REQUIRING THAT MINIMAL SEPARATORS INDUCE COMPLETE MULTIPARTITE SUBGRAPHS

Terry A. McKee
Department of Mathematics and Statistics
Wright State University
Dayton, Ohio 45435 USA
e-mail: terry.mckee@wright.edu

Abstract

Complete multipartite graphs range from complete graphs (with every partite set a singleton) to edgeless graphs (with a unique partite set). Requiring minimal separators to all induce one or the other of these extremes characterizes, respectively, the classical chordal graphs and the emergent unichord-free graphs. New theorems characterize several subclasses of the graphs whose minimal separators induce complete multipartite subgraphs, in particular the graphs that are 2 -clique sums of complete, cycle, wheel, and octahedron graphs.

Keywords: minimal separator, complete multipartite graph, chordal graph, unichord-free graph.
2010 Mathematics Subject Classification: 05C62, 05C75, 05C69.

1. Introduction and Terminology

Define a complete-multipartite-separator graph to be a graph in which every minimal separator (as defined later in this section) induces a complete multipartite subgraph. As one special case, the graphs in which every minimal separator induces a complete graph are precisely the chordal graphs, a classic graph class with many characterizations, the most common being that every cycle of length 4 or more has at least one chord; see $[1,7]$. At the other extreme, the graphs for which every minimal separator induces an edgeless subgraph are precisely the unichordfree graphs, a recent graph class whose name comes from the characterization that no cycle has exactly one chord; see $[2,3,4,6,8]$.

Section 2 will characterize the complete-multipartite-separator graphs, which include all complete multipartite graphs, all chordal graphs, and all unichord-free
graphs. But this characterization fails to generalize the existing characterizations of chordal graphs and unichord-free graphs. Section 3 will remedy this, along with generalizing these previously studied classes to increasingly larger subclasses of complete-multipartite-separator graphs.

For any set S of vertices of a graph G, let $G[S]$ denote the subgraph of G induced by S and let $G-S$ denote $G[V(G)-S]$. Let \bar{G} denote the graph complement of G and, for every graph H, define G to be H-free if no induced subgraph of G is isomorphic to H. A chord of a cycle C is an edge $v w$ with $v, w \in V(C)$ and yet $v w \notin E(C)$. Let C_{n} and P_{n} denote, respectively, the cycle and path of order n (so P_{n} has length $n-1$). For any x-to- y path π, let $\pi^{\circ}=$ $V(\pi)-\{x, y\}$ be the set of internal vertices of π.

For nonadjacent vertices v and w in a connected graph G, a v, w-separator of G is a set $S \subseteq V(G)-\{v, w\}$ such that v and w are in different components (maximal connected subgraphs) of $G-S$, and a vertex separator of G is a v, w-separator for some $v, w \in V(G)$. A minimal v, w-separator of G is a v, w-separator that is not a proper subset of another v, w-separator, and a minimal separator of G is a minimal v, w-separator for some $v, w \in V(G)$. This means that one minimal separator can be contained in another one, since a minimal v, w-separator might be contained in a minimal v^{\prime}, w^{\prime}-separator. See [1] for more about minimal separators, including that a vertex separator S of G is a minimal separator of G if and only if, for some two components G_{1} and G_{2} of $G-S$, each vertex in S has a neighbor in each G_{i}.

A complete k-partite graph G has $V(G)$ partitioned into $k \geq 1$ nonempty partite sets V_{1}, \ldots, V_{k} where $E(G)=\left\{x y:(x, y) \in V_{i} \times V_{j}\right.$ with $\left.i \neq j\right\}$; denote G by $K\left(n_{1}, \ldots, n_{k}\right)$ where each $n_{i}=\left|V_{i}\right|$ and $1 \leq n_{1} \leq \cdots \leq n_{k}$. A complete multipartite graph is a complete k-partite graph for some $k \geq 1$. Therefore-as will be used several times in the following sections - a graph is complete multipartite if and only if it has no induced subgraph $H \cong \overline{P_{3}}=K_{1} \cup K_{2}$ (if, say, $V(H)=\{x, y, z\}$ with $E(H)=\{x y\}$, then x and y would have to be in the same partite set as z in a complete multipartite graph, but then they would not be adjacent to each other.) The two extremes among complete multipartite graphs are the complete graphs $K_{n}=K(1, \ldots, 1)$ (n-partite with each $n_{i}=1$) and the edgeless graphs $\overline{K_{n}}=K(n)$ (1-partite with the unique $n_{i}=n_{1}=n$).

