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Abstract

The permanental polynomial π(G, x) =
∑

n

i=0
bix

n−i of a graph G is
symmetric if bi = bn−i for each i. In this paper, we characterize the graphs
with symmetric permanental polynomials. Firstly, we introduce the rooted
product H(K) of a graph H by a graph K, and provide a way to compute
the permanental polynomial of the rooted product H(K). Then we give
a sufficient and necessary condition for the symmetric polynomial, and we
prove that the permanental polynomial of a graph G is symmetric if and
only if G is the rooted product of a graph by a path of length one.
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1. Introduction

The graphs considered in this paper are simple undirected graphs. The vertex
set of a graph G is V (G) = {v1, . . . , vn}, the edge set of G is E(G) and |E(G)|
denotes the number of edges in G. The adjacency matrix A(G) = (aij)n×n of G
is a matrix such that aij = 1 if vi is adjacent to vj , and aij = 0 otherwise. The
permanental polynomial of G is [15]

π(G, x) = per(xI −A(G)) =
n
∑

i=0

bix
n−i,

where I is an identity matrix of order n. For a matrix A = (aij)n×n,

per(A) =
∑

σ∈Γn

n
∏

i=1

aiσ(i),

where Γn denotes the set of all the permutations of {1, 2, . . . , n}.
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A linear subgraph (or basic figure) Ui of a graph G is a subgraph on i vertices
such that each component is a cycle or a single edge. It was proved that the
coefficients of the permanental polynomial of a graph can be expressed in terms
of linear subgraphs as follows [5, 11]:

(1) bi = (−1)i
∑

Ui⊂G

2c(Ui) for 1 ≤ i ≤ n,

where the summation takes over all linear subgraphs Ui of G, and c(Ui) is the
number of cycles of Ui. Particularly, b0 = 1 and bn = (−1)nper(A(G)). In a
bipartite graph, no linear subgraph with an odd number of vertices exists, so the
permanental polynomial of a bipartite graph G can be expressed as π(G, x) =
∑⌊n/2⌋

i=0 b2ix
n−2i.

A matching of a graph G is a set of edges that have no common end-vertices.
The size of a matching is the number of edges contained in it. A perfect matching

of G is a matching covering all the vertices of G. Let m(G) denote the number
of perfect matchings of G. It holds for a bipartite graph G that [10]

bn = m2(G).

The permanental polynomial was first introduced to discriminate cospectral
graphs [11, 13], but it does not seem better than the characteristic polynomial
when it comes to distinguish trees [2]. Lately, it has been shown that the perma-
nental polynomial really performs better than the characteristic polynomial when
we use them to distinguish some non-tree graphs. For example, stars, complete
graphs and some of its edge-deleted subgraphs [14, 18].

The study on the coefficients of the permanental polynomials also attracted
much attention of graph-theoreticians [3, 4, 8, 7, 6, 12, 15, 16, 17]. For bipartite
graphs without cycles of length k = 0 (mod 4), the coefficients of the perma-
nental polynomial and characteristic polynomial were proven to have the same
magnitude [3], and the structure characterizations of such graphs were shown
in [7]. For a bipartite graph without even subdivision of K2,3, the permanental
polynomial can be expressed by the characteristic polynomial of some orientation
graph [15, 16]. Moreover, this result can be generalized to the permanental poly-
nomials of matrices. See [8] for details. Recently, we find that the permanental
polynomials of some graphs are symmetric. (A polynomial p(x) =

∑n
i=0 aix

n−i

is said to be symmetric if ai = an−i for each i.) For example, for the graphs G1

and G2 shown in Figure 1, π(G1, x) = x6 + 5x4 + 5x2 + 1 and π(G2, x) = x10+
10x8+30x6−2x5+30x4+10x2+1. Now, an interesting problem arises naturally:
characterize the graphs whose permanental polynomials are symmetric. In this
paper, we will solve this problem.

Throughout this paper, Pn means a path of length n and Cn means a cycle
of length n. A null graph is a graph without edges, and Nn denotes a null graph
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on n vertices. Let H be a graph on n vertices and K a rooted graph on m
vertices. Let K1, . . . ,Kn be a sequence of n copies of K. The graph obtained by
identifying the i-th vertex of H with the root of Ki for each i is called the rooted

product of H by K, denoted by H(K).

(a) (b)

Figure 1. (a) G1 = P3(P2); (b) G2 = C5(P2).

