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Abstract

The concept of generalized k-connectivity κk(G), mentioned by Hager in
1985, is a natural generalization of the path-version of the classical connec-
tivity. The pendant tree-connectivity τk(G) was also introduced by Hager
in 1985, which is a specialization of generalized k-connectivity but a gener-
alization of the classical connectivity. Another generalized connectivity of
a graph G, named k-connectivity κ′

k
(G), introduced by Chartrand et al. in

1984, is a generalization of the cut-version of the classical connectivity.
In this paper, we get the lower and upper bounds for the difference of

κ′

k
(G) and τk(G) by showing that for a connected graph G of order n, if

κ′

k
(G) 6= n− k+1 where k ≥ 3, then 1 ≤ κ′

k
(G)− τk(G) ≤ n− k; otherwise,

1 ≤ κ′

k
(G) − τk(G) ≤ n − k + 1. Moreover, all of these bounds are sharp.

We get a sharp upper bound for the 3-connectivity of the Cartesian product
of any two connected graphs with orders at least 5. Especially, the exact
values for some special cases are determined. Among our results, we also
study the pendant tree-connectivity of Cayley graphs on Abelian groups of
small degrees and obtain the exact values for τk(G), where G is a cubic or
4-regular Cayley graph on Abelian groups, 3 ≤ k ≤ n.
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1. Introduction

We refer to a book [5] for graph theoretical notation and terminology not de-
scribed here. For a graph G, let V (G) and E(G) be the set of vertices and the
set of edges of G, respectively. For S ⊆ V (G), we denote by G \ S the subgraph
obtained by deleting from G the vertices of S together with the edges incident
with them. We use Pn, Cm and Kℓ to denote a path of order n, a cycle of order
m and a complete graph of order ℓ, respectively.

Connectivity is one of the most basic concepts in graph theory, both in a
combinatorial sense and in an algorithmic sense. The classical connectivity has
two equivalent definitions. The connectivity of G, written κ(G), is the minimum
size of a vertex set S ⊆ V (G) such that G \ S is disconnected or has only one
vertex. This definition is called the cut-version definition of the connectivity.
A well-known theorem of Menger provides an equivalent definition, which can
be called the path-version definition of the connectivity. For any two distinct
vertices x and y in G, the local connectivity κG(x, y) is the maximum number of
internally disjoint paths connecting x and y. Then κ(G) = min{κG(x, y)|x, y ∈
V (G), x 6= y} is defined to be the connectivity of G.

Although there are many elegant and powerful results on connectivity in
graph theory, the basic notation of classical connectivity may not be general
enough to capture some computational settings and so people tried to generalize
this concept. For the cut-version definition of the connectivity, we find that the
above minimum vertex set does not regard to the number of components of G\S.
Two graphs with the same connectivity may have different degrees of vulnerability
in the sense that the deletion of a vertex cut-set of minimum cardinality from
one graph may produce a graph with considerably more components than in the
case of the other graph. For example, the star K1,n−1 and the path Pn (n ≥ 3)
are both trees of order n and therefore have connectivity 1, but the deletion of
a cut-vertex from K1,n−1 produces a graph with n − 1 components while the
deletion of a cut-vertex from Pn produces only two components. Chartrand et

al. [6] generalized the cut-version definition of the connectivity as follows: For
an integer k ≥ 2 and a graph G of order n ≥ k, the k-connectivity κ′k(G) is the
smallest number of vertices whose removal from G produces a graph with at least
k components or a graph with fewer than k vertices. By definition, we clearly
have κ′2(G) = κ(G). Thus, the concept of the k-connectivity could be seen as a
generalization of the classical connectivity. For more details about this topic, we
refer to [6, 8, 28, 29, 36, 38].

Another generalized connectivity of a graph G, mentioned by Hager in 1985
[14], is a natural generalization of the path-version definition of the connectivity.
For a graph G = (V,E) and a set S ⊆ V of at least two vertices, an S-Steiner
tree or a Steiner tree connecting S (or simply, an S-tree) is such a subgraph
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T of G that is a tree with S ⊆ V (T ). Two S-trees T1 and T2 are said to be
internally disjoint if E(T1)∩E(T2) = ∅ and V (T1)∩ V (T2) = S. The generalized

local connectivity κG(S) is the maximum number of internally disjoint S-trees
in G. For an integer k with 2 ≤ k ≤ n, the generalized k-connectivity (or k-
tree-connectivity) is defined as κk(G) = min{κG(S)| S ⊆ V (G), |S| = k}. Thus,
κk(G) is the minimum value of κG(S) when S runs over all the k-subsets of
V (G). By definition, we clearly have κ2(G) = κ(G), which is the reason why one
addresses κk(G) as the generalized connectivity of G. There are many results on
the generalized k-connectivity, such as [7, 11, 14, 20, 21, 23, 24, 26, 32–35,37–39].

