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Abstract

Let G = (V,E) be a simple graph with vertex set V and edge set E. A
signed total Roman edge dominating function of G is a function f : E →
{−1, 1, 2} satisfying the conditions that (i)

∑

e′∈N(e) f(e
′) ≥ 1 for each e ∈

E, where N(e) is the open neighborhood of e, and (ii) every edge e for
which f(e) = −1 is adjacent to at least one edge e′ for which f(e′) = 2.
The weight of a signed total Roman edge dominating function f is ω(f) =
∑

e∈E
f(e). The signed total Roman edge domination number γ′

stR
(G) of G

is the minimum weight of a signed total Roman edge dominating function
of G. In this paper, we first prove that for every tree T of order n ≥ 4,
γ′

stR
(T ) ≥ 17−2n

5 and we characterize all extreme trees, and then we present
some sharp bounds for the signed total Roman edge domination number.
We also determine this parameter for some classes of graphs.

Keywords: signed total Roman dominating function, signed total Roman
domination number, signed total Roman edge dominating function, signed
total Roman edge domination number.
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1. Introduction

For terminology and notation on graph theory not defined here, the reader is
referred to [2, 3, 8]. Let G be a simple graph with vertex set V = V (G) and
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edge set E = E(G). The order |V | of G is denoted by n = n(G) and size |E| of
G is denoted by m = m(G). For every vertex v ∈ V , the open neighborhood of
v is the set N(v) = {u ∈ V | uv ∈ E} and the closed neighborhood of v is the
set N [v] = N(v) ∪ {v}. The degree of a vertex v ∈ V is degG(v) = deg(v) =
|N(v)|. The minimum and maximum degree of a graph G are denoted by δ =
δ(G) and ∆ = ∆(G), respectively. Two edges e1, e2 of G are called adjacent

if they are distinct and have a common end-vertex. For every edge e ∈ E,
the open neighborhood NG(e) = N(e) is the set of all edges adjacent to e and
its closed neighborhood is NG[e] = N [e] = N(e) ∪ {e}. The edge-degree of an
edge e ∈ E is degG(e) = deg(e) = |N(e)|. Let ∆e = ∆e(G) and δe = δe(G)
denote the maximum edge-degree and minimum edge-degree of G, respectively.
The complement G of G is the simple graph with vertex set V (G) defined by
uv ∈ E(G) if and only if uv 6∈ E(G). We write Kn for the complete graph
of order n, Cn for a cycle of length n and Pn for a path of length n − 1. For
a subset S ⊆ E of edges of a graph G and a function f : E → R, we define
f(S) =

∑

x∈S f(x).

A subset F ⊆ E is an edge total dominating set if every edge e ∈ E is adjacent
to at least one edge in F . The cardinality of a smallest edge total dominating set
in a graph G is called the edge total domination number of G and is denoted by
γ′t(G). The edge total domination number was introduced by Kulli and Patwari
[5] and has been studied by several authors [6].

A signed total edge dominating function of G is a function f : E −→ {−1, 1}
such that

∑

e′∈N(e) f(e
′) ≥ 1 for every e ∈ E. The weight of a signed total edge

dominating function f is the sum of its function values over all edges. The signed
total edge domination number γ′st(G) of G is the minimum weight of a signed
total edge dominating function on G. The signed edge total domination was
introduced in [9] and has been studied by several authors [4, 10].

A function f : E −→ {−1, 1, 2} is called a signed Roman edge dominating

function (SREDF) of G, if f(N [e]) =
∑

e′∈N [e] f(e
′) ≥ 1 for each edge e of G and

every edge e for which f(e) = −1 is adjacent to at least one edge e′ for which
f(e′) = 2. The minimum of the values f(E), taken over all signed Roman edge
dominating functions f of G, is called the signed Roman edge domination number

of G and is denoted by γ′sR(G). In [1] Ahangar et al. introduced this concept.