The rest of this paper is organized as follows. In Section 2, we derive the
permanental polynomial of the rooted product of two graphs. As a corollary, we
obtain the permanental polynomial of the rooted product of a graph by P2. In
Section 3, we give a criterion for the symmetric polynomial, and then we prove
that the permanental polynomial of a graph G is symmetric if and only if G is
the rooted product of a graph by P2.

2. The Permanental Polynomial of the Rooted Product of Two

Graphs

Firstly, we deduce the permanental polynomial of the rooted product of a graph
H by a graph K. Following this, we show the permanental polynomial of the
rooted product of a graph H by P2.

Let H be a graph with a root u and let K be a graph with a root v. The
graph H − u denotes the one obtained from H by deleting the vertex u. The
coalescence H · K is the graph obtained from H and K by identifying the two
roots u and v. It has been proved that [1]

π(H ·K,x) = π(H,x)π(K − v, x) + π(H − u, x)π(K,x)

− xπ(H − u, x)π(K − v, x).

The permanental polynomial of the coalescence H · K can be derived by
the permanental polynomials of H, K and their subgraphs. How about the
permanental polynomial of the rooted produdt H(K)? To answer this ques-
tion, we introduce the polynomial p(G, x, y). For a given polynomial p(G, x) =
∑n

i=0 aix
n−i associated with a graph G, we define the polynomial p(G, x, y) to

be
∑n

i=0 aix
n−iyi.
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Theorem 1. Let H be a graph on n vertices and K a rooted graph on m vertices.

Let v be the root of K. Then the permanental polynomial of the rooted product

H(K) is

(2) π(H(K), x) = π(H,π(K,x), π(K − v, x)).

Proof. Suppose π(H(K), x) =
∑nm

i=0 aix
nm−i. We show that if there is a linear

subgraph contributing m to the coefficient of xnm−i on the right side of equation
(2), then there is a corresponding one contributingm to the coefficient ai of x

nm−i

on the left side of equation (2).
For a linear subgraph Ui of H(K), each component of Ui either belongs to

H or belongs to one of the n copies of K. Thus, we may write Ui as U0
i ∪ U1

i ∪

· · · ∪ Un
i , where U0

i is a linear subgraph of H, and each U j
i is a linear subgraph

of the j-th copy of K for 1 ≤ j ≤ n (here the symbol i in U j
i does not mean the

number of vertices of U j
i ). Denote the end-vertices ofH by u1, . . . , un. If uk ∈ U0

i ,
then uk /∈ Uk

i . Thus we view Uk
i as a linear subgraph of H − v when uk ∈ U0

i .
We can see that Ui and U0

i ∪ U1
i ∪ · · · ∪ Un

i form a one-to-one correspondence
between the linear subgraphs of H(K) and the union of linear subgraphs of H, s
copies of K and t copies of K − v with s, t ≥ 0 and s+ t = n.

We write π(H,x) as
∑n

j=0 bjx
n−j . Then

(3) π(H,π(K,x), π(K − v, x)) =
n
∑

j=0

bj [π(K,x)]n−j [π(K − v, x)]j .

Now we consider the contributions of linear subgraphs ofH, the copy ofK and the
copy of K − v. We know that U0

i contributes (−1)|U
0

i
|2c(U

0

i
) to b|U0

i
|. If uk /∈ U0

i ,

then Uk
i contributes (−1)|U

k

i
|2c(U

k

i
) to the coefficient of xm−|Uk

i
| of π(K,x). If

uk ∈ U0
i , then Uk

i contributes (−1)|U
k

i
|2c(U

k

i
) to the coefficient of xm−1−|Uk

i
| of

π(K − v, x). By equation (3), the product of all the individual contribution of
Uk
i for k ≥ 0 is exactly the contribution of U0

i ∪U1
i ∪ · · · ∪Un

i to the right side of
equation (2). Explicitly, it is

(−1)
∑

k≥0
|Uk

i
|2

∑
k≥0

c(Uk

i
)xnm−|U0

i
|−

∑
k≥1

|Uk

i
|

= (−1)
∑

k≥0
|Uk

i
|2

∑
k≥0

c(Uk

i
)xnm−

∑
k≥0

|Uk

i
|

= (−1)|Ui|2c(Ui)xnm−|Ui| = (−1)i2c(Ui)xnm−i,

which is exactly the contribution of Ui to the left side of equation (2).