The concept of pendant tree-connectivity, introduced by Hager in 1985 [14], is
a specialization of generalized k-connectivity but a generalization of the classical
connectivity. For an S-Steiner tree, if the degree of each vertex in S is equal to
one, then this tree is called a pendant S-Steiner tree. Two pendant S-trees T1

and T2 are said to be internally disjoint if E(T1)∩E(T2) = ∅ and V (T1)∩V (T2) =
S. The local pendant tree-connectivity τG(S) is the maximum number of internally
disjoint pendant S-trees in G. For an integer k with 2 ≤ k ≤ n, the pendant tree-
connectivity is defined as τk(G) = min{τG(S)| S ⊆ V (G), |S| = k}. Thus, τk(G)
is the minimum value of τG(S) when S runs over all the k-subsets of V (G). By
definition, we clearly have τ2(G) = κ(G).

In addition to being a natural combinatorial measure, both the pendant tree-
connectivity and the generalized k-connectivity can be motivated by its interest-
ing interpretation in practice. For example, suppose that G represents a network.
If one wants to connect a pair of vertices of G, then a path is used to connect
them. However, if one wants to connect a set S of vertices of G with |S| ≥ 3, then
a tree has to be used to connect them. This kind of tree with minimum order for
connecting a set of vertices is usually called a Steiner tree, and popularly used in
the physical design of VLSI [12,13,30] and computer communication networks [9].
Usually, one wants to consider how tough a network can be, for the connection
of a set of vertices. Then the number of totally independent ways to connect
them is a measure for this purpose. The generalized k-connectivity can serve for
measuring the capability of a network G to connect any k vertices in G. For the
topic of generalized connectivities and their applications, the reader is referred
to a survey [22] and a monograph [25].

In [38], Sun and Li compared the k-connectivity κ′k(G) and the generalized
k-connectivity κk(G) of a graph G and obtained sharp lower bounds and upper
bounds for κ′k(G) − κk(G), where 3 ≤ k ≤ n. Note that the k-connectivity
κ′k(G) and the pendant tree-connectivity τk(G) of a graph are also different. For
example, just consider the cycle Cn with n ≥ 6, we clearly have κ′3(G) = 3 and
τ3(G) = 0. Hence, we want to find the difference between these two parameters
and the following problem is very interesting.

Problem 1.1. Give nice bounds for κ′k(G)− τk(G), where 3 ≤ k ≤ n.
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In this paper, we will answer Problem 1.1 by giving sharp lower and upper
bounds for κ′k(G)− τk(G) with 3 ≤ k ≤ n (Theorem 8).

Products of graphs occur naturally in discrete mathematics as tools in com-
binatorial constructions, they give rise to important classes of graphs and deep
structural problems. Cartesian product is one of the most important graph
products and plays a key role in design and analysis of networks. Many re-
searchers have investigated the topic of Cartesian product graphs in the past sev-
eral decades, the reader is referred to three important books [15, 17, 18]. In this
paper, we will continue the research on the topic of k-connectivity and study the
3-connectivity of the Cartesian product graphs by getting a sharp upper bound
for κ′3(G�H), where G and H are any two connected graphs with orders at least
five (Theorem 10). Among our results, we will also obtain the precise values for
κ′3(G�H), where G and H belong to some special graph classes (Propositions 9,
12, 13, 14 and 15).

Let X be a finite group, with operation denoted additively, and A be a subset
of X \ {0} such that a ∈ A implies −a ∈ A, where 0 is the identity element of
X. The Cayley graph Cay(X,A) is defined to have vertex set X such that there
is an edge between x and y if and only if x − y ∈ A. It is clear that Cay(X,A)
is connected if and only if A is a generating set of X. Cayley graphs have
been important objects of study in algebraic graph theory over many years [2,4].
In particular, mathematicians and computer scientists recommend (e.g. [1, 16,
40]) Cayley graphs as models for interconnection networks because they exhibit
many properties that ensure high performance. In fact, a number of networks
of both theoretical and practical importance, including hypercubes, butterflies,
cube-connected cycles, star graphs and their generalizations, are Cayley graphs.
The reader is referred to the survey papers [16,19] for results pertaining to Cayley
graphs as models for interconnection networks. Due to the importance of Cayley
graphs in network design and the significance of reliability of networks, it is
of interest to understand the generalized k-connectivity and the pendant tree-
connectivity of Cayley graphs. The generalized k-connectivity of Cayley graphs
on Abelian groups of small degrees was studied by Sun and Zhou [39]. In this
paper we will focus on the pendant tree-connectivity of Cayley graphs on Abelian
groups of small degrees and obtain the exact values for τk(G), where G is a cubic
or 4-regular Cayley graph on Abelian groups (Theorems 17 and 22).