A signed total Roman dominating function (STRDF) on a graph G = (V,E)
is a function f :V → {−1, 1, 2} satisfying the conditions that (i) the sum of its
function values over any open neighborhood is at least one, and (ii) every vertex u

for which f(u) = −1 is adjacent to at least one vertex v for which f(v) = 2. The
weight of an STRDF is the sum of its function values over all vertices. The signed
total Roman domination number ofG, denoted by γstR(G), is the minimum weight
of an STRDF in G. The signed total Roman domination number was introduced
by Volkmann [7].
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A signed total Roman edge dominating function (STREDF) on a graph G is
a function f :E → {−1, 1, 2} satisfying the conditions that (i)

∑

e′∈N(e) f(e
′) ≥ 1

for each edge e ∈ E, and (ii) every edge e ∈ E for which f(e) = −1 is adjacent
to at least one edge e′ ∈ E for which f(e′) = 2. The weight of an STREDF is the
sum of its function values over all edges. The signed total Roman edge domination

number of G, denoted by γ′stR(G), is the minimum weight of an STREDF in G.
For an STREDF f , let Ei = Ei(f) = {e ∈ E | f(e) = i} for i = −1, 1, 2.

The aim of this paper is to initiate the study of the signed total Roman
edge domination number. We first prove that for every tree T of order n ≥ 4,
γ′stR(T ) ≥

17−2n
5 and we characterize all extreme trees, and then we present some

sharp bounds for the signed total Roman edge domination number. We also
determine this parameter for some classes of graphs.

We make use of the following results in this paper.

Observation 1. Let G be a connected graph of order n ≥ 3. If f = (E−1, E1, E2)
is an STREDF on G, then

(a) m = |E−1|+ |E1|+ |E2|.

(b) ω(f) = 2|E2|+ |E1| − |E−1|.

(c) E1 ∪ E2 is an edge total dominating set of G.

Proof. Since (a) and (b) are immediate, we only prove (c). By definition, every
edge of E−1 is adjacent to an edge of E2 and so E2 dominates E−1. On the other
hand, for every edge e ∈ E1 ∪E2, it follows from f(N(e)) ≥ 1 that |N(e)∩ (E1 ∪
E2)| ≥ 1. Hence E1 ∪ E2 is an edge total dominating set of G.

Proposition 2 [7]. Let Cn be a cycle of order n ≥ 3. Then

γstR(Cn) =











n
2 n ≡ 0 (mod 4),
n+3
2 n ≡ 1, 3 (mod 4),

n+6
2 n ≡ 2 (mod 4).

Proposition 3 [7]. Let Pn be a path of order n ≥ 3. Then γstR(Pn) =
n
2 when

n ≡ 0 (mod 4), and γstR(Pn) =
⌈

n+3
2

⌉

otherwise.

Proposition 4 [7]. If n ≥ 3 is an integer, then γstR(Kn) = 3.

The line graph of a graph G, written L(G), is the graph whose vertices are
the edges of G, with ef ∈ E(L(G)) when e = uv and f = vw in G. It is easy
to see that L(K1,n) = Kn, L(Cn) = Cn and L(Pn) = Pn−1. The proof of the
following result is straightforward and therefore omitted.

Observation 5. For any connected graph G of order n≥3, γ′stR(G) = γstR(L(G)).

Using Observation 5 and Propositions 2, 3, and 4, we obtain the next results.
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Corollary 6. For n ≥ 2, γ′stR(K1,n) = 2 when n = 2, and γ′stR(K1,n) = 3
otherwise.

Corollary 7. For n ≥ 4, γ′stR(Pn) =
n−1
2 when n ≡ 1 (mod 4), and γ′stR(Pn) =

⌈

n+2
2

⌉

otherwise.

Corollary 8. For n ≥ 3, γ′stR(Cn) =
n
2 when n ≡ 0 (mod 4), γ′stR(Cn) =

n+3
2

when n ≡ 1, 3 (mod 4), and γ′stR(Cn) =
n+6
2 when n ≡ 2 (mod 4).

If G is a graph and f is an STREDF of G, then an edge e is said to be a +1
edge if f(e) = 1, a 2 edge if f(e) = 2 and a −1 edge if f(e) = −1. For each vertex
v ∈ V we also define f(v) =

∑

e∈E(v) f(e), where E(v) is the set of all edges at
vertex v.

2. Trees

In this section we present a lower bound on the signed total Roman edge domi-
nation number for trees and we characterize all extreme trees.

To begin with, we need to introduce some terminology and notation. A
vertex of degree one is called a leaf, and its neighbor is called a support vertex.

If v is a support vertex, then Lv will denote the set of all leaves adjacent to v.
A support vertex v is called a strong support vertex if |Lv| > 1. For a vertex v

in a rooted tree T , let C(v) denote the set of children of v, D(v) denote the set
of descendants of v and D[v] = D(v) ∪ {v}. Also, the depth of v, depth(v), is
the largest distance from v to a vertex in D(v). The maximal subtree at v is the
subtree of T induced by D(v) ∪ {v}, and is denoted by Tv.