2. When Each $G[S]$ is Complete Multipartite

Lemma 1. Every minimal separator of an induced subgraph of G is contained in a minimal separator of G.

Proof. Suppose S_{0} is a minimal v, w-separator of an induced subgraph H_{0} of G such that $H_{0}-S_{0}$ has components $H_{0}\left[R_{0}\right]$ and $H_{0}\left[R_{0}^{\prime}\right]$ where $v \in R_{0}, w \in R_{0}^{\prime}$, and each vertex in S_{0} has neighbors in both R_{0} and R_{0}^{\prime}.

Suppose S_{0} is not a v, w-separator of G, which means that $G-S_{0}$ is connected by a v-to- w path π_{1} containing some $x_{1} \in V\left(\pi_{1}^{\circ}\right)-V\left(H_{0}\right)$. Thus, $S_{0} \cup\left\{x_{1}\right\}$ is contained in a v, w-separator S_{1} of an induced subgraph H_{1} of G such that $H_{1}-S_{1}$ has components $H_{1}\left[R_{1}\right]$ and $H_{1}\left[R_{1}^{\prime}\right]$ with $R_{1}=R_{0} \cup \tau^{\circ}$ where τ is the v-to- x_{1} subpath of π_{1}, and $R_{1}^{\prime}=R_{0}^{\prime} \cup\left(\tau^{\prime}\right)^{\circ}$ where τ^{\prime} is the x_{1}-to- w subpath of π_{1}. As in [1], S_{1} is a minimal v, w-separator since each vertex of S_{0} has neighbors in both R_{0} and R_{0}^{\prime} (and so in both R_{1} and R_{1}^{\prime}), and each vertex of $S_{1}-S_{0}$ has neighbors in both τ and τ^{\prime} (and so in both R_{1} and R_{1}^{\prime}).

Repeat this, sequentially forming larger sets S_{i} by choosing $x_{i} \in V\left(\pi_{i}^{\circ}\right)$ in connected graphs $G-S_{i-1}$. As soon as $G-S_{i}$ stops being connected, S_{i} will be a minimal separator of G that contains S_{0}.

If $v w$ is a chord of C and $x, y \in V(C)-\{v, w\}$, say that $v w$ crosses $\{x, y\}$ if the four vertices v, x, w, y come in that order around C. For disjoint subsets $S_{1}, S_{2} \subset V(C)$, define an S_{1}-to- S_{2} chord of C to be a chord $x y$ where $x \in S_{1}$ and $y \in S_{2}$. A theta graph $\Theta=\Theta\left(u, w ; \pi_{1}, \pi_{2}, \pi_{3}\right)$ of a graph G consists of nonadjacent vertices u and w along with three internally-disjoint chordless u-to- w paths π_{1}, π_{2}, and π_{3}. Define a chord of Θ to be a chord of a cycle $\pi_{i} \cup \pi_{j}$ with $i \neq j$, and define a transversal of Θ to be any $\left\{z_{1}, z_{2}, z_{3}\right\}$ where each $z_{i} \in \pi_{i}^{\circ}$. Thus a transversal of Θ is a minimal u, v-separator of Θ (but not necessarily of $G[V(\Theta)]$, because chords of Θ will be edges of $G[V(\Theta)])$. Say that a transversal $\left\{z_{1}, z_{2}, z_{3}\right\}$ of Θ is crossed by a chord of Θ if some $x y \in E(G)$ has x an internal vertex of some u-to- z_{i} subpath of π_{i} and y an internal vertex of some z_{j}-to- w subpath of $\pi_{j} \neq \pi_{i}$.

Recall that complete-multipartite-separator graphs are those in which every minimal separator induces a complete multipartite subgraph. Theorem 2 is equivalent to a result in [5] (which contains a more general discussion of restrictions on minimal separators).

Theorem 2. A graph G is a complete-multipartite-separator graph if and only if, for every theta subgraph Θ of G with transversal S, if $G[S] \cong \overline{P_{3}}$, then S is crossed by a chord of Θ.
Proof. First, suppose G is a complete-multipartite-separator graph containing a theta subgraph $\Theta=\Theta\left(u, w ; \pi_{1}, \pi_{2}, \pi_{3}\right)$ with transversal S where $G[S] \cong \overline{P_{3}}$. Since complete multipartite graphs are $\overline{P_{3}}$-free, S cannot be contained in a minimal separator of $G[V(\Theta)]$ by Lemma 1. Therefore, since each π_{i} is chordless, S is crossed by a chord of Θ.