2. Bounds for κ′k(G)− τk(G)

For a general graph G, the following result concerns the bounds for τk(G).

Proposition 1 [27]. Let k, n be two integers with 3 ≤ k ≤ n, and let G be a

graph of order n. Then 0 ≤ τk(G) ≤ n− k.
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From [27], we know that τk(Kn) = n − k. By the definition of τk(G), we
clearly have the following observation.

Observation 2. τk(G) = 0 for k ≥ max{δ(G) + 1, 3}.

The following two observations were introduced in [38].

Observation 3 [38]. If H is a spanning subgraph of G, then κ′k(H) ≤ κ′k(G).

Observation 4 [38]. For a connected graph G of order n, we have κ′k(G) ≤
n− α(G), where α(G) is the independence number of G.

For two integers k, n with 1 ≤ k ≤ n− 1, we define a class of graphs G(k) as
follows: For each graph G ∈ G(k), there exists a cut vertex x such that G \ {x}
contains at least k components. By definition, for any k1 < k2, we have that
G(k2) is a subclass of G(k1).

Proposition 5 [38]. Let k, n be two integers with 2 ≤ k ≤ n. For a connected

graph G of order n, 1 ≤ κ′k(G) ≤ n− k + 1. Moreover, κ′k(G) = 1 if and only if

k = n or G ∼= G(k), and κ′k(G) = n− k + 1 if and only if α(G) ≤ k − 1.

For example, for 2 ≤ k < n we know K1,n−1 ∈ G(k), and we clearly have
κ′k(K1,n−1) = 1 and κ′k(Kn) = n−k+1. For a general k ≥ 3, if κ′k(G) 6= n−k+1,
then we can get sharp lower and upper bounds for κ′k(G)− τk(G).

Lemma 6. For a connected graph G of order n, if κ′k(G) 6= n−k+1 with k ≥ 3,
then 1 ≤ κ′k(G)− τk(G) ≤ n− k. Moreover, the bounds are sharp.

Proof. Since κ′k(G) 6= n−k+1, we have κ′k(G) ≤ n−k by Proposition 5, and then
n ≥ κ′k(G)+ k. By definition, there exists a set S ⊆ V (G) with |S| = κ′k(G) such
that G \ S contains ℓ components, say G1, G2, . . . , Gℓ, where ℓ ≥ k. We choose
S′ = {u}∪{ui| 1 ≤ i ≤ k−1}, where u ∈ S and ui ∈ V (Gi) for 1 ≤ i ≤ k−1. By
definitions of the local pendant tree-connectivity τG(S

′) and the pendant tree-
connectivity τk(G), we can deduce that τk(G) ≤ τG(S

′) ≤ |S| − 1 = κ′k(G) − 1,
and then κ′k(G) − τk(G) ≥ 1. For the sharpness of this bound, we consider the
graph G ∈ G(k). By the definition of G(k), it is not hard to show that κ′k(G) = 1
and τk(G) = 0, then κ′k(G)− τk(G) = 1.

Since τk(G) ≥ 0 and κ′k(G) ≤ n− k, we have κ′k(G)− τk(G) ≤ n− k. For the
sharpness of this bound, we consider the following example. Let G be a connected
graph with vertex set V (G) = A ∪ B such that A = {ui| 1 ≤ i ≤ n − k} is a
clique, B = {vj | 1 ≤ j ≤ k} is an independent set, and u1v1, uivj ∈ E(G) where
1 ≤ i ≤ n− k, 2 ≤ j ≤ k. Since G is connected and δ(G) = 1, we have τk(G) = 0
by Observation 2. Clearly, α(G) = k and so κ′k(G) ≤ n− k by Observation 4. It
is also not hard to show that for any set S ⊆ V (G) with |S| < n−k, the subgraph
G \ S contains at most two components, and so we have κ′k(G) ≥ n − k. Thus,
κ′k(G) = n− k, and then κ′k(G)− τk(G) = n− k.
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The following result concerns the case that κ′k(G) = n− k + 1.

Lemma 7. For a connected graph G of order n, if κ′k(G) = n − k + 1 where

k ≥ 3, then 1 ≤ κ′k(G)− τk(G) ≤ n− k + 1. Moreover, the bounds are sharp.