For r, s ≥ 1, a double star S(r, s) is a tree with exactly two vertices that are
not leaves, with one adjacent to r leaves and the other to s leaves.

Proposition 9. For r ≥ s ≥ 1,

γ′stR(S(r, s)) =

{

4 r, s are odd and r, s ≥ 3,
3 otherwise.

Proof. Let S(r, s) be a double star whose central vertices are x, y with r pendant
edges xxi and s pendant edges yyi. Since S(1, 1) = P4, we have γ′stR(P4) = 3
by Corollary 7. Henceforth, we assume r ≥ 2. Let f = (E−1, E1, E2) be a
γ′stR(S(r, s))-function, f(xxj) = maxi f(xxi) and f(yyk) = maxi f(yyi). Since
∑

e∈N(xxj)
f(e) ≥ 1 and

∑

e∈N(yyk)
f(e) ≥ 1, we have

r
∑

i=1

f(xxi) ≥ f(xxj) + 1− f(xy) and
s

∑

i=1

f(yyi) ≥ f(yyk) + 1− f(xy).(1)
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Summing them up to get

ω(f) =
r

∑

i=1

f(xxi) +
s

∑

i=1

f(yyi) + f(xy) ≥ f(xxj) + f(yyk) + 2− f(xy).(2)

If E−1 = ∅, then in fact f(e) = 1 for all edges e and so ω(f) = r+ s+1 implying
ω(f) ≥ 4. So now assume that E−1 6= ∅. If f(xy) ≤ 1, we may assume f(xxj) = 2
and f(yyk) ≥ 1 which leads to ω(f) ≥ 4 by (2). If f(xy) = 2, then ω(f) =
∑

e∈N(xy) f(e)+f(xy) ≥ 1+2 = 3. Suppose to the contrary that ω(f) = 3, but r, s

are odd and r, s ≥ 3. This is possible only when
∑r

i=1 f(xxi) +
∑s

i=1 f(yyi) = 1.
By symmetry, we may assume that

∑r
i=1 f(xxi) ≤ 0. By (1), f(xxj) ≤ 1. Since

r is odd, we have
∑r

i=1 f(xxi) ≤ −1. This yields that

f(xxj) =
r

∑

i=1

f(xxi)−
∑

e∈N(xxj)

f(e) + f(xy) ≤ −1− 1 + 2 = 0,

and so f(xxj) = −1. Therefore, f(xxi) = −1 for 1 ≤ i ≤ r and
∑

e∈N(xxj)
f(e) =

3− r ≤ 0, a contradiction.

To see the upper bound, define an STREDF g by g(xy) = 2, g(xxi) = (−1)i−1

for 1 ≤ i ≤ r and g(yyj) = (−1)j−1 for 1 ≤ j ≤ s by a modification in the
following two cases: (i) both r and s are even, in which modify g(yy1) = 2, (ii)
s = 1 and r is odd, in which modify g(xx1) = −1 and g(yy1) = 2.

Let r be a positive integer and Tr be the tree obtained from the star K1,3r+1

with central vertex x and leaves x1, . . . , x3r+1 by adding two pendant edges at xi
such as xiyi, xizi, for each 1 ≤ i ≤ r + 2 (Figure 1). Suppose F = {Tr | r ≥ 1}.

t

t

tt

t

t

t

t t

tt

t

t

t

t

((�
�

hh E
E

A
A

�
�







J
JJ

��@@
@@��

x1
z1

y1

yr+2

zr+2

y2

z2
zr+1

yr+1

x2 xr+1

xr+2

. . .

x

xr+3x3r+1

. . .

Figure 1. Family F .

Lemma 10. If T ∈ F , then γ′stR(T ) =
17−2|V (T )|

5 .

Proof. Let T ∈ F . Then T = Tr for some positive integer r. To show that
γ′stR(T ) ≤ 17−2|V (T )|

5 , define f : E(T ) → {−1, 1, 2} by f(xxi) = 2 for each
1 ≤ i ≤ r+ 2 and f(e) = −1 otherwise. Clearly, f is an STREDF of T of weight
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17−2|V (T )|
5 and so γ′stR(T ) ≤

17−2|V (T )|
5 . Now, we show that γ′stR(T ) ≥

17−2|V (T )
5 .

