= P2, and yet S is not crossed by a chord of Θ.

Now consider chordal graphs, at the other extreme of complete multipartite
graphs from unichord-free graphs. A simple inductive argument on the length of
cycles show that a graph is chordal if and only if every two nonadjacent vertices x
and y of every cycle C has {x, y} crossed by a chord of C. This characterization
will be the q = 1 case of Theorem 5, in Corollary 6.

The independence number α = α(G) of a graph G is the largest order of an
edgeless induced subgraph of G. Thus, G is complete multipartite graph with
independence number α ≤ q if and only if G is P3-free (to ensure G is complete
multipartite) and Kq+1-free (to ensure α(G) ≤ q).

Theorem 5. Suppose G is a complete-multipartite-separator graph. Every min-

imal separator of G induces a complete multipartite subgraph with independence

number α ≤ q if and only if, for every generalized (q+1)-skein Θ with transversal

S, if G[S] ∼= Kq+1, then S is crossed by a chord of Θ.

Proof. This follows by the same proof as Theorem 3, replacing mentions of clique
number with independence number, p with q, and Kp+1 with Kq+1.

Corollary 6. A graph is chordal if and only if every two nonadjacent vertices x

and y of every cycle C has {x, y} crossed by a chord of C.

Proof. Recall that G is chordal if and only if every minimal separator induces
a complete subgraph (a complete multipartite graph with independence number
α = 1). The “only if” direction follows as in the proof of Corollary 4, except now
G[S] ∼= P2 and the q = 1 case of Theorem 5 is used.

For the “if” direction, a graph that is not chordal has a chordless cycle C

of length at least 4, where C corresponds to a generalized 2-skein Θ with (each)
transversal S = {x, y} that has G[S] ∼= P2, and yet S is not crossed by a chord
of Θ.
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As an easy joint consequence of the p = 1 and q = 1 cases of Theorems 3
and 5, a graph G is simultaneously unichord-free and chordal if and only if, for
every two nonconsecutive vertices x and y (adjacent or not) of every cycle C of
G, there is a chord that crosses {x, y}—in other words, every pair of vertices of C
that might be crossed by a chord of C is crossed by a chord of C. The following
two conditions are trivially equivalent to that characterization:

(C1) Every 2-connected subgraph of G is complete (such a G is often called a
block graph).

(C2) Every minimal separator of G is a singleton.

Section 4 will consider a more interesting joint consequence of Theorems 3
and 5, except now of the p = 2 and q = 2 cases.

4. When Each G[S] is an Induced Subgraph of C4

Define an induced-sub-C4-separator graph to be a graph G in which every minimal
separator S of G induces a graph H that is isomorphic to an induced subgraph of
C4

∼= K(2, 2)—equivalently, H is one of the five graphs in Figure 1. It is simple
to check that H being an induced subgraph of C4 is also equivalent to every
three vertices of H inducing a path; or, alternatively, to H being simultaneously
P3-free, K3-free, and K3-free. Theorems 7 and 10 will characterize the induced-
sub-C4-separator graphs (with the G[S] ∼= P3 condition of Theorem 2 becoming
G[S] 6∼= P3 in clause (2) of Theorem 7).

K1

s

K2

s s

K2

s

s

P3

s

s s

C4

s

s

s

s

Figure 1. The five induced subgraphs of the complete bipartite graph C4.

Theorem 7. Each of the following is equivalent to a graph G being an induced-

sub-C4-separator graph:

(1) Every minimal separator of G induces a complete multipartite subgraph with

clique number ω ≤ 2 and independence number α ≤ 2.

(2) G is a complete-multipartite-separator graph and, for every theta subgraph

Θ of G with transversal S, if G[S] 6∼= P3, then S is crossed by a chord of Θ.

Proof. The equivalence with (1) follows from the graphs in Figure 1 being the
complete multipartite graphs K(1), K(1, 1), K(2), K(1, 2), and K(2, 2), which
are the only complete multipartite graphs that have both α, ω ≤ 2.
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For the necessity of (2), suppose G is an induced-sub-C4-separator graph that
contains a theta subgraph Θ with transversal S (so |S| = 3) such that G[S] 6∼= P3.
Theorem 2 implies G[S] 6∼= P3, and so G[S] is isomorphic to K3 or K3. Therefore,
S is crossed by a chord of Θ using, respectively, the ω = p = 2 case of Theorem 3
or the α = q = 2 case of Theorem 5.