Proof. The bounds are deduced from Proposition 1 and the assumption that
κ′k(G) = n−k+1. For the sharpness of the lower bound, just consider the graph
Kn, since τk(Kn) = n−k and κ′k(Kn) = n−k+1, we have κ′k(Kn)− τk(Kn) = 1.
For the sharpness of the upper bound, we consider the following example. Let
G be a graph with V (G) = {ui| 1 ≤ i ≤ n} such that u1un ∈ E(G) and V ′ =
{ui| 1 ≤ i ≤ n− 1} is a clique. By Observation 2, τk(G) = 0 since δ(G) = 1. We
know α(G) = 2 ≤ k − 1, so κ′k(G) = n − k + 1 by Proposition 4, and then we
have κ′k(G)− τk(G) = n− k + 1.

By Lemmas 6 and 7, we now give sharp lower and upper bounds for κ′k(G)−
τk(G).

Theorem 8. For a connected graph G of order n, if κ′k(G) 6= n − k + 1 where

k ≥ 3, then 1 ≤ κ′k(G)−τk(G) ≤ n−k; otherwise, 1 ≤ κ′k(G)−τk(G) ≤ n−k+1.
Moreover, all of these bounds are sharp.

3. Cartesian Product Graphs

The Cartesian product of two graphs G and H, denoted by G�H, is defined to
have vertex set V (G) × V (H) such that (u, u′) and (v, v′) are adjacent if and
only if either u = v and u′v′ ∈ E(H), or u′ = v′ and uv ∈ E(G). Note that
this product is commutative, that is, G�H = H�G. Furthermore, the Cartesian
product of two graphs is connected if and only if these two graphs are both
connected [17]. Let G and H be two graphs with V (G) = {ui| 1 ≤ i ≤ n} and
V (H) = {vj | 1 ≤ j ≤ m}, then V (G�H) = {(ui, vj)| 1 ≤ i ≤ n, 1 ≤ j ≤ m}.
For 1 ≤ j ≤ m, we use G(vj) to denote the subgraph of G�H induced by the
vertex set {(ui, vj)| 1 ≤ i ≤ n}; for 1 ≤ i ≤ n, we use H(ui) to denote the
subgraph of G�H induced by the vertex set {(ui, vj)| 1 ≤ j ≤ m}. Clearly,
we have G(vj) ∼= G and H(ui) ∼= H. For example, see the graphs in Figure 1,
G(vj) ∼= G ∼= P3 for 1 ≤ j ≤ 4 and H(ui) ∼= H ∼= K4 for 1 ≤ i ≤ 3.

The following result will be used in our proof of Theorem 10.

Proposition 9. For n,m ≥ 5, we have κ′3(Kn�Km) = 2(n+m− 3).

Proof. Let G ∼= Kn, H ∼= Km, V (G) = {ui| 1 ≤ i ≤ n}, V (H) = {vj | 1 ≤
j ≤ m} and S′ = {(u1, vj)| 2 ≤ j ≤ m} ∪ {(u2, vj)| 3 ≤ j ≤ m} ∪ {(ui, v1)| 2 ≤
i ≤ n} ∪ {(ui, v2)| 3 ≤ i ≤ n}. Clearly, W ∗ = (G�H) \ S′ contains exactly three
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components. Among these components, there are two trivial components and one
nontrivial component with (n− 2)(m− 2) vertices. Note that |S′| = 2(n+m− 3)
and |V (W ∗)| = 2 + (n− 2)(m− 2). Hence, κ′3(Kn�Km) ≤ 2(n+m− 3). In the
following, we will show that κ′3(Kn�Km) ≥ 2(n+m− 3).

G

u1

u2

u3

v1

v2

v3

v4

H

G(v1) G(v2) G(v3) G(v4)

H(u1)

H(u2)

H(u3)

1 1 1

2 2 2

(a) (b) (c)

Figure 1. Graphs G, H and their Cartesian product.

Let S be any subset of G�H such that (G�H) \ S contains ℓ components,
say D1, D2, . . . , Dℓ, where ℓ ≥ 3. Since G ∼= Kn, H ∼= Km, we know that for any
1 ≤ ℓ1 6= ℓ2 ≤ ℓ, Dℓ1 and Dℓ2 must satisfy the following property: if (ui1 , vj1) ∈
Dℓ1 , (ui2 , vj2) ∈ Dℓ2 , then i1 6= i2 and j1 6= j2.