Let f be a γ′stR(T )-function. By definition, f(N(xiyi)) = f(xxi) + f(xizi) ≥ 1
for each 1 ≤ i ≤ r + 2. This implies that

γ′stR(T ) = ω(f) =
r+2
∑

i=1

f(N(xiyi)) +
r+2
∑

i=1

f(xiyi) +
3r+1
∑

i=r+3

f(xxi)

≥ −2r + 1 =
17− 2|V (T )|

5
.

Thus γ′stR(T ) =
17−2|V (T )|

5 and the proof is complete.

Next result is an immediate consequence of Lemma 10.

Corollary 11. For every integer r ≥ 1, there exists a connected graph G such

that γ′stR(G) = 1− 2r.

Theorem 12. Let T be a tree of order n ≥ 4. Then

γ′stR(T ) ≥
17− 2n

5
,

with equality if and only if T ∈ F .

Proof. The proof is by induction on n. If diam(T ) ≤ 3, then T is a star or
a double star and we have γ′stR(T ) > 17−2n

5 by Corollary 6 and Proposition 9.
Hence the statement holds for all trees T with diam(T ) ≤ 3 as well as all trees
of order n = 4. Assume T is an arbitrary tree of order n ≥ 5 and diam(T ) ≥ 4.
Let f be a γ′stR(T )-function. We proceed further with a series of claims that we
may assume satisfied by the tree T and the STREDF f .

Claim 1. T has no non-pendant edge e with f(e) = −1.

Proof. Assume e = u1u2 ∈ E(T ) is a non-pendant edge in T with f(e) = −1. Let
T − e = Tu1

∪ Tu2
, where Tui

is the component of T − e containing ui for i = 1, 2.
Obviously, γ′stR(T ) = f(E(Tu1

)) − 1 + f(E(Tu2
)) and the function f , restricted

to Tui
, is an STREDF and hence γ′stR(Tui

) ≤ f(E(Tui
)) for i = 1, 2. Clearly,

|V (Tui
)| ≥ 3 for each i = 1, 2. If |V (Tu1

)| = |V (Tu2
)| = 3, then Tu1

= Tu2
= K1,2

and it is easy to verify that γ′stR(T ) >
17−2n

5 . Let |V (Tu1
)| ≥ 4. If |V (Tu2

)| = 3,
then Tu2

= K1,2 and f(E(Tu2
)) ≥ 2. It follows from the induction hypothesis that

γ′stR(T ) ≥ 2 + 17−2(n−3)
5 − 1 > 17−2n

5 . Suppose |V (Tu2
)| ≥ 4. By the induction

hypothesis we obtain

γ′stR(T ) ≥ γ′stR(Tu1
) + γ′stR(Tu2

)− 1 ≥
29− 2n

5
>

17− 2n

5
.

�
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By Claim 1 and the fact that f is an STREDF of T , we conclude that f(v) ≥ 0
for each support vertex v and f(v) ≥ 2 for each vertex v which is not a leaf or a
support vertex.

Claim 2. T has no two pendant edges vu1 and vu2 with f(vu1) = 1 and f(vu2)
= −1.

Proof. Let vu1 and vu2 be two pendant edges in T such that f(vu1) = 1 and
f(vu2) = −1. Assume T ′ = T − {u1, u2}. If |V (T ′)| ≤ 3, then it is easy to see
that γ′stR(T ) >

17−2n
5 . Suppose |V (T ′)| ≥ 4. Clearly, the function f , restricted

to T ′, is an STREDF on T ′ and by the induction hypothesis we have

γ′stR(T ) ≥ γ′stR(T
′) ≥

17− 2(n− 2)

5
>

17− 2n

5
.

�

Claim 3. T has no two pendant edges vu1 and vu2 with f(vu1) = 2 and f(vu2)
= −1.

Proof. Let T have two pendant edges vu1 and vu2 with f(vu1) = 2 and f(vu2) =
−1. Since T is not a star, we deduce from Claim 1 that there is a non-pendant
edge vv′ such that f(vv′) ≥ 1. If f(vv′) = 2, then assume that T ′ = T − {u1}
and define g : E(T ′) → {−1, 1, 2} by g(vu2) = 1 and g(e) = f(e) for e ∈
E(T ′) − {vu2}. Obviously, g is an STREDF on T ′ of weight γ′stR(T ) and by

the induction hypothesis we have γ′stR(T ) ≥ γ′stR(T
′) ≥ 17−2(n−1)

5 > 17−2n
5 . If

f(vv′) = 1, then assume that T ′ = T −{u1, u2} and define g : E(T ′) → {−1, 1, 2}
by g(vv′) = 2 and g(e) = f(e) for e ∈ E(T ′)−{vv′}. Obviously, g is an STREDF
on T ′ of weight γ′stR(T ) and by the induction hypothesis we have

γ′stR(T ) ≥ γ′stR(T
′) ≥

17− 2(n− 2)

5
>

17− 2n

5
.