Conversely, suppose G has a minimal separator S such that $G[S]$ is not complete multipartite. Thus, there exists $S_{0}=\{x, y, z\} \subseteq S$ that induces a $\overline{P_{3}}$
subgraph, say with edge $x y$ and isolated vertex z. Let τ_{1} and τ_{2} be x-to- y paths with τ_{1}° and τ_{2}°, respectively, inside distinct components G_{1} and G_{2} of $G-S$, and let C be the cycle $\tau_{1} \cup \tau_{2}$. Let π be a chordless τ_{1}°-to- τ_{2}° path through z with endpoints u and w and with $\pi^{\circ} \cap V(C)=\emptyset$. If π_{1} and π_{2} are the two u-to- w subpaths of C and $\pi_{3}=\pi$, then S_{0} is a transversal of $\Theta\left(u, w ; \pi_{1}, \pi_{2}, \pi_{3}\right)$ of G. But then $G\left[S_{0}\right] \cong \overline{P_{3}}$, and yet, since S is a minimal separator of G, the transversal S_{0} is not crossed by a chord of Θ.

Although it follows directly from the $\overline{P_{3}}$-free characterization of complete multipartite graphs in the final paragraph of Section 1, Theorem 2 fails to display how unichord-free graphs and chordal graphs are the fundamental special cases of the class of complete-multipartite-separator graphs. Theorems 3 and 5 will do this by introducing parameters that stratify this class so that unichord-free graphs and chordal graphs are the parameter-1 cases. Finally, Theorems 7 and 10 will characterize a new graph class that is the conjunction of the parameter- 2 cases.

3. When Each $G[S]$ Is Independent or is Complete

Motivated by theta graphs (which are sometimes called "3-skeins"), define a generalized k-skein $\Theta=\Theta\left(T_{1}, T_{2} ; \pi_{1}, \ldots, \pi_{k}\right)$ of G to consist of disjoint subtrees T_{1} and T_{2} of G with no vertex of T_{1} adjacent to a vertex of T_{2} together with $k \geq 2$ internally-disjoint, chordless T_{1}-to- T_{2} paths π_{1}, \ldots, π_{k} such that each $\pi_{i}^{\circ} \neq \emptyset$, each leaf of each T_{i} is the endpoint of at least two of the paths π_{1}, \ldots, π_{k}, and no $v \in V\left(T_{1}\right) \cup V\left(T_{2}\right)$ is adjacent to any internal vertex of any of π_{1}, \ldots, π_{k} except when v is an endpoint of such a path. (The subtrees T_{1} and T_{2} are not necessarily induced subgraphs of G, and an endpoint of π_{i} does not have to be a leaf of T_{1} or T_{2}.) Theta graphs are generalized 3-skeins with $V\left(T_{1}\right)=\{u\}$ and $V\left(T_{2}\right)=\{w\}$, and a cycle C with nonconsecutive vertices u and w is a generalized 2-skein with $V\left(T_{1}\right)=\{u\}$ and $V\left(T_{2}\right)=\{w\}$ where $C=\pi_{1} \cup \pi_{2}$.

Define a chord of $\Theta=\Theta\left(T_{1}, T_{2} ; \pi_{1}, \ldots, \pi_{k}\right)$ to be an edge with endpoints in each of π_{i}° and π_{j}° where $i \neq j$, and define a transversal of Θ to be any set $\left\{z_{1}, \ldots, z_{k}\right\}$ where each $z_{i} \in \pi_{i}^{\circ}$; thus $\left\{z_{1}, \ldots, z_{k}\right\}$ is a minimal separator of Θ (but not necessarily of $G[V(\Theta)]$, because chords of Θ will be edges of $G[V(\Theta)]$). Say that a transversal $\left\{z_{1}, \ldots, z_{k}\right\}$ of Θ is crossed by a chord of Θ if some chord $x y$ of Θ has x an internal vertex of the T_{1}-to- z_{i} subpath of π_{i} and y an internal vertex of the z_{j}-to- T_{2} subpath of $\pi_{j} \neq \pi_{i}$.

A simple result from [4] is that a graph is unichord-free if and only if every chord $x y$ of every cycle C has $\{x, y\}$ crossed by a chord of C. This characterization will be the $p=1$ case of Theorem 3, in Corollary 4.

The clique number $\omega=\omega(G)$ of a graph G is the largest order of a complete subgraph of G. Thus, for each $p \geq 1$, saying that a complete multipartite graph
G has clique number $\omega \leq p$ in Theorem 3 is equivalent to saying that G is complete k-partite for some $k \leq p$ (which happens to be how complete p-partite graphs would be defined if the partite sets V_{1}, \ldots, V_{p-1} had been allowed to be empty). Thus, G is complete multipartite with clique number $\omega \leq p$ if and only if G is $\overline{P_{3}}$-free (to ensure G is complete multipartite) and K_{p+1}-free (to ensure $\omega(G) \leq p)$.