For a graph H with a root u and a graph K with a root v, H ∪K ∪ (u, v)
denotes the graph formed from H and K by joining an edge between u and v.
Suppose that the graph H has n vertices. Let K1,K2, . . . ,Kn be a sequence of



The Graphs Whose Permanental Polynomials Are Symmetric 237

copies of K. The graph formed by joining an edge between the i-th vertex of H
and the root of Ki for each i is called the rooted join of H by K, denoted by
H ∼ K. It holds for the permanental polynomial of H ∪K ∪ (u, v) that [1]

π(H ∪K ∪ (u, v), x) = π(H,x)π(K,x) + π(H − u, x)π(K − v, x).(4)

As a corollary of Theorem 1, we obtain the following.

Corollary 2. For a graph H and a graph K with a root v, the permanental

polynomial of the rooted join of H by K is

π(H ∼ K,x) = π(H,xπ(K,x) + π(K − v, x), π(K,x)).

Proof. Let K+e denote the graph obtained from K by adding an edge e incident
to the root vertex v. By equation (4), we have π(K+e, x) = xπ(K,x)+π(K−v, x).
We can see that the graph H ∼ K is the rooted product of H by K+e. It follows
from Theorem 1 that

π(H ∼ K,x) = π(H(K + e), x) = π(H,π(K + e, x), π(K,x))

= π(H,xπ(K,x) + π(K − v, x), π(K,x)).

Corollary 3. Let H be a graph on n vertices. Then

π(H(P2), x) = xnπ

(

H,x+
1

x

)

.

Proof. Suppose π(H,x) =
∑n

i=0 bix
n−i. We know that π(P2, x) = x2 + 1 and

π(P2 − v, x) = x, where v is any vertex of P2. Following Theorem 1, we have

π(H(P2), x) = π(H,π(P2, x), π(P2 − v, x)) =

n
∑

i=0

bi(x
2 + 1)n−ixi

= xn
n
∑

i=0

bi(x
2+ 1)n−ixi−n= xn

n
∑

i=0

bi

(

x+
1

x

)n−i

= xnπ

(

H,x+
1

x

)

.

As applications of Corollary 3, we deduce the permanental polynomials of

Pn(P2) and Cn(P2). It is known that π(Pn, x) =
∑⌊n

2
⌋

i=0

(

n−i
i

)

xn−2i and π(Cn, x) =
∑⌊n

2
⌋−1

i=0
n

n−i

(

n−i
i

)

xn−2i + bn(Cn), where bn(Cn) = −2 when n is odd and bn(Cn)
= 4 when n is even [9]. Then Corollary 3 implies

π(Pn(P2), x) = xn
⌊n

2
⌋

∑

i=0

(

n− i

i

)(

x+
1

x

)n−2i

and

π(Cn(P2), x) = xn
⌊n

2
⌋−1

∑

i=0

n

n− i

(

n− i

i

)(

x+
1

x

)n−2i

+ bn(Cn).
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3. The Graphs Whose Permanental Polynomials are Symmetric

In this section, we give first a sufficient and necessary condition for the symmetric
polynomial. Then we provide some helpful lemmas, which will play important
roles in the proof of our main result. Based on these, we characterize the graphs
with symmetric permanental polynomials.

Theorem 4. A polynomial p(x) =
∑n

i=0 aix
n−i of degree n is symmetric if and

only if p
(

1
x

)

= x−np(x).

Proof. Since p(x) =
∑n

i=0 aix
n−i, we have p

(

1
x

)

=
∑n

i=0 aix
i−n = x−n

∑n
i=0 aix

i.
If p

(

1
x

)

= x−np(x) = x−n
∑n

i=0 aix
n−i = x−n

∑n
i=0 an−ix

i holds, then
∑n

i=0 aix
i

=
∑n

i=0 an−ix
i. It is obvious that ai = an−i for each i. Thus the polynomial p(x)

is symmetric.

If p(x) is symmetric, then ai = an−i holds for each i. Thus we have p
(

1
x

)

=
x−n

∑n
i=0 aix

i = x−n
∑n

i=0 an−ix
i = x−n

∑n
i=0 aix

n−i = x−np(x).

Let M be any matching of a graph G. A path P = v1, v2, . . . , vm (m is even)
in G is said to be an M-augmenting path if the edge (vi, vi+1) ∈ M for odd i
and the edge (vi, vi+1) /∈ M for even i. For two graphs G and H, the symmetric

difference of G and H contains only the edges that are in exactly one of G or H,
and is denoted by G△H.

To prove the main result, we need to consider the matchings with one edge
less than the perfect matching. The lemma below describes the structure property
of such a matching.

Lemma 5. Let G be a graph on 2n vertices with exactly one perfect matching

M . Then each matching of size n− 1 in G can be obtained either by deleting an

edge of M or by M△P , where P is an M -augmenting path in G.

Proof. Let Mn−1 be any matching of size n− 1 in G. We prove that if Mn−1 is
not obtained from M by deleting an edge, then Mn−1 is the symmetric difference
of M and some M -augmenting path P in G.

Suppose that there are k1 edges (u1, v1), . . . , (uk, vk) of Mn−1, which are
different from the edges in M , and the remaining edges of Mn−1 are the same as
some edges in M . Let S1 = {(ui, vi)|1 ≤ i ≤ k}. Denote by uk+1 and vk+1 the
two vertices in G, which are not incident to any edge of Mn−1. Since G admits
a perfect matching, there must be a set S2 of k+ 1 edges in M , which join these
vertices u1, . . . , uk, uk+1 and v1, . . . , vk, vk+1. Denote by H the subgraph induced
by the edges in S1 ∪ S2. We can see that exactly two vertices of H are of degree
one and the other 2k vertices of H are of degree two. Thus H is either a path
P of odd length or a union of cycles and a path P 1 of odd length (denoted by
C1 ∪ · · · ∪Ck ∪ P 1). Clearly, the edges in each cycle Ci are alternate with edges
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in S1 and S2, and so do for the edges in P or P 1. Moreover, the end-vertices of P
(respectively, P 1) are uk+1 and vk+1, which are incident to edges of M . Thus each
cycle Ci is of even length, and P (respectively, P 1) is an M -augmenting path.
For the case in which H = C1 ∪ · · · ∪ Ck ∪ P 1, there exist at least two perfect
matchings in G. This contradicts that G has exactly one perfect matching. For
the case in which H is an M -augmenting path P , we have Mn−1 = M△P .

In the following, we use mi(G) to denote the number of matchings of size i
in G. Based on Lemma 5, we derive the consequence below.

Corollary 6. Let G be a graph on 2n vertices with exactly one perfect matching

M . Let l be the number of M -augmenting paths in G. Then

mn−1(G) = n+ l.

The next lemma provides a lower bound of the number of matchings with
one edge less than the perfect matching.

Lemma 7. Let G be a graph on 2n (n ≥ 2) vertices with symmetric permanental

polynomial. Then

(i) there is exactly one perfect matching M in G;

(ii) there is no triangle in G, which contains an edge of the perfect matching M ;

(iii) mn−1(G) ≥ |E(G)|, and equality holds if and only if G = H(P2) with H a

graph on n vertices.

(a) (b) (c)

Figure 2. (a) G3 = N2(P2); (b) G4 = P2(P2); (c) G5.

Proof. Since the permanental polynomial of G is symmetric, we have b2n = b0
= 1. By equation (1), we know that no linear subgraph U2n with at least one
cycle exists in G. Otherwise, b2n > 1 holds. As b2n = 1, there is exactly one
linear subgraph U2n whose components are all single edges, and such a linear
subgraph is exactly a perfect matching of G, denoted by M . Thus statement (i)
is obtained.

For the edges in G, denote the n edges of the perfect matching M by
(u1, v1), . . . , (un, vn). If G is bipartite, then there is no triangle in G. Thus
we only need to consider the case in which G is non-bipartite. Suppose to the
contrary that there is a triangle C3 in G containing the edge (us, vs). Denote
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the other end-vertex of C3 by uk (respectively vk), where k ∈ {1, . . . , n} and
k 6= s. Then the union of the triangle C3 and edges (ui, vi), for 1 ≤ i ≤ n and
i 6= s, k, is a linear subgraph of G on 2n−1 vertices. Thus b2n−1 6= 0 by equation
(1). However, b1 = 0. This contradicts that the permanental polynomial of G is
symmetric. Therefore, statement (ii) is proved.

Now, we show that statement (iii) holds for G. For the case n = 2, there are
three simple graphs with exactly one perfect matching (see Figure 2), and only
two graphs G3 = N2(P2) and G4 = P2(P2) have symmetric permanental poly-
nomials. Clearly, it holds that mn−1(G3) = |E(G3)| and mn−1(G4) = |E(G4)|.
Thus we assume n ≥ 3. Denote by E1 the set of edges in G that are not in M .
It is clear that |E(G)| = n+ |E1|. We can see that the number of M -augmenting
paths of length three in G is equal to the number of edges in E1.