By relabeling the subscripts of vertices of G, H and G�H, we can make sure
that these components D1, D2, . . . , Dℓ satisfy the following two properties:

(i) |V (D1)| ≤ |V (D2)| ≤ · · · ≤ |V (Dℓ)|;

(ii) for any two components Dℓ1 , Dℓ2 , where 1 ≤ ℓ1, ℓ2 ≤ ℓ, and for any two
vertices (ui1 , vj1) ∈ Dℓ1 , (ui2 , vj2) ∈ Dℓ2 , if ℓ1 < ℓ2, then i1 < i2 and j1 < j2. The
graph (G�H) \ S must belong to one of the following three cases:

(a) |V (D1)| ≥ 2;

(b) |V (D1)| = 1 and |V (D2)| ≥ 2;

(c) |V (D1)| = |V (D2)| = 1.

Note that the graph W ∗ belongs to case (c). For each case, it is not hard to
show that |V ((G�H)\S)| ≤ |V (W ∗)| = 2+(n−2)(m−2) and so |S| ≥ 2(m+n−3).

For example, see Figure 2, we set G ∼= K5, H ∼= K6. Now V (W ∗) = {(u1, v1),
(u2, v2)} ∪ {(ui, vj)| 3 ≤ i ≤ 5, 3 ≤ j ≤ 6}. Let D1 = {(u1, v1), (u1, v2)},
D2 = {(u2, v3), (u2, v4), (u3, v3)}, D3 = {(u4, v5), (u4, v6), (u5, v5), (u5, v6)} and
S = V (G�H) \ (V (D1)∪ V (D2)∪ V (D3)). Clearly, D1, D2, D3 satisfy the above
two properties and |S| = 21 > 16 = 2(m+ n− 3).

By the above argument and the definition of 3-connectivity, we can deduce
that κ′3(Kn�Km) ≥ 2(n+m− 3). Hence, our result holds.

For u ∈ V (G), we use NG(u) to denote the set of neighbors of u. For a non-
complete graph, let d2(G) = min{d(u) + d(v) − |NG(u) ∩ NG(v)|| u, v ∈ V (G),
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uv 6∈ E(G)}. We now give one of our main results in terms of d2(G) and the
minimum degree. Note that we have 1 ≤ κ′3(H) ≤ n− 2 for any connected graph
H of order n by Proposition 5.

D1

G(v1)

D2

D3

G(v2) G(v3) G(v4) G(v5) G(v6)

H(u1)

H(u2)

H(u3)

H(u4)

H(u5)

Figure 2. An example for Proposition 9.

Theorem 10. Let G and H be any two connected graphs with orders n and m,

respectively, where n,m ≥ 5.

(i) If G is non-complete, then κ′3(G�H) ≤ d2(G) + 2δ(H).

(ii) Let G be complete. If 1 ≤ κ′3(H) ≤ n− 3, then κ′3(G�H) ≤ nκ′3(H).

Otherwise, we have κ′3(G�H) ≤ 2(n+m− 3). Moreover, all of these bounds are

sharp.

Proof. Let V (G) = {ui| 1 ≤ i ≤ n} and V (H) = {vj | 1 ≤ j ≤ m}. Then
V (G�H) = {(ui, vj)| 1 ≤ i ≤ n, 1 ≤ j ≤ m}. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, we
use the definitions of H(ui) and G(vj) at the beginning of this section. Since G
and H are connected, G�H is connected.

Firstly, we prove the assertion (i). Without loss of generality, we assume that
dH(v1) = δ(H), u1u2 6∈ E(G) and d2(G) = d(u1) + d(u2)− |NG(u1) ∩NG(u2)|.

Let S1 be the set of neighbors of (u1, v1) and (u2, v1) in G(v1), S2 be the set
of neighbors of (u1, v1) in H(u1), S3 be the set of neighbors of (u2, v1) in H(u2).
Clearly, we have |S1| = d2(G) and |S2| = |S3| = δ(H). Let S = S1 ∪ S2 ∪ S3,
it is not hard to show that the removal of S in G�H produces a graph with at
least three components, and among them there are at least two trivial components
which contain (u1, v1) and (u2, v1), respectively. Thus, κ

′

3(G�H) ≤ |S| = d2(G)+
2δ(H).

For the sharpness of this bound, we just let G ∼= Pn, H ∼= Pm, where n,m ≥ 5.
Clearly, d2(G) = 2, δ(H) = 1, so κ′3(G�H) ≤ d2(G)+2δ(H) = 4. Furthermore, it
is not hard to show that for any set S ⊆ V (Pn�Pm) with |S| ≤ 3, the removal of
S in Pn�Pm produces a graph with at most two components, so κ′3(G�H) ≥ 4.
Thus, κ′3(G�H) = 4 and the bound is sharp.
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Secondly, we prove the assertion (ii). If κ′3(H) = n− 2, then by Observation
3 and Proposition 9, we have κ′3(G�H) ≤ κ′3(Kn�Km) = 2(n+m− 3) and this
bound is sharp.