Theorem 3. Suppose G is a complete-multipartite-separator graph. Every minimal separator of G induces a complete multipartite subgraph with clique number $\omega \leq p$ if and only if, for every generalized $(p+1)$-skein Θ with transversal S, if $G[S] \cong K_{p+1}$, then S is crossed by a chord of Θ.

Proof. First, suppose every minimal separator of G induces a complete multipartite subgraph with clique number $\omega \leq p$ and $\Theta=\Theta\left(T_{1}, T_{2} ; \pi_{1}, \ldots, \pi_{p+1}\right)$ is a generalized $(p+1)$-skein of G with transversal $S=\left\{z_{1}, \ldots, z_{k}\right\}$ where $G[S] \cong K_{p+1}$. Since K_{p+1} has clique number $\omega>p$, the transversal S cannot be contained in a minimal separator of $G[V(\Theta)]$ by Lemma 1. Therefore, S is crossed by a chord of Θ (since each π_{i} is chordless and no vertex of T_{1} is adjacent in G to a vertex of T_{2}).

Conversely, suppose G is a complete-multipartite-separator graph with a minimal separator S^{\prime} such that $G\left[S^{\prime}\right]$ has clique number $\omega>p \geq 1$, say with $S=\left\{z_{1}, \ldots, z_{p+1}\right\} \subseteq S^{\prime}$ where $G[S] \cong K_{p+1}$. Let σ and τ be z_{1}-to- z_{2} paths with σ° and τ°, respectively, inside distinct components $G[U]$ and $G[W]$ of $G-S^{\prime}$ such that each $z_{i} \in S$ has neighbors in both U and W.

Let C be the cycle $\sigma \cup \tau$ with $u_{1} \in \sigma^{\circ}$ and $w_{1} \in \tau^{\circ}$, and let π_{1}^{\prime} and π_{2}^{\prime} be the u_{1}-to- w_{1} subpaths of C through, respectively, z_{1} and z_{2}. Let $\Pi_{2}=\pi_{1} \cup \pi_{2}$ and let π_{3} be a chordless u_{2}-to- w_{2} path where $u_{2} \in U$ and $w_{2} \in W$ are both vertices of Π_{2} such that $\pi_{3}^{\circ} \cap S^{\prime}=\left\{z_{3}\right\}$ and $\pi_{3}^{\circ} \cap V\left(\Pi_{2}\right)=\emptyset$. Let T_{1} be the trivial subtree u_{2} of $G[U]$, let T_{2} be the trivial subtree w_{2} of $G[W]$, and let π_{1} and π_{2} be the u_{2}-to- w_{2} paths of Π_{2}. This makes $\Theta\left(u_{2}, w_{2} ; \pi_{1}, \pi_{2}, \pi_{3}\right)$ a theta graph and $\Theta\left(T_{1}, T_{2} ; \pi_{1}, \pi_{2}, \pi_{3}\right)$ a generalized 3 -skein.

For $3 \leq i \leq p$, continue recursively by letting $\Pi_{i}=\pi_{1} \cup \cdots \cup \pi_{i}$ and letting π_{i+1} be a chordless u_{i}-to- w_{i} path where $u_{i} \in U$ and $w_{i} \in W$ are vertices of Π_{i} such that $\pi_{i+1}^{\circ} \cap S^{\prime}=\left\{z_{i+1}\right\}$ and $\pi_{i+1}^{\circ} \cap V\left(\Pi_{i}\right)=\emptyset$. Enlarge T_{1} to become a minimal subtree of $G[U] \cap \Pi_{i}$ that contains $\left\{u_{2}, \ldots, u_{i}\right\}$, and enlarge T_{2} to become a minimal subtree of $G[W] \cap \Pi_{i}$ that contains $\left\{w_{2}, \ldots, w_{i}\right\}$. This makes $\Theta\left(T_{1}, T_{2} ; \pi_{1}, \pi_{2}, \ldots, \pi_{i+1}\right)$ a generalized $(i+1)$-skein.

This process ends with a generalized $(p+1)$-skein $\Theta=\Theta\left(T_{1}, T_{2} ; \pi_{1}, \ldots\right.$, π_{p+1}), with $z_{i} \in \pi_{i}^{\circ}$ whenever $1 \leq i \leq p+1$, such that Θ has transversal S. But then $G[S] \cong K_{p+1}$ and yet S is not crossed by a chord of Θ (since S^{\prime} is a minimal separator of G with T_{1} and T_{2} in, respectively, the components $G[U]$ and $G[W]$ of $G-S^{\prime}$).