For the sufficiency of (2), suppose some minimal separator R of G has G[R]
that is not an induced subgraph of C4. Thus |R| ≥ 3 (since K1, K2, and K2 are
induced subgraphs of C4) and there exists an S = {x, y, z} ⊆ R with G[S] 6∼= P3.
Let τ1 and τ2 be x-to-y paths with τ◦1 and τ◦2 inside different components of G−R,
let π3 be a chordless τ◦1 -to-τ

◦

2 path through z with π◦

3 ∩ V (τ1 ∪ τ2) = ∅ (using
that R is a minimal separator of G), let u and w be the endpoints of π3, and let
π1 and π2 be the two u-to-w subpaths of τ1 ∪ τ2. Thus S is a transversal of the
theta subgraph Θ(u,w;π1, π2, π3) of G and G[S] 6∼= P3, and yet S is not crossed
by a chord of Θ (since R is a minimal separator of G).

Lemma 8 will characterize the 3-connected induced-sub-C4-separator graphs
in the style of condition (C1) at the end of Section 3. A wheel graph consists of
a chordless cycle and a vertex that is adjacent to every vertex of that cycle.

Lemma 8. A 3-connected graph is an induced-sub-C4-separator graph if and only

if it is either complete, a wheel, or the octahedron K(2, 2, 2).

Proof. First, suppose G is a 3-connected induced-sub-C4-separator graph. Thus,
every minimal separator S of G has |S| ≥ 3 and so induces a P3 or C4 subgraph.
Also suppose G is not complete.

Case 1. S = {a, b, c} is a minimal separator of G with G[S] ∼= P3 having
the edges ab and bc. Let G1 and G2 be components of G − S such that every
vertex of S has a neighbor in each of them, and let τ1 and τ2 be chordless a-to-c
paths with each τ◦i in Gi. Say τ1 = v0, v1, v2, . . . , vt with v0 = a and vt = c has
length t ≥ 2, and let a′ be the neighbor of a in τ2. If t ≥ 3, then τ◦1 ⊂ N(b) (to
prevent, when 1 ≤ j ≤ t− 1, either {a, b, vj} being in a minimal c, vj−1-separator
of G[S∪τ◦1 ∪τ◦2 ] or {b, c, vj} being in a minimal a, vj+1-separator of G[S∪τ◦1 ∪τ◦2 ],
either of which would, by Lemma 1, be in a minimal separator of G and induce
a P3 subgraph of G). If, instead, t = 2, then τ◦1 ⊂ N(b) (to prevent {b, v1, a

′}
from being a minimal a, c-separator of G[S∪τ◦1 ∪τ◦2 ] that would, by Lemma 1, be
in a minimal separator of G and induce a P3 or a K3 subgraph of G, depending
on whether or not a′ is adjacent to b). Either way, τ◦1 ⊂ N(b) and, similarly,
τ◦2 ⊂ N(b). Therefore, S is in the wheel HS = G[S ∪ τ◦1 ∪ τ◦2 ], centered at b.

If G− S has a third component G3, then G being 3-connected ensures there
exists a chordless a-to-c path τ3 with τ◦3 in G3, and so τ◦3 ⊂ N(b) (as in the
preceding paragraph) and x1, x2, x3 ∈ N(a) with each xi ∈ τ◦i would form a
minimal a, c-separator of G[τ1∪τ2∪τ3] that would, by Lemma 1, be in a minimal
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separator of G and induce a K3 subgraph of G. Therefore, G − S has only the
two components G1 and G2.

If G 6= HS , then there exists z ∈ V (G) − V (HS), say with z ∈ V (G1) − τ◦1 .
Form a new graph G+ by appending one new vertex ν to G such that N(ν) =
V (τ1). SinceG

+ is also 3-connected, Menger’s Theorem ensures thatG+ has three
internally-disjoint ν-to-z paths that intersect τ1 at three vertices in a minimal ν, z-
separator S′ of G+; moreover, since |S′| ≥ 3, at least one of these three vertices,
say vi, is in τ◦1 . But then vertices a′, vi, and b would be internal vertices of,
respectively, the a-to-c paths τ1, τ2, and the length-2 path a, b, c, along with z

being an internal vertex of an additional a-to-c path with internal vertices in
G1 (using that G is 3-connected). Thus {a′, b, vi, z} would be in a minimal a, c-
separator of G that does not induce a C4 subgraph. Therefore, G is the wheel HS .