If 1 ≤ κ′3(H) ≤ n − 3, then there exists a set S ⊆ V (H) such that H \ S
contains at least three components. Without loss of generality, we assume that
S = {vj | 1 ≤ j ≤ κ′3(H)}. Let S′ = {(ui, vj)| 1 ≤ i ≤ n, 1 ≤ j ≤ κ′3(H)} ⊆
V (G�H). Clearly, (G�H)\S′ contains at least three components, so κ′3(G�H) ≤
nκ′3(H).

For the sharpness of this bound, we just let G ∼= Kn, H ∼= K1,m−1, where n,
m ≥ 5. Clearly, κ′3(H) = 1, so κ′3(G�H) ≤ n. For any set S ⊆ V (G�H) with
|S| ≤ n−1, we find that there exists an integer 1 ≤ i0 ≤ n such that V (H(ui0))∩
S = ∅, and then the removal of S in Kn�Pm produces a connected graph. Thus,
κ′3(G�H) ≥ n and we have κ′3(G�H) = n.

By Theorem 10, the following result clearly holds.

Corollary 11. For any two connected non-complete graphs G and H with orders

at least 5, we have

κ′3(G�H) ≤ min{d2(G) + 2δ(H), d2(H) + 2δ(G)}.

Moreover, the bound is sharp.

Proposition 12. For n,m ≥ 5, we have κ′3(Cn�Pm) = 5.

Proof. We know that d2(Cn) = 3 and δ(Pm) = 1, then κ′3(Cn�Pm) ≤ 5 by
Theorem 10. It is not hard to show that for any set S ⊆ V (Cn�Pm) with |S| ≤ 4,
the removal of S in Cn�Pm produces a graph with at most two components, so
κ′3(Cn�Pm) ≥ 5. Thus, κ′3(Cn�Pm) = 5.

By considering the first example in the proof of Theorem 10, we know that
κ′3(Pn�Pm) = 4 for n,m ≥ 5. In fact, we can get the following more general
result.

Proposition 13. For two connected graphs G and H with orders at least 5, if
d2(G) = 2 and δ(H) = 1, then κ′3(G�H) = 4.

Proof. By Theorem 10, we clearly have κ′3(G�H) ≤ d2(G) + 2δ(H) = 4. It is
not hard to show that for any set S ⊆ V (G�H) with |S| ≤ 3, the removal of S in
G�H produces a graph with at most two components, so κ′3(G�H) ≥ 4. Hence,
κ′3(G�H) = 4.

The second example in the proof of Theorem 10 shows that κ′3(Kn�K1,m−1)
= n for n,m ≥ 5. The following result implies that K1,m−1 can be replaced by
any graph H with κ′3(H) = 1.
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Proposition 14. Let H be a connected graph with κ′3(H) = 1, then κ′3(Kn�H)
= n.

Proof. By Theorem 10, we clearly have κ′3(Kn�H) ≤ n. For any set S ⊆
V (Kn�H) with |S| ≤ n − 1, there must exist an integer 1 ≤ i0 ≤ n such that
V (H(ui0))∩S = ∅, then the removal of S in Kn�H produces a connected graph.
Thus, κ′3(Kn�H) ≥ n and so κ′3(Kn�H) = n.

Now we determine the precise value for the 3-connectivity of the Cartesian
product of a complete graph and a tree.

Proposition 15. Let T be a tree with order m. For n,m ≥ 5, we have

κ′3(Kn�T ) =

{

n+ 1, if T is a path,
n, otherwise.

Proof. If T is not path, then T contains a vertex with degree at least three, so
we clearly have κ′3(T ) = 1. By Proposition 14, we have κ′3(Kn�T ) = n.

Now suppose T is a path v1, v2, . . . , vm. Let V (Kn) = {ui | 1 ≤ i ≤ n} and
S′ = {(u1, v1), (u1, v3), (ui, v2) | 2 ≤ i ≤ n} ⊆ V (Kn�T ). Clearly, |S′| = n + 1
and there are three components in (Kn�T ) \ S′, so κ′3(Kn�T ) ≤ n + 1. Let
S ⊆ V (Kn�T ) with |S| = n. If S ∩ H(ui0) = ∅ for some 1 ≤ i0 ≤ n, then
(Kn�T )\S is connected. Otherwise, we have |S ∩H(ui)| = 1 for each 1 ≤ i ≤ n,
then (Kn�T ) \ S contains at most two components. Hence, κ′3(Kn�T ) ≥ n+ 1,
and so κ′3(Kn�T ) = n+ 1 in this case.