Corollary 4. A graph is unichord-free if and only if every chord $x y$ in every cycle C has $\{x, y\}$ crossed by a chord of C.

Proof. Recall that G is unichord-free if and only if every minimal separator induces an edgeless subgraph (a complete multipartite subgraph with clique number $\omega=1$). The "only if" direction follows from a cycle C with a chord $x y$ corresponding to a generalized 2-skein with each $\left|V\left(T_{i}\right)\right|=1$ of which $S=\{x, y\}$ is a transversal (with $G[S] \cong P_{2}$). Therefore, by the $p=1$ case of Theorem 3, $S=\{x, y\}$ is crossed by a chord of C.

For the "if" direction, a graph that is not unichord-free has a cycle C with a unique chord $x y$, where C corresponds to a generalized 2 -skein Θ with transversal $S=\{x, y\}$ that has $G[S] \cong P_{2}$, and yet S is not crossed by a chord of Θ.

Now consider chordal graphs, at the other extreme of complete multipartite graphs from unichord-free graphs. A simple inductive argument on the length of cycles show that a graph is chordal if and only if every two nonadjacent vertices x and y of every cycle C has $\{x, y\}$ crossed by a chord of C. This characterization will be the $q=1$ case of Theorem 5 , in Corollary 6.

The independence number $\alpha=\alpha(G)$ of a graph G is the largest order of an edgeless induced subgraph of G. Thus, G is complete multipartite graph with independence number $\alpha \leq q$ if and only if G is $\overline{P_{3}}$-free (to ensure G is complete multipartite) and $\overline{K_{q+1}}$-free (to ensure $\alpha(G) \leq q$).

Theorem 5. Suppose G is a complete-multipartite-separator graph. Every minimal separator of G induces a complete multipartite subgraph with independence number $\alpha \leq q$ if and only if, for every generalized $(q+1)$-skein Θ with transversal S, if $G[S] \cong \overline{K_{q+1}}$, then S is crossed by a chord of Θ.

Proof. This follows by the same proof as Theorem 3, replacing mentions of clique number with independence number, p with q, and K_{p+1} with $\overline{K_{q+1}}$.

Corollary 6. A graph is chordal if and only if every two nonadjacent vertices x and y of every cycle C has $\{x, y\}$ crossed by a chord of C.

Proof. Recall that G is chordal if and only if every minimal separator induces a complete subgraph (a complete multipartite graph with independence number $\alpha=1$). The "only if" direction follows as in the proof of Corollary 4, except now $G[S] \cong \overline{P_{2}}$ and the $q=1$ case of Theorem 5 is used.

For the "if" direction, a graph that is not chordal has a chordless cycle C of length at least 4 , where C corresponds to a generalized 2-skein Θ with (each) transversal $S=\{x, y\}$ that has $G[S] \cong \overline{P_{2}}$, and yet S is not crossed by a chord of Θ.

As an easy joint consequence of the $p=1$ and $q=1$ cases of Theorems 3 and 5 , a graph G is simultaneously unichord-free and chordal if and only if, for every two nonconsecutive vertices x and y (adjacent or not) of every cycle C of G, there is a chord that crosses $\{x, y\}$-in other words, every pair of vertices of C that might be crossed by a chord of C is crossed by a chord of C. The following two conditions are trivially equivalent to that characterization:
(C1) Every 2-connected subgraph of G is complete (such a G is often called a block graph).
(C2) Every minimal separator of G is a singleton.
Section 4 will consider a more interesting joint consequence of Theorems 3 and 5 , except now of the $p=2$ and $q=2$ cases.

4. When Each $G[S]$ is an Induced Subgraph of C_{4}

Define an induced-sub-C4-separator graph to be a graph G in which every minimal separator S of G induces a graph H that is isomorphic to an induced subgraph of $C_{4} \cong K(2,2)$-equivalently, H is one of the five graphs in Figure 1. It is simple to check that H being an induced subgraph of C_{4} is also equivalent to every three vertices of H inducing a path; or, alternatively, to H being simultaneously $\overline{P_{3}}$-free, K_{3}-free, and $\overline{K_{3}}$-free. Theorems 7 and 10 will characterize the induced-sub- C_{4}-separator graphs (with the $G[S] \cong \overline{P_{3}}$ condition of Theorem 2 becoming $G[S] \not \not \neq P_{3}$ in clause (2) of Theorem 7).

Figure 1. The five induced subgraphs of the complete bipartite graph C_{4}.
Theorem 7. Each of the following is equivalent to a graph G being an induced-sub-C4-separator graph:
(1) Every minimal separator of G induces a complete multipartite subgraph with clique number $\omega \leq 2$ and independence number $\alpha \leq 2$.
(2) G is a complete-multipartite-separator graph and, for every theta subgraph Θ of G with transversal S, if $G[S] \not \not P_{3}$, then S is crossed by a chord of Θ.
Proof. The equivalence with (1) follows from the graphs in Figure 1 being the complete multipartite graphs $K(1), K(1,1), K(2), K(1,2)$, and $K(2,2)$, which are the only complete multipartite graphs that have both $\alpha, \omega \leq 2$.

For the necessity of (2), suppose G is an induced-sub- C_{4}-separator graph that contains a theta subgraph Θ with transversal S (so $|S|=3$) such that $G[S] \not \approx P_{3}$. Theorem 2 implies $G[S] \not \approx \overline{P_{3}}$, and so $G[S]$ is isomorphic to K_{3} or $\overline{K_{3}}$. Therefore, S is crossed by a chord of Θ using, respectively, the $\omega=p=2$ case of Theorem 3 or the $\alpha=q=2$ case of Theorem 5 .

For the sufficiency of (2), suppose some minimal separator R of G has $G[R]$ that is not an induced subgraph of C_{4}. Thus $|R| \geq 3$ (since K_{1}, K_{2}, and $\overline{K_{2}}$ are induced subgraphs of C_{4}) and there exists an $S=\{x, y, z\} \subseteq R$ with $G[S] \not \equiv P_{3}$. Let τ_{1} and τ_{2} be x-to- y paths with τ_{1}° and τ_{2}° inside different components of $G-R$, let π_{3} be a chordless τ_{1}°-to- τ_{2}° path through z with $\pi_{3}^{\circ} \cap V\left(\tau_{1} \cup \tau_{2}\right)=\emptyset$ (using that R is a minimal separator of G), let u and w be the endpoints of π_{3}, and let π_{1} and π_{2} be the two u-to- w subpaths of $\tau_{1} \cup \tau_{2}$. Thus S is a transversal of the theta subgraph $\Theta\left(u, w ; \pi_{1}, \pi_{2}, \pi_{3}\right)$ of G and $G[S] \not \not P_{3}$, and yet S is not crossed by a chord of Θ (since R is a minimal separator of G).

Lemma 8 will characterize the 3 -connected induced-sub- C_{4}-separator graphs in the style of condition (C 1) at the end of Section 3. A wheel graph consists of a chordless cycle and a vertex that is adjacent to every vertex of that cycle.

Lemma 8. A 3-connected graph is an induced-sub-C C_{4}-separator graph if and only if it is either complete, a wheel, or the octahedron $K(2,2,2)$.

Proof. First, suppose G is a 3-connected induced-sub- C_{4}-separator graph. Thus, every minimal separator S of G has $|S| \geq 3$ and so induces a P_{3} or C_{4} subgraph. Also suppose G is not complete.

Case 1. $S=\{a, b, c\}$ is a minimal separator of G with $G[S] \cong P_{3}$ having the edges $a b$ and $b c$. Let G_{1} and G_{2} be components of $G-S$ such that every vertex of S has a neighbor in each of them, and let τ_{1} and τ_{2} be chordless a-to- c paths with each τ_{i}° in G_{i}. Say $\tau_{1}=v_{0}, v_{1}, v_{2}, \ldots, v_{t}$ with $v_{0}=a$ and $v_{t}=c$ has length $t \geq 2$, and let a^{\prime} be the neighbor of a in τ_{2}. If $t \geq 3$, then $\tau_{1}^{\circ} \subset N(b)$ (to prevent, when $1 \leq j \leq t-1$, either $\left\{a, b, v_{j}\right\}$ being in a minimal c, v_{j-1}-separator of $G\left[S \cup \tau_{1}^{\circ} \cup \tau_{2}^{\circ}\right]$ or $\left\{b, c, v_{j}\right\}$ being in a minimal a, v_{j+1}-separator of $G\left[S \cup \tau_{1}^{\circ} \cup \tau_{2}^{\circ}\right]$, either of which would, by Lemma 1, be in a minimal separator of G and induce a $\overline{P_{3}}$ subgraph of G). If, instead, $t=2$, then $\tau_{1}^{\circ} \subset N(b)$ (to prevent $\left\{b, v_{1}, a^{\prime}\right\}$ from being a minimal a, c-separator of $G\left[S \cup \tau_{1}^{\circ} \cup \tau_{2}^{\circ}\right]$ that would, by Lemma 1, be in a minimal separator of G and induce a $\overline{P_{3}}$ or a $\overline{K_{3}}$ subgraph of G, depending on whether or not a^{\prime} is adjacent to b). Either way, $\tau_{1}^{\circ} \subset N(b)$ and, similarly, $\tau_{2}^{\circ} \subset N(b)$. Therefore, S is in the wheel $H_{S}=G\left[S \cup \tau_{1}^{\circ} \cup \tau_{2}^{\circ}\right]$, centered at b.

If $G-S$ has a third component G_{3}, then G being 3-connected ensures there exists a chordless a-to- c path τ_{3} with τ_{3}° in G_{3}, and so $\tau_{3}^{\circ} \subset N(b)$ (as in the preceding paragraph) and $x_{1}, x_{2}, x_{3} \in N(a)$ with each $x_{i} \in \tau_{i}^{\circ}$ would form a minimal a, c-separator of $G\left[\tau_{1} \cup \tau_{2} \cup \tau_{3}\right]$ that would, by Lemma 1 , be in a minimal
separator of G and induce a $\overline{K_{3}}$ subgraph of G. Therefore, $G-S$ has only the two components G_{1} and G_{2}.

If $G \neq H_{S}$, then there exists $z \in V(G)-V\left(H_{S}\right)$, say with $z \in V\left(G_{1}\right)-\tau_{1}^{\circ}$. Form a new graph G^{+}by appending one new vertex ν to G such that $N(\nu)=$ $V\left(\tau_{1}\right)$. Since G^{+}is also 3 -connected, Menger's Theorem ensures that G^{+}has three internally-disjoint ν-to- z paths that intersect τ_{1} at three vertices in a minimal ν, z separator S^{\prime} of G^{+}; moreover, since $\left|S^{\prime}\right| \geq 3$, at least one of these three vertices, say v_{i}, is in τ_{1}°. But then vertices a^{\prime}, v_{i}, and b would be internal vertices of, respectively, the a-to- c paths τ_{1}, τ_{2}, and the length- 2 path a, b, c, along with z being an internal vertex of an additional a-to- c path with internal vertices in G_{1} (using that G is 3 -connected). Thus $\left\{a^{\prime}, b, v_{i}, z\right\}$ would be in a minimal a, c separator of G that does not induce a C_{4} subgraph. Therefore, G is the wheel H_{S}.

Case 2. $S=\{a, b, c, d\}$ is a minimal separator of G with $G[S] \cong C_{4}$ having the edges $a b, b c, c d$, and $a d$. Let G_{1} and G_{2} be components of $G-S$ such that every vertex of S has a neighbor in each of them, and let τ_{1} and τ_{2} be chordless a-to- c paths with each τ_{i}° in G_{i}. As in the argument for Case $1, \tau_{1}^{\circ} \subset N(b)$ (using $\left.G[\{a, b, c\}] \cong P_{3}\right)$ and $\tau_{1}^{\circ} \subset N(d)\left(\right.$ using $\left.G[\{a, d, c\}] \cong P_{3}\right)$. Pick any $x_{1} \in \tau_{1}^{\circ}$ and let τ_{1}^{\prime} be the b-to- d path b, x_{1}, d in G_{1}. As in the argument for Case 1, $\left(\tau_{1}^{\prime}\right)^{\circ} \in N(c)\left(\right.$ using $\left.G[\{b, c, d\}] \cong P_{3}\right)$ and $\left(\tau_{1}^{\prime}\right)^{\circ} \subset N(a)\left(u \operatorname{sing} G[\{b, a, d\}] \cong P_{3}\right)$. Thus $S \subseteq N\left(x_{1}\right)$, and similarly $S \subseteq N\left(x_{2}\right)$ for some x_{2} in G_{2}. Therefore, S is in the octahedron $H_{S}=G\left[S \cup\left\{x_{1}, x_{2}\right\}\right]$.

If $G-S$ has a third component G_{3}, then G being 3-connected ensures there exists a chordless a-to-c or b-to- d path τ_{3} with τ_{3}° in G_{3}; without loss of generality, say τ_{3} is an a-to- c path. Thus, as in Case $1, x_{1}, x_{2}$ and any $x_{3} \in \tau_{3}^{\circ}$ would form a minimal a, c-separator of $G\left[\tau_{1}^{\circ} \cup \tau_{2}^{\circ} \cup \tau_{3}^{\circ}\right]$ that would induce a $\overline{K_{3}}$ subgraph of G. Therefore, $G-S$ has only the two components G_{1} and G_{2}.

If $G \neq H_{S}$, then there exists $z \in V(G)-V\left(H_{S}\right)$, say with $z \in V\left(G_{1}\right)-\left\{x_{1}\right\}$. Since G is 3-connected, Menger's Theorem requires G to have three internallydisjoint z-to- x_{2} paths that intersect S at three vertices in a minimal z, x_{2}-separator of G; without loss of generality, say these three vertices of S are a, b, c. But then vertices x_{1}, x_{2}, and b would be internal vertices of, respectively, the length- $2 a$-to- c paths a, x_{1}, c and a, x_{2}, b and a, b, c, along with z being an internal vertex of an additional a-to- c path with internal vertices in G_{1} (using that G is 3 -connected). Thus $\left\{b, x_{1}, x_{2}, z\right\}$ would be in a minimal a, c-separator of G that does not induce a C_{4} subgraph. Therefore, G is the octahedron H_{S}.

Conversely, complete graphs have no minimal separators at all, and each minimal separator of a wheel or octahedron induces, respectively, a P_{3} or C_{4} subgraph.
Lemma 9. A 2-connected graph in which no minimal separator induces a K_{2} subgraph is an induced-sub-C C_{4}-separator graph if and only if it is either complete, a cycle, a wheel, or the octahedron.

Proof. First, suppose G is a 2-connected induced-sub- C_{4}-separator graph in which no minimal separator induces a K_{2} subgraph. If G is 3 -connected, then G is either complete, a wheel, or the octahedron by Lemma 8.

Hence, assume G is not complete and has a minimal separator $S=\{a, b\}$ with $G[S] \cong \overline{K_{2}}$. Since a minimal a, b-separator of G must be one of the graphs in Figure 1 and cannot be K_{1} (using that G is 2 -connected) or any of K_{2}, P_{3} or C_{4} (using that S is a minimal separator of G), every minimal a, b-separator of G must induce a $\overline{K_{2}}$ subgraph of G where $G-S$ has exactly two components G_{1} and G_{2} and each minimal a, b-separator of each subgraph $G_{i}^{+}=G\left[V\left(G_{i}\right) \cup S\right]$ is a singleton. Since no minimal separator of G induces a K_{1} or K_{2} subgraph, G_{1}^{+} and G_{2}^{+}are internally-disjoint a-to- b paths. Therefore, G is a cycle.

Conversely, each minimal separator of a cycle induces a $\overline{K_{2}}$ subgraph, and the minimal separators of complete graphs, wheels, and the octahedron are covered by Lemma 8 .

In Theorem 10, the 2-clique-sum of vertex-disjoint graphs H_{1} and H_{2} results from identifying a clique of order at most 2 from each of H_{1} and H_{2} (in other words, identifying an edge of H_{1} with an edge of H_{2}, or a vertex of H_{1} with a vertex of H_{2}).

Theorem 10. A graph is an induced-sub-C4-separator graph if and only if it can be built from complete graphs, cycles, octahedra, and wheels by repeatedly forming 2 -clique-sums.

Proof. This follows from Lemma 9.

References

[1] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey (Society for Industrial and Applied Mathematics, Philadelphia, 1999). doi:10.1137/1.9780898719796
[2] R.C.S. Machado, C.M.H. de Figueiredo and N. Trotignon, Complexity of colouring problems restricted to unichord-free and \{square, unichord\}-free graphs, Discrete Appl. Math. 164 (2014) 191-199. doi:10.1016/j.dam.2012.02.016
[3] R.C.S. Machado, C.M.H. de Figueiredo and K. Vušković, Chromatic index of graphs with no cycle with a unique chord, Theoret. Comput. Sci. 411 (2010) 1221-1234. doi:10.1016/j.tcs.2009.12.018
[4] T.A. McKee, Independent separator graphs, Util. Math. 73 (2007) 217-224.
[5] T.A. McKee, Minimal vertex separators and 3-skein subgraphs, Bull. Inst. Combin. Appl. 72 (2014) 19-24.
[6] T.A. McKee, A new characterization of unichord-free graphs, Discuss. Math. Graph Theory 35 (2015) 765-771.
doi:10.7151/dmgt. 1831
[7] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory (Society for Industrial and Applied Mathematics, Philadelphia, 1999).
doi:10.1137/1.9780898719802
[8] N. Trotignon and K. Vušković, A structure theorem for graphs with no cycle with a unique chord and its consequences, J. Graph Theory 63 (2010) 31-67. doi:10.1002/jgt. 20405

Received 28 June 2016
Revised 9 November 2016
Accepted 9 November 2016