�

Claim 4. T has no two pendant edges vu1 and vu2 with f(vu1) = f(vu2) = 1.

Proof. Let vu1 and vu2 be two pendant edges in T such that f(vu1) = f(vu2) =
1. It follows from Claims 1 and 2 that there is no −1 edge at v. Assume
T ′ = T − {u1} and define g : E(T ′) → {−1, 1, 2} by g(vu2) = 2 and g(e) = f(e)
for e ∈ E(T ′)− {vu2}. Clearly, g is an STREDF on T ′ of weight γ′stR(T ) and by

the induction hypothesis we have γ′stR(T ) ≥ γ′stR(T
′) ≥ 17−2(n−1)

5 > 17−2n
5 . �

We conclude from Claims 2, 3 and 4 that all pendant edges at a vertex are
either −1 edges or positive edges. Choose a diametral path v1v2 · · · vd in T to
maximize degT (v2) and root T at vd. For 2 ≤ i ≤ d−1, let viu

1
i , viu

2
i , . . . , viu

ri
i be

all pendant edges at vi and f(viu
1
i ) ≤ f(viu

2
i ) ≤ · · · ≤ f(viu

ri
i ) and let si be the

largest index such that f(viu
si
i ) = −1. Then either si = ri or si = 0 for each i.

We consider two cases.
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Case 1. s2 = 0. We consider three subcases as follows.

Subcase 1.1. f(v2u
1
2) = 2 and s3 ≥ 1. Let T ′ = T − {u12} and define function

f ′ by f ′(v3u
1
3) = 1 and f ′(x) = f(x) where x ∈ E(T ′) − {v3u

1
3}. Then f ′ is an

STREDF of T ′ with fewer vertices, and ω(f) = ω(f ′) > 17−2n
5 .

Subcase 1.2. f(v2u
1
2) = 1 and s3 ≥ 1. Let T ′ = T − {u12, u

1
3} and f ′ = f |T ′ .

Then f ′ is an STREDF of T ′ with fewer vertices, and ω(f) = ω(f ′) > 17−2n
5 .

Subcase 1.3. f(v2u
1
2) ≥ 1 and s3 = 0. Let T ′ = T −{u12} and f ′ = f |T ′ . Then

f ′ is an STREDF of T ′ with fewer vertices, and ω(f) = ω(f ′)+ f(v2u
1
2) >

17−2n
5 .

Case 2. s2 = r2. Since f is a γ′stR(T )-function, we have f(v) =
∑

e∈E(v) f(e)
≥ 0 for every support vertex v and so the case s2 = r2 ≥ 3 is impossible. We
consider four subcases.

Subcase 2.1. s2 = r2 = 2 and s3 ≥ 2. If s3 = 2 or f(v3x) = 2 for some
x ∈ N(v3) − {v2}, then let T ′ = T − {u12, u

2
2, v2, u

1
3, u

2
3}. If |V (T ′)| = 3, then

clearly γ′stR(T ) >
17−2n

5 . If |V (T ′)| ≥ 4, then the function f , restricted to T ′ is
an STREDF of T ′ of weight ω(f) + 2 and by the induction hypothesis we have

γ′stR(T ) = ω(f) ≥ ω(f |T ′)− 2 ≥
17− 2(n− 5)

5
− 2 =

17− 2n

5
.(3)

Let s3 ≥ 3 and f(v3x) ≤ 1 for each x ∈ N(v3)−{v2}. It follows from f(N(v2v3)) ≥
1 that |N(v3)−({ui3 | 1 ≤ i ≤ s3}∪{v2})| ≥ s3+3. Assume x ∈ N(v3)−({ui3 | 1 ≤
i ≤ s3}∪{v2, v4}). Then f(v3x) = 1 and x is a support vertex of degree 2 by Claim
4. Let x′ be the leaf adjacent to x and let T ′ = T −{u12, u