4. Cayley Graphs on Abelian Groups with Small Degrees

By the definition of τk(G), we clearly have the following observation.

Observation 16. τk(G) ≤ 1 for k = δ(G) and τk(G) ≤ 2 for k = δ(G)− 1.

The d-dimensional cube Qd is the Cartesian product of d copies of the path
P2 of two vertices. The Cartesian product P (2h) = Ch�P2 of a cycle Ch of length
h ≥ 3 and P2 is called a prism. As shown in Figure 3,

V (P (2h)) = {ui, vj | 1 ≤ i, j ≤ h},

E(P (2h)) = {uivi | 1 ≤ i ≤ h} ∪ {uiui+1 | 1 ≤ i ≤ h} ∪ {vjvj+1 | 1 ≤ j ≤ h},

with subscripts modulo h. The Möbius ladder M(2h) of order 2h is the graph
obtained from P (2h) by deleting the edges u1uh and v1vh and adding the edges
u1vh and uhv1.
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u1

u3u4

u2

v2

v4

uh

vh

G = P (2h)

v3

ui

vi

Figure 3. A prism with order 2h.

Theorem 17. Let G be a cubic connected Cayley graph on an Abelian group of

order n. Then

τk(G) =

{

1, k = 3,
0, 4 ≤ k ≤ n.

Proof. Let G be a cubic connected Cayley graph on an Abelian group of order
n. We clearly have τk(G) = 0 for 4 ≤ k ≤ n by Observation 2. We now consider
the case that k = 3. By Observation 16, we have τ3(G) ≤ 1. It was shown in [31]
(and was also restated in [34]) that G is isomorphic to K4, Q3, P (2h) or M(2h),
then it is not hard to check that for each case, there exists one pendant tree
connecting S, where S ⊆ V (G), and so τ3(G) ≥ 1. Thus, τ3(G) = 1.

Consider a Cayley graph Cay(X,A) of degree 4, where A = {a, b}. As in [3],
we call an edge joining x and x+ a (respectively, x and x+ b) an a-edge (respec-
tively, b-edge). The subgraph of Cay(X,A) induced by the a-edges (respectively,
b-edges) is a disjoint union of cycles called a-cycles (respectively, b-cycles), each
with length ka (respectively, kb) the order of a (respectively, the order of b). Let
α be the number of a-cycles and β the number of b-cycles in Cay(X,A). Then
αka = βkb = n. The authors of [3] introduced a class of simple graphs, denoted
by G(α, β), with the following properties:

(i) there exist integers α, t, c with α ≥ 1, t ≥ 3, 0 ≤ c < t, and β = gcd(t, c);

(ii) the αt vertices of the graph can be labelled (i, j), 1 ≤ i ≤ α, 1 ≤ j ≤ t, with
i taken modulo a and j taken modulo t;

(iii) the edges can be partitioned into two types, such that type 1 edges are of
the form {(i, j), (i, j+1)}, and type 2 edges are of the form {(i, j), (i+1, j)},
1 ≤ i ≤ α− 1, or {(α, j), (1, j + c)}.

Thus a graph in this class is constructed by α vertical disjoint cycles Ci

(1 ≤ i ≤ α), α− 1 horizontal parallel matchings between the cycles Ci and Ci+1

(1 ≤ i ≤ α), and a particular parallel matching between C1 and Cα, as shown
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in (a) of Figure 4 when α ≥ 2 and in (b) of Figure 4 when α = 1. Note that in
graph (a), we let (i, j) = V (Ci) ∩ V (P j), where 1 ≤ i ≤ α, 1 ≤ j ≤ t.

P
1

P
2

P
t

C
1 C

2 C
α

(a) (b)

u1

u1+c

ui

ui+c

Figure 4. The graphs in G(α, β).

Lemma 18 [3]. The class G(α, β) consists of the connected Cayley graphs of

degree 4 on a finite Abelian group with a generating set {a, b}, where α is the

number of a-cycles and β is the number of b-cycles.

The following theorem is useful in our argument.

Theorem 19 [3,10]. Every connected Cayley graph of degree 4 on a finite Abelian

group can be decomposed into two Hamiltonian cycles.

Let Cn = a1, a2, . . . , an, a1 and Cm = b1, b2, . . . , bm, b1 be two cycles, and let
r be an integer with 0 ≤ r ≤ m − 1. The r-pseudo-cartesian product [10] of Cn

and Cm, denoted by Cn�rCm, is the graph obtained from Cn�Cm by replacing
the edge set {(a1, bi)(an, bi) | 1 ≤ i ≤ m} by {(a1, bi+r)(an, bi) | 1 ≤ i ≤ m} with
subscripts of b’s modulo m. By definition, we have Cn�rCm = Cn�Cm if r = 0
or m. Note that by the definition of the graph class G(α, β) as shown in Section
4, each graph G(α, β) is isomorphic to Cα�cCt.