Case 2. S = {a, b, c, d} is a minimal separator of G with G[S] ∼= C4 having
the edges ab, bc, cd, and ad. Let G1 and G2 be components of G − S such that
every vertex of S has a neighbor in each of them, and let τ1 and τ2 be chordless
a-to-c paths with each τ◦i in Gi. As in the argument for Case 1, τ◦1 ⊂ N(b) (using
G[{a, b, c}] ∼= P3) and τ◦1 ⊂ N(d) (using G[{a, d, c}] ∼= P3). Pick any x1 ∈ τ◦1
and let τ ′1 be the b-to-d path b, x1, d in G1. As in the argument for Case 1,
(τ ′1)

◦ ∈ N(c) (using G[{b, c, d}] ∼= P3) and (τ ′1)
◦ ⊂ N(a) (using G[{b, a, d}] ∼= P3).

Thus S ⊆ N(x1), and similarly S ⊆ N(x2) for some x2 in G2. Therefore, S is in
the octahedron HS = G[S ∪ {x1, x2}].

If G− S has a third component G3, then G being 3-connected ensures there
exists a chordless a-to-c or b-to-d path τ3 with τ◦3 in G3; without loss of generality,
say τ3 is an a-to-c path. Thus, as in Case 1, x1, x2 and any x3 ∈ τ◦3 would form
a minimal a, c-separator of G[τ◦1 ∪ τ◦2 ∪ τ◦3 ] that would induce a K3 subgraph of
G. Therefore, G− S has only the two components G1 and G2.

If G 6= HS , then there exists z ∈ V (G)−V (HS), say with z ∈ V (G1)−{x1}.
Since G is 3-connected, Menger’s Theorem requires G to have three internally-
disjoint z-to-x2 paths that intersect S at three vertices in a minimal z, x2-sep-
arator of G; without loss of generality, say these three vertices of S are a, b, c.
But then vertices x1, x2, and b would be internal vertices of, respectively, the
length-2 a-to-c paths a, x1, c and a, x2, b and a, b, c, along with z being an internal
vertex of an additional a-to-c path with internal vertices in G1 (using that G is
3-connected). Thus {b, x1, x2, z} would be in a minimal a, c-separator of G that
does not induce a C4 subgraph. Therefore, G is the octahedron HS .

Conversely, complete graphs have no minimal separators at all, and each
minimal separator of a wheel or octahedron induces, respectively, a P3 or C4

subgraph.

Lemma 9. A 2-connected graph in which no minimal separator induces a K2

subgraph is an induced-sub-C4-separator graph if and only if it is either complete,

a cycle, a wheel, or the octahedron.
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Proof. First, suppose G is a 2-connected induced-sub-C4-separator graph in
which no minimal separator induces a K2 subgraph. If G is 3-connected, then G

is either complete, a wheel, or the octahedron by Lemma 8.

Hence, assume G is not complete and has a minimal separator S = {a, b}
with G[S] ∼= K2. Since a minimal a, b-separator of G must be one of the graphs
in Figure 1 and cannot be K1 (using that G is 2-connected) or any of K2, P3 or
C4 (using that S is a minimal separator of G), every minimal a, b-separator of G
must induce a K2 subgraph of G where G − S has exactly two components G1

and G2 and each minimal a, b-separator of each subgraph G+

i = G[V (Gi) ∪ S] is
a singleton. Since no minimal separator of G induces a K1 or K2 subgraph, G+

1

and G+
2
are internally-disjoint a-to-b paths. Therefore, G is a cycle.

Conversely, each minimal separator of a cycle induces a K2 subgraph, and the
minimal separators of complete graphs, wheels, and the octahedron are covered
by Lemma 8.

In Theorem 10, the 2-clique-sum of vertex-disjoint graphs H1 and H2 results
from identifying a clique of order at most 2 from each of H1 and H2 (in other
words, identifying an edge of H1 with an edge of H2, or a vertex of H1 with a
vertex of H2).

Theorem 10. A graph is an induced-sub-C4-separator graph if and only if it can

be built from complete graphs, cycles, octahedra, and wheels by repeatedly forming

2-clique-sums.

Proof. This follows from Lemma 9.
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