
Discussiones Mathematicae
Graph Theory 38 (2018) 177–188
doi:10.7151/dmgt.1985

ON THE NUMBER OF α-LABELED GRAPHS

Christian Barrientos

and

Sarah Minion

Department of Mathematics

Clayton State University

Morrow, Georgia 30260, USA

e-mail: chr barrientos@yahoo.com
sarah.m.minion@gmail.com

Abstract

When a graceful labeling of a bipartite graph places the smaller labels
in one of the stable sets of the graph, it becomes an α-labeling. This is the
most restrictive type of difference-vertex labeling and it is located at the
very core of this research area. Here we use an extension of the adjacency
matrix to count and classify α-labeled graphs according to their size, order,
and boundary value.
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1. Introduction

A graceful labeling of a graph G of order m and size n, where m ≤ n + 1, is an
injective mapping f : V (G) → {0, 1, . . . , n} such that for every edge xy of G, f
induces a weight defined by |f(x) − f(y)| and the set of weights is {1, 2, . . . , n}.
In this case, G is said to be a graceful graph. If the graceful labeling f has
the property that there exists an integer λ such that for each edge xy either
f(x) ≤ λ < f(y) or f(y) ≤ λ < f(x), f is called an α-labeling and G is an
α-graph. We refer to the number λ as the boundary value of f .

There is a long list of families of α-graphs. Some general characteristics
of this type of graph are known. For example, an α-graph is bipartite; if the
graph has size n and degree sequence d1, d2, . . . , dm then gcd(d1, d2, . . . , dm, n)
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divides n(n−1)
2 . In the area of graph labeling α-graphs are very important, it is

well-known that an α-graph G of size n can be used to decompose cyclically the
complete graph K2nm+1 into copies of G for any positive integer m, as well as
Kn,n. Furthermore, α-graphs have been widely used to produce both new graceful
and α-graphs [6, 8, 10, 15, 16], however one of the most interesting aspects is
that α-labelings can be modified to create several other types of labelings such
as: sequential [16], k-graceful [17], (k, d)-graceful [7], odd-graceful [14], (k, d)-
arithmetic [1], strongly super edge-magic [11], and super edge-magic [21] when
G is a tree. Moreover, when G is a tree and the sizes of its stable sets differ
by at most one, α-labelings can be transformed into (a, 1)- and (3, 2)-antimagic
vertex labelings [3] as well as mean labelings [4]. All α-graphs of order m and
size m + 1, whose stable sets have the previous property, also have super (a, d)-
edge antimagic total labelings for d = 0, 1, 2, 3 [3]. To conclude this list we must
mention that any α-labeling with boundary value λ can be transformed into a
(aλ+1, a)-geometric labeling, for every a > 1.

To summarize, α-labelings are located at the very core of the graph labeling
area. A better understanding of these labelings and graphs is essential. This work
is devoted to the enumeration and classification of α-labeled graphs according to
their size, order, and boundary value. We use an extension of the adjacency
matrix of a graph to count, in the first place, the number of α-labeled graphs of
size n and boundary value λ; these values are used to determine the number of
them that have m vertices.

In Section 2 we present the tools used to count α-labeled graphs and the
known results. Section 3 contains the main results, there we determine the num-
ber of α-labeled graphs of size n, order m, and boundary value λ for all feasible
values of m and λ given n. In Section 4 we present some open questions. We end
this work with a detailed bibliography.

Graphs considered here are finite, undirected, with no loops, no isolated
vertices, and no multiple edges. For all undefined terminologies see [9] and [13].
For a comprehensive account of graph labelings, the interested reader is referred
to [13].

2. Counting with Graceful Triangles

A large amount of articles in the area of graph labeling focuses on finding a la-
beling of some specific family of graphs. Not much is known from an enumerative
perspective. Sheppard [19] shows that there are n! gracefully labeled graphs of
size n; the formula for α-labeled graphs is more complex. Let α(n) denote the
number of α-labeled graphs of size n; Sheppard’s formula for α(n) is
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Sheppard also counted the number of symmetric α-labeled graphs. Using
similar arguments, Fukś and Sullivan [12] obtained the same formula when they
were counting the amount of number-conserving cellular automata with n inputs.
The authors in [5] arrived to the formulas using a different technique, based on an
extension of the adjacency matrix. The new approach allows us to determine the
exact number of gracefully labeled graphs of order m and size n. Furthermore,
the same technique can be used to count the number of graphs labeled with other,
apparently unrelated, types of labelings.

Let f be a graceful labeling of a graph G of order m and size n. The graceful
matrix of G is the square matrix of order n + 1, A(G) = [aij ] where for all 0 ≤
i, j ≤ n, aij = 1 if there is uv ∈ E(G) such that f(u) = i and f(v) = j, and aij = 0
otherwise; A(G) is an extension of the adjacency matrix; it is symmetric and all
the elements in the main diagonal equal zero. Therefore all the characteristics
of the labeled graph are contained in the triangular arrangement composed by
the cells aij where i < j, 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ n. We refer to this
arrangement as the graceful triangle. The graceful triangle contains n diagonals
D1, D2, . . . , Dn, where Dk consists of the cells aij where j − i = n + 1 − k for
every k ∈ {1, 2, . . . , n}. Since f is a graceful labeling, the weights of the n edges
of G are the integers 1, 2, . . . , n. Therefore, every diagonal contains only one cell
equal to 1, all the other must be 0, otherwise the arrangement would not be a
graceful triangle. We refer to this nonzero entry as adjacency and it is going to be
represented by a dot in the graceful triangle. In Figure 1, we present an example
for a graph of order 10 and size 10 which α-labeling has boundary value 4.

When an α-labeled graph with boundary value λ is represented in a graceful
triangle, all its adjacencies lie inside a rectangle whose corner cells have coor-
dinates (0, n), (0, λ + 1), (λ, λ + 1), and (λ, n). We refer to this rectangle as the
rectangle determined by λ. This rectangle has been highlighted in Figure 1. Shiue
and Lu use this rectangle in their work on trees that are not α-trees [20].

Using this representation we can easily count the number of α-labeled graphs
of size n and boundary value λ. We just need to determine the number of cells
in each diagonal of the rectangle determined by λ; once this is done we apply
the Product Principle to these numbers to obtain the desired quantity. Taking
the sum of these products over all the possible values of λ we obtain the number
α(n) of α-labeled graphs of size n.
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Figure 1. Graceful triangle of an α-graph.

Let Rλ = {aij ∈ A(G) : 0 ≤ i ≤ λ and λ + 1 ≤ j ≤ n} be the rectangle
determined by λ, the diagonal Dk of Rλ consists of all aij ∈ Rλ such that j =
i+ (n+ 1− k). We want to determine dλ(k), that is, the number of cells in Dk.
By observing Rλ we see that dλ(k) starts as an increasing sequence, becomes
stable, and finally decreases. To show that, we consider the linear programming
problem of optimizing the function z = i− j+(n+1−k) over the feasible region
Rλ. Thus we may conclude that the minimum value of z = dλ(k) is 1 when k = 1
or k = n, and the maximum value of z is λ+1 when k = λ+1 or k = n−λ. Let
µ = min{λ+ 1, n− λ} and M = max{λ+ 1, n− λ}. Thus,

dλ(k) =











k if 1 ≤ k < µ,

λ+ 1 if µ ≤ k ≤ M,

n+ 1− k if M < k ≤ n.

Note that when λ = 0 or λ = n − 1, dλ(k) = 1 for every 1 ≤ k ≤ n. Hence
the number αλ(n) of α-labeled graphs of size n with boundary value λ is

αλ(n) =
n
∏

k=1

dλ(k),

and the number α(n) of α-labeled graphs of size n is given by

α(n) =
n−1
∑

λ=0

αλ(n) =
n−1
∑

λ=0

n
∏

k=1

dλ(k).
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In Table 1 we show all the values of αλ(n) for n up to 10.

n\λ 0 1 2 3 4 5 6 7 8 9

1 1
2 1 1
3 1 2 1
4 1 4 4 1
5 1 8 12 8 1
6 1 16 36 36 16 1
7 1 32 108 144 108 32 1
8 1 64 324 576 576 324 64 1
9 1 128 972 2304 2880 2304 972 128 1
10 1 256 2916 9216 14400 14400 9216 2916 256 1

Table 1. α-labeled graphs of size n and boundary value λ.

Since our goal is to determine the number of α-labeled graphs of size n

and order m, we must observe first that m ≤ n + 1 and any α-labeling f with
boundary value λ assigns, at least, the integers 0, λ, λ+ 1, and n as labels. Note
that eventually 0 = λ or λ + 1 = n, except when n = 1, λ = 0, and λ + 1 = n;
any other integer x in L = {1, 2, . . . , λ− 1, λ+2, λ+3, . . . , n− 1} could or could
not be assigned by f .

Suppose x ∈ L is not assigned by f as a label. We want to determine the
number of α-labeled graphs of size n and boundary value λ that do not have x

as a label. To achieve this goal, our first step is to find the number δλ(k, x) of
forbidden cells in Dk when x is not used as a label.

When x < λ, for every λ+1 ≤ j ≤ n, the cells axj ∈ Rλ are forbidden. Thus,
for x < λ,

δλ(k, x) =











0 if 1 ≤ k ≤ x,

1 if x < k ≤ x+ n− λ,

0 if x+ n− λ < k ≤ n.

Similarly, for x > λ+ 1,

δλ(k, x) =











0 if 1 ≤ k ≤ n− x,

1 if n− x < k < n− x+ λ+ 2,

0 if n− x+ λ+ 2 ≤ k ≤ n.

Hence, the value of dλ(k)− δλ(k, x) corresponds to the number of cells in Dk

where a dot can be placed to create an α-labeled graph satisfying the requested
conditions. Applying the Product Rule to these numbers, we obtain the quantity
of α-labeled graphs of size n with boundary value λ that do not have the integer
x ∈ L as a label; in other terms, we have proved the following theorem.
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Theorem 1. The number of α-labeled graphs of size n with boundary value λ

that do not have the integer x ∈ L as a label is given by

a(n, λ, x) =
n
∏

k=1

(dλ(k)− δλ(k, x)).

A consequence of this result is that by taking the sum of these products over
all the possible values of x, we obtain the number of α-labeled graphs of size n

with boundary value λ in which at least one element of L is not used as a label.
These numbers can be found in the Online Encyclopedia of Integer Sequences
under the sequence A245518 [18].

Corollary 2. The number a1(n, λ) of α-labeled graphs of size n with boundary

value λ in which at least one element of L is not used is

a1(n, λ) =
∑

x∈L

(

n
∏

k=1

(dλ(k)− δλ(k, x))

)

.

This last number is the corner stone of the forthcoming calculations, where
we find a formula to calculate the number of α-labeled graphs of size n and
order m.

3. Enumerating α-Graphs

Let f be an α-labeling of a graph G of size n with boundary value λ. Recall
that if x ∈ {0, 1, . . . , n} is not assigned by f as a label of G, then x ∈ L =
{1, 2, . . . , λ−1, λ+2, λ+3, . . . , n−1}. Suppose that t elements of L are not used
by f , thus the order of G is m = n+1− t. Let U = {x1, x2, . . . , xt} be the subset
of L formed by these numbers, and assume that for all 1 ≤ i ≤ t− 1, xi < xi+1.
Consider the following partition of U :

Uλ = {x ∈ U : x < λ} and Uλ = {x ∈ U : x > λ+ 1}.

Let xi, xj ∈ U . If xi, xj ∈ Uλ or xi, xj ∈ Uλ, then there is no cell in Rλ with
coordinates (xi, xj). Therefore, the number of cells in Dk where a dot can be
placed is given by

dλ(k)− δλ(k, xi)− δλ(k, xj).

On the other side, if xi ∈ Uλ and xj ∈ Uλ, the cell with coordinates (xi, xj)
belongs to Rλ, which implies that the number of cells in Dk, that is, where a dot
can be placed, is given by

dλ(k)− δλ(k, xi)− δλ(k, xj) + 1,

because the cell axixj
should not be eliminated twice.
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Consequently, in our counting process, we need to introduce a new expression,
that represents the number of cells in Dk with coordinates (xi, xj) when (xi, xj) ∈
Uλ × Uλ. Let δλ(k, xi, xj) be this number, where

δλ(k, xi, xj) =

{

1 if k = n+ 1− (xj − xi), (xi, xj) ∈ Uλ × Uλ,

0 otherwise.

Suppose that at least one of Uλ or Uλ is empty, that is U = Uλ or U = Uλ.
Then the expression

dλ(k)−
∑

x∈U

dλ(k, x)

gives us the total number of cells in Dk where a dot can be placed when the
elements of U are not used as labels. Assume now that both, Uλ and Uλ, are
nonempty; then there are cells in Rλ that could be eliminated twice by using the
previous expression, eventually, some of these cells are in the same diagonal. To
fix this problem, we introduce the function ∆λ(k) defined as

∆λ(k) =
∑

xi,xj∈U

δλ(k, xi, xj).

Hence, the number of available cells in Dk, i.e., where a dot can be placed, when
the elements of U are not used as labels, is given by

dλ(k) + ∆λ(k)−
∑

x∈U

dλ(k, x).

Therefore, the number of α-labeled graphs of size n with boundary value λ

that do not have the integers x1, x2, . . . , xt as labels, is given by the product of
the numbers above. This proves the next theorem.

Theorem 3. The number a(n, λ, U) of α-labeled graphs of size n with boundary

value λ that do not have the integers in U = {x1, x2, . . . , xt} as labels, is given by

a(n, λ, U) =
n
∏

k=1

(

dλ(k) + ∆λ(k)−
∑

x∈U

dλ(k, x)

)

.

Recall that L = {1, 2, . . . , λ − 1, λ + 2, λ + 3, . . . , n − 1}. Taking the sum of
these products, over all the t-element subsets U of L, we obtain the following:

Theorem 4. The number at(n, λ), of α-labeled graphs of size n with boundary

value λ in which at least one element of L is not used as a label is

at(n, λ) =
∑

U⊆L
|U |=t

(

n
∏

k=1

(

dλ(k) + ∆λ(k)−
∑

x∈U

dλ(k, x)

))

.
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Theorems 3 and 4 use λ as a constant; in the following theorem, we use it
as a variable to determine a formula for the number of α-labeled graphs of size
n and order at most n+ 1− t, when t ≥ 1.

Theorem 5. The number at(n) of α-labeled graphs of size n and order at most

n+ 1− t, t ≥ 1, is given by

at(n) =

n−2
∑

λ=1

at(n, λ).

Proof. Since at(n, λ) is the number of α-labeled graphs of size n with boundary
value λ in which t elements from {1, 2, . . . , n− 1} are not used, the order of these
graphs is at most n+1− t. When λ = 0 or λ = n−1, there is only one α-graph of
size n with this boundary value, that graph is the star Sn

∼= K1,n, which has order
n + 1. Then, when t ≥ 1 the number at(n) is obtained by taking the sum, over
all the possible values of λ, i.e., λ ∈ {1, 2, . . . , n− 2}, of the numbers at(n, λ).

Let ât(n) denote the number of α-labeled graphs of size n and order m =
n+1− t. If s is the cardinality of the largest subset of {1, 2, . . . , n− 1} such that
there exists an α-labeled graph of size n and order n+1− s, then âs(n) = as(n).
For 0 ≤ t < s, we want to determine ât(n).

Since as−1(n) includes the α-labeled graphs of size n and order n+1− s, we
have that

âs−1(n) = as−1(n)− sâs(n),

where the factor s counts the number of (s−1)-element subsets of {x1, x2, . . . , xs},
which are considered when calculating as−1(n). We can use this observation
recursively together with the Principle of Inclusion and Exclusion to prove the
following theorem.

Theorem 6. The number of α-labeled graphs of size n and order n+ 1 is given

by

â0(n) = α(n) +
n−1
∑

t=1

(−1)tat(n),

where α(n) is the number of α-labeled graphs of size n.

Proof. Let â0(n) denote the number of α-labeled graphs of size n and order
n + 1. For every 1 ≤ t ≤ n − 2, at(n) includes the number at+1(n), that is, the
labeled graphs counted by at+1(n) are also counted by at(n). Since there are α(n)
α-labeled graphs of size n and the numbers at(n) satisfy the conditions of the
Principle of Inclusion and Exclusion, â0(n) is given by the expression above.
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Note that â0(n) can be used as an upper bound for the number of α-labeled
trees of size n.

Theorem 7. For t ≥ 1, the number ât(n) of α-labeled graphs of size n and order

m = n+ 1− t is

ât(n) = at(n)−

s−t
∑

i=1

(

t+ i

t

)

ât+i(n),

where s is the largest integer such that âs(n) 6= 0.

Proof. Since for every t, at(n) counts the number of α-labeled graphs of size n

and order n − t, and every (t + i)-element subset includes
(

t+i
t

)

subsets with t

elements, the number
(

t+i
t

)

ât+i(n) corresponds to the number of times ât+i(n)
has been counted within at(n). Thus,

at(n)−
s
∑

i=1

(

t+ i

t

)

ât+i(n)

gives the number ât(n).

In the following tables we summarize the numbers obtained. Recall that the
graphs considered in this work do not have isolated vertices. Table 2 shows the
total amount of α-labeled graphs of size n and order m with n up to 10. Table 3
presents the number of α-labeled graphs of size n and order m for every possible
value of λ. Two related results are the numbers of α-labeled graphs of size n

and order at most n and the number of α-labeled graphs of size n and order m

classified according to the possible boundary values. These are, respectively, the
sequences A245519 and A245517, in the Online Encyclopedia of Integer Sequences
[18].

n\m 1 2 3 4 5 6 7 8 9 10 11 α(n)
1 1 1
2 2 2
3 4 4
4 2 8 10
5 12 18 30
6 4 56 46 106
7 50 236 140 426
8 14 398 1034 484 1930
9 2 292 2712 4796 1888 9690

10 100 3552 18072 23880 7974 53578

Table 2. α-labeled graphs of size n and order m.
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n λ\m 1 2 3 4 5 6 7 8 9 10 11
1 0 1
2 0 1

1 1
3 0 1

1 2
2 1

4 0 1
1 1 3
2 1 3
3 1

5 0 1
1 4 4
2 4 8
3 4 4
4 1

6 0 1
1 1 10 5
2 1 18 17
3 1 18 17
4 1 10 5
5 1

7 0 1
1 6 20 6
2 14 60 34
3 10 76 58
4 14 60 34
5 6 20 6
6 1

8 0 1
1 1 21 35 7
2 5 81 175 63
3 1 97 307 171
4 1 97 307 171
5 5 81 175 63
6 1 21 35 7
7 1

9 0 1
1 8 56 56 8
2 1 56 354 448 113
3 60 628 1156 460
4 44 636 1476 724
5 60 628 1156 460
6 1 56 354 448 113
7 8 56 56 8
8 1

10 0 1
1 1 36 126 84 9
2 24 384 1256 1056 196
3 20 704 3316 4028 1148
4 5 652 4338 6772 2633
5 5 652 4338 6772 2633
6 20 704 3316 4028 1148
7 24 384 1256 1056 196
8 1 36 126 84 9
9 1

Figure 3. α-labeled graphs of size n and order m for every possible value of λ.



On the Number of α-Labeled Graphs 187

4. Conclusion

Graceful triangles have been useful in the enumeration of gracefully labeled graphs
as well as in the enumeration and classification of α-labeled graphs. They can
also be used to visualize labeling patters, not only for difference-vertex labelings,
they can also be used to study sum-vertex labelings. We hope that both, the
counting technique and the graceful triangle can be used in the future to count
other kinds of labeled graphs and to produce new families of labeled graphs. For
instance it would be interesting to know the number of α-labeled trees of size n.
Another problem is to find closed formulas for the numbers defined in this paper.
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