Consider a Cayley graph Cay(X,A) of degree 4, it is not hard to show that
A is one of the following types [10]:

(A) A = {a, b} with each element having order at least 3;

(B) A = {a, b, c} with two elements of order two;

(C) A = {a, b, c, d} with all elements of order 2.

By Lemma 18, we know that each Cayley graph of type (A) is an element of
G(α, β). Thus we consider graphs of the class G(α, β) instead in the sequel.

For type (B), without loss of generality, assume that o(b) = o(c) = 2, where
o(b) and o(c) are orders of b and c in the group X, respectively. Let J = 〈{b, c}〉 =
{0, b, c, b+ c} and X1 = X/J = {0, b, . . . , (h− 1)b}. Let C ′ = 0, b, . . . , (h− 1)b, 0
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and C ′′ = 0, b, b + c, c, 0. Clearly, C ′ and C ′′ are two cycles of Cay(X,A). It
was shown in [10] that either Cay(X,A) ∼= C ′

�C ′′ or Cay(X,A) ∼= C ′
�2C

′′ or
Cay(X,A) is the graph shown in Figure 5. It was also shown in [10] that each
graph of type (C) is isomorphic to C4�C4.

P
1

P
2

P
4

C
1 C

2 C
h

P
3

Figure 5. A graph of type (B).

Lemma 20. Let G ∈ G(α, β). If one of the following cases holds:

(i) α ≥ 2,

(ii) α = 1 and c ≥ 3,

(iii) α = 1, c = 2 and n is odd,

then we have

τk(G) =







2, k = 3,
1, k = 4,
0, 5 ≤ k ≤ n.

Otherwise, that is, α = 1, c = 2 and n is even, we have

τk(G) =

{

1, k = 3, 4,
0, 5 ≤ k ≤ n.

Proof. Let G ∈ G(α, β). Since G is 4-regular, we clearly have τk(G) = 0 for
5 ≤ k ≤ n by Observation 2. Furthermore, by Observation 16, we have τ4(G) ≤ 1.
It is not hard to check that for each case, there exists one pendant tree connecting
S, where S ⊆ V (G) and |S| = 4, and so τ4(G) ≥ 1. Thus, τ4(G) = 1.

Now we focus on the case that k = 3. By Observation 16, we have τ3(G) ≤ 2.
If one of the following cases holds
(i) α ≥ 2,
(ii) α = 1 and c ≥ 3,
(iii) α = 1, c = 2 and n is odd,
then it is not hard to check that there exist two internally disjoint pendant S-trees,
where S ⊆ V (G) and |S| = 3, so τ3(G) ≥ 2. Hence, τ3(G) = 2. For example, as
shown in Figure 6, here we have α = 1, c = 2 and n = 7, S = {u1, u2, u3}, there
are two internally disjoint pendant S-trees, say T1 and T2, in G.
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u1

u2

u3

u4

u5u6

u7

T1 T2

Figure 6. An example for the case that α = 1, c = 2 and n is odd.

For the case that α = 1, c = 2 and n is even, we choose S = {u1, u2, u3},
it is not hard to show that there is exactly one pendant tree connecting S, so
τG(S) = 1 and then τ3(G) = 1.

With a similar argument to that of Lemma 20, we can obtain the following
result.

Lemma 21. Let G be the graph of Figure 5 or be isomorphic to C4�C4. We

have

τk(G) =







2, k = 3,
1, k = 4,
0, 5 ≤ k ≤ n.

According to the above arguments, and by Lemmas 20 and 21, we have the
following result.

Theorem 22. Let G be a connected Cayley graph of degree 4 on an Abelian group

of order n ≥ 3. If one of the following cases holds:

(i) α ≥ 2,

(ii) α = 1 and c ≥ 3,

(iii) α = 1, c = 2 and n is odd,

then we have

τk(G) =







2, k = 3,
1, k = 4,
0, 5 ≤ k ≤ n.

Otherwise, that is, α = 1, c = 2 and n is even, we have

τk(G) =

{

1, k = 3, 4,
0, 5 ≤ k ≤ n.

Note that in the proof of Theorems 17 and 22, we used structural properties
of Cayley graphs on Abelian group with degree 3 or 4. Similar properties are
not known for general Cayley graphs on Abelian groups with degree greater than
4, and as such we may need to find other approaches in studying their pendant
tree-connectivities.
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