2
2, v2, u

1
3, u

2
3, x

′}. Define
h : E(T ′) → {−1, 1, 2} by h(v3v4) = 2 and h(e) = f(e) for e ∈ E(T ′) − {v3v4}.
Obviously, h is an STREDF on T ′ of weight at most ω(f)+2 and it follows from
the induction hypothesis that

γ′stR(T ) = ω(f) ≥ ω(f |T ′)− 2 ≥
17− 2(n− 6)

5
− 2 >

17− 2n

5
.(4)

Subcase 2.2. s2 = r2 = 1 and s3 ≥ 2. If s3 = 2 or f(v3x) = 2 for some
x ∈ N(v3) − {v2}, then let T ′ = T − {u12, v2, u

1
3, u

2
3} and f ′ = f |T ′ . Clearly,

f ′ is an STREDF of T ′ of weight ω(f) + 1 and we conclude from the induction
hypothesis that ω(f) = ω(f ′) − 1 > 17−2n

5 . If s3 ≥ 3 and f(v3x) ≤ 1 for
each x ∈ N(v3) − {v2}, then by similar argument as subcase 2.1, we obtain
ω(f) > 17−2n

5 .

Subcase 2.3. s2 = r2 ≤ 2 and s3 = 1. Since f(N(v2v3)) ≥ 1, we must
have deg(v3) ≥ 4. It follows from Claims 2 and 3 that all neighbors of v3, with
exception of v4 and u13, are support vertices. By changing the value of f if
necessary, we may assume, without loss of generality, that f assigns 2 to all edges
at v3 with exception v3u

1
3, v3v4. Note that f(v4) ≥ 0 if s4 ≥ 1, and f(v4) ≥ 2 if
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s4 = 0. If deg(v3) ≥ 5, then the function f , restricted to T ′ = T − (Tv2 ∪ {u13}),
is an STREDF of T ′ of weight at most ω(f) + 1 and by the induction hypothesis
we have

γ′stR(T ) ≥
17− 2(n− 4)

5
− 1 >

17− 2n

5
.

Let deg(v3) = 4. If diam(T ) = 4, then it is easy to verify that γ′stR(T ) ≥
17−2n

5
with equality if and only if T = T1 and so T ∈ F . Let diam(T ) ≥ 5. Assume
w 6∈ {v2, v4} is the support vertex adjacent to v3. If s4 = 0, then the function f ,
restricted to T ′ = T − (Tv2 ∪ Tw ∪ {u13}), is an STREDF of T ′ of weight at most
ω(f) + 1 and by the induction hypothesis we have

γ′stR(T ) ≥
17− 2(n− 7)

5
− 1 >

17− 2n

5
.

If s4 = 1, then the function f , restricted to T ′ = T − (Tv2 ∪ Tw ∪ {u13, u
1
4}), is an

STREDF of T ′ of weight at most ω(f)+2 and as above we have γ′stR(T ) >
17−2n

5 .
If s4 = 2, then the function f , restricted to T ′ = T − (Tv2 ∪ Tw ∪ {u13, u

1
4, u

2
4}), is

an STREDF on T ′ of weight at most ω(f) + 3 and by the induction hypothesis
we have

γ′stR(T ) ≥
17− 2(n− 9)

5
− 3 >

17− 2n

5
.

If s4 ≥ 3, then assume T ′ = T − (Tv3 ∪ {u14, u
2
4, u

3
4}). If |V (T ′)| = 3, then it is

not hard to see that γ′stR(T ) >
17−2n

5 . If |V (T ′)| ≥ 4, then define h : E(T ′) →
{−1, 1, 2} by h(v4v5) = 2 and h(e) = f(e) for e ∈ E(T ′)−{v4v5}. Obviously, h is
an STREDF on T ′ of weight at most ω(f) + 2 and it follows from the induction
hypothesis that

γ′stR(T ) ≥ ω(h)− 2 ≥
17− 2(n− 11)

5
− 2 >

17− 2n

5
.

Subcase 2.4. s2 = r2 ≤ 2 and s3 = 0. If s4 = 0 and deg(v3) ≥ 4, then the
function f , restricted to T ′ = T − Tv2 , is an STREDF on T ′ of weight at most
ω(f) and so γ′stR(T ) >

17−2n
5 . If s4 = 0, deg(v3) = 3 and w ∈ N(v3) − {v2, v4},

then the function f , restricted to T ′ = T − (Tv2 ∪ Tw), is an STREDF of T ′ of
weight at most ω(f) and by the induction hypothesis we obtain γ′stR(T ) >

17−2n
5 .

Suppose that s4 = 1. Let T ′ = T − Tv3 . If |V (T ′)| = 3, then it is easy to see
that γ′stR(T ) > 17−2n

5 . If |V (T ′)| ≥ 4, then define h on T ′ by h(v4u
1
4) = 1 and

h(e) = f(e) for each e ∈ E(T ′). It is easy to verify that h is an STREDF of T ′

of weight at most ω(f) + 1 and by the induction hypothesis we have

γ′stR(T ) ≥
17− 2(n− 7)

5
− 1 >

17− 2n

5
.

Now, assume s4 ≥ 2. First let deg(v3) ≥ 4. By changing the values of f if
necessary, we may assume, without loss of generality, that f assigns 2 to all
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non-pendant edges at v3 with exception v3v4. If deg(v3) ≥ 5 or deg(v3) ≥ 4
and f(v3v4) = 2, then the function f , restricted to T ′ = T − (Tv2 ∪ {u14}), is
an STREDF of T ′ of weight at most ω(f) + 1 and by the induction hypothesis
we have γ′stR(T ) > 17−2n

5 . Assume deg(v3) = 4 and f(v3v4) = 1. Then let
T ′ = T − Tv2 and define h : E(T ′) → {−1, 1, 2} by f(v3v4) = 2 and h(e) = f(e)
for e ∈ E(T ′)−{v3v4}. Clearly, h is an STREDF of T ′ of weight ω(f) + 1 and it
follows from the induction hypothesis that γ′stR(T ) >

17−2n
5 .

Let now deg(v3) = 3. If diam(T ) = 4, then it is not hard to verify that
γ′stR(T ) > 17−2n

5 . Suppose diam(T ) ≥ 5 and T ′ = T − (Tv3 ∪ {u14, u
2
4}). Then

|V (T ′)| ≤ n − 7. If |V (T ′)| = 3, then T ′ = P3 and clearly γ′stR(T ) > 17−2n
5 .

Assume |V (T ′)| ≥ 4. Then the function f , restricted to T ′, is an STREDF of
T ′ of weight at most ω(f) + 2 and it follows from the induction hypothesis that

γ′stR(T ) = ω(f) ≥ ω(f |T ′)− 2 ≥ 17−2(n−7)
5 − 2 > 17−2n

5 .

If T ∈ F , then by Lemma 10 we have γ′stR(T ) = 17−2n
5 . Conversely, let

γ′stR(T ) = 17−2n
5 . Regarding the proof, T = T1 or T satisfies Subcase 2.1. It

follows from (4) that γ′stR(T
′) = 17−2(n−5)

5 and f |T ′ is a γ′stR(T
′)-function. By

the induction hypothesis we deduce that T ′ ∈ F and so T ′ = Tr for some positive
integer r. If v3 is not the central vertex of T ′, then

∑

e∈N(v2v3)
f(e) ≤ 0 which

is a contradiction. Thus v3 is the central vertex of T ′ which implies that T =
Tr+1 ∈ F . This completes the proof.

3. General Bounds

In this section we present basic properties of γ′stR(G) and sharp bounds on the
signed total Roman edge domination number of a graph.

Theorem 13. If G is a graph of size m, maximum degree ∆ and minimum

degree δ, then

γ′stR(G) ≥
m(2δ − 1)

2(∆− 1)
−m.

Proof. Let f be a γ′stR(G)-function and define g : E → {0, 2, 3} by g(e) = f(e)+1
for each e ∈ E. We have

∑

e∈E

g(N(e)) ≥
∑

e=xy∈E

(f(N(e)) + deg(x) + deg(y)− 2)

≥ 2mδ +
∑

e=xy∈E

(f(N(e))− 2) ≥ 2mδ −m = m(2δ − 1) .
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On the other hand,

∑

e∈E

g(N(e)) =
∑

e=xy∈E

(deg(x) + deg(y)− 2)g(e)

≤
∑

e∈E

(2∆− 2)g(e) = (2∆− 2)g(E) .

Thus g(E) ≥ m(2δ−1)
2∆−2 . Since f(E) = g(E)−m, we have

γ′stR(G) ≥
m(2δ − 1)

2(∆− 1)
−m.

Corollary 14. If G is an r-regular graph with r ≥ 2 of order n, then γ′stR(G) ≥
rn

4(r−1) .

The cycle C4t demonstrates that Theorem 13 and Corollary 14 are sharp.

Example 15. Consider the complete graphK4 with vertex set {v1, v2, v3, v4}. By
Corollary 14, we have γ′stR(K4) ≥ 2. Define the function f : E(K4) → {−1, 1, 2}
by f(v1v2) = f(v1v3) = f(v1v4) = −1, f(v2v3) = 1 and f(v2v4) = f(v3v4) = 2.
Clearly, f is a signed total Roman edge dominating function of K4 of weight 2
and so γ′stR(K4) = 2.

Applying Corollary 14, we present a so called Nordhaus-Gaddum type in-
equality for the signed total Roman edge domination number of regular graphs.

Theorem 16. If G is an r-regular graph with r ≥ 2 of order n ≥ 3 such that G

and G are connected and r ≤ n−1
2 , then

γ′stR(G) + γ′stR(G) ≥
rn

n− 3
.

If n is even, then

γ′stR(G) + γ′stR(G) ≥
rn

n− 2
.

Proof. Since G is r-regular, the complement G is (n− r − 1)-regular. It follows
from Corollary 14 that

γ′stR(G) + γ′stR(G) ≥
n

4

(

r

r − 1
+

n− r − 1

n− r − 2

)

.

Since r ≤ n−1
2 , we have

γ′stR(G) + γ′stR(G) ≥
rn

4

(

1

r − 1
+

1

n− r − 2

)

.
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Since the function f(x) = 1
x−1 + 1

n−x−2 gets its minimum at x = n−1
2 when

2 ≤ x ≤ n− 3, we obtain

γ′stR(G) + γ′stR(G) ≥
rn

4

(

1

r − 1
+

1

n− r − 2

)

≥
rn

4

(

2

n− 3
+

2

n− 3

)

=
rn

n− 3
,

as desired. If n is even, then the function f gets its minimum at r = x = n−2
2 or

r = x = n
2 , since r is an integer. Thus

γ′stR(G) + γ′stR(G) ≥
rn

4

(

1

r − 1
+

1

n− r − 2

)

≥
rn

4

(

2

n− 4
+

2

n− 2

)

≥
rn

4

(

2

n− 2
+

2

n− 2

)

=
rn

n− 2
,

and the proof is complete.

Theorem 17. Let G be a graph of size m and minimum degree δ ≥ 3. Then

γ′stR(G) ≤ m− 2δ + 5.

Proof. Let v ∈ V be a vertex, t = δ−1 and u1, u2, . . . , ut ∈ N(v). Define f : E →
{−1, 1, 2} by f(vui) = −1 for 1 ≤ i ≤ t− 1, f(vut) = 2 and f(x) = 1 otherwise.
Then f(vw) = −(t− 1)+2+ (deg(v)− (t+1))+deg(w)− 1 ≥ 2δ− 2t+1 > 1 for
w ∈ N(v)−{ut} and f(vut) = −(t−1)+(deg(v)− t)+deg(ut)−1 ≥ 2δ−2t > 1.
Let e = wz such that w, z 6= v. If δ = 3, then clearly f(wz) ≥ 2. If δ ≥ 4, then
f(wz) ≥ deg(w) + deg(z)− 6 ≥ 2δ − 6 > 1. Therefore, f is an STREDF on G of
weight m− 2t+ 3 and so γ′stR(G) ≤ m− 2t+ 3 = m− 2δ + 5.

Theorem 18. If G is a connected graph of size m ≥ 2, then

γ′stR(G) ≤ min

{

m,
m+ γ′st(G)

2

}

.

Proof. Obviously, γ′stR(G) ≤ m. Now let f be a γ′st(G)-function, and let P =
{e ∈ E | f(e) = 1} and M = {e ∈ E | f(e) = −1} = {e1, e2, . . . , e|M |}. Suppose
e′i ∈ P is an edge adjacent to ei for each i. Define g : E → {−1, 1, 2} by g(e′i) = 2
for 1 ≤ i ≤ |M | and g(e) = f(e) otherwise. It is easy to see that g is an STREDF
on G of weight at most γ′st(G) + |M |. Moreover, since γ′st(G) = |P | − |M | and

m = |P |+ |M |, we have |P | =
m+γ′

st(G)
2 . Thus

γ′stR(G) ≤ ω(g