If at least one end-vertex of each matching edge in M is of degree one in
G, then it is obvious that G = H(P2), where H is the graph obtained from G
by deleting one end-vertex of degree one of (ui, vi) for each i. Moreover, in this
case there is no M -augmenting path of length greater than three. By Corollary
6, it holds that mn−1(G) = n+ l = n+ |E1| = |E(G)|, where l is the number of
M -augmenting paths in G.
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Figure 3. Cases of e1 ∪ e2 ∪ (ur, vr) ∪ (us, vs) ∪ (ut, vt) with an M -augmenting path of
length 5.

Now we consider the case that the end-vertices us and vs of some matching
edge (us, vs) inM are of degrees at least two. Then in this case G is not the rooted
product of a graph by P2. Suppose that us is adjacent to some vertex a (a 6= vs)
and vs is adjacent to some vertex b (b 6= us). By statement (ii), we have a 6= b. As
G has exactly one perfect matching, {a, b} 6= {ui, vi} for any i ∈ {1, . . . , n}. Thus
we assume a ∈ {ur, vr} and b ∈ {ut, vt} for some r, t ∈ {1, . . . , n} and r 6= t. Then



The Graphs Whose Permanental Polynomials Are Symmetric 241

this leads to a graph in any of the forms shown in Figure 3. As each graph shown
in Figure 3 admits an M -augmenting path of length 5, there is an M -augmenting
path of length at least five in G. By Corollary 6, mn−1(G) = n + l. Since l is
larger than the number of M -augmenting paths of length three in G, we have
mn−1(G) > n+ |E1| = |E(G)|.

The following is an upper bound of the number of matchings with one edge
less than the perfect matching.

Lemma 8. Let G be a graph on 2n vertices and π(G, x) =
∑2n

i=0 bix
2n−i. Then

b2n−2 ≥ mn−1(G).

Moreover, if G = H(P2), then equality holds, where H is a graph on n vertices.

Proof. By equation (1), b2n−2 =
∑

U2n−2⊂G 2c(U2n−2). A matching M of size
n−1 in G is a linear subgraph on 2n−2 vertices. Since c(M) = 0, M contributes
one to b2n−2. Thus b2n−2 ≥ mn−1(G).

If G = H(P2), we show that no linear subgraph U2n−2 containing at least one
cycle exists in G. If not, suppose that there is a linear subgraph U2n−2 containing
a cycle C on k (k ≥ 3) vertices. Since H(P2) has at least n vertices of degree one,
the vertices of C must belong to H and those vertices of degree one adjacent to
V (C) do not lie in U2n−2. Thus such a linear subgraph U2n−2 contains at most
2n− k ≤ 2n− 3 vertices. This contradicts that U2n−2 has 2n− 2 vertices. Thus
all the linear subgraphs U2n−2 in H(P2) contain only single edges. Therefore,
b2n−2 = mn−1(G) holds for G = H(P2).

Now we characterize the graphs with symmetric permanental polynomials.

Theorem 9. Let G be a graph on 2n vertices. Then the permanental polynomial

of G is symmetric if and only if G = H(P2), where H is a graph on n vertices.

Proof. If n = 1, there are exactly two simple graphs P2 and N2 on two vertices.
We know that P2 = N1(P2) and π(P2, x) = x2+1; while π(N2, x) = x2. Thus for
the case n = 1, π(G, x) is symmetric if and only if G = N1(P2). Thus we only
need to consider the case n ≥ 2.

Sufficiency. By Corollary 3, π(H(P2), x) = xnπ
(

H,x+ 1
x

)

, and so π (H(P2),
1
x

)

=
(

1
x

)n
π
(

H,x+ 1
x

)

= x−2nxnπ
(

H,x+ 1
x

)

= x−2nπ (H(P2), x). Since the
polynomial π(H(P2), x) is of degree 2n, Theorem 4 implies that π(H(P2), x) is
symmetric.

Necessity. Suppose π(G, x) =
∑2n

i=0 bix
2n−i. Since π(G, x) is symmetric, we

have b2n = b0 = 1 and b2 = b2n−2 = |E(G)|. By Lemma 7(i), G admits exactly
one perfect matching. Let mn−1(G) be the number of matchings of size n − 1
in G. By Lemma 7(iii), we know mn−1(G) ≥ |E(G)| = b2, and equality holds if
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and only if G = H(P2), where H is a graph on n vertices. By Lemma 8, we have
b2n−2 ≥ mn−1(G). Moreover, if G is the rooted product of a graph by P2, then
equality holds. Thus, we get b2n−2 ≥ b2, and equality holds if and only if G is
the rooted product of a graph H by P2. Therefore, G = H(P2) is obtained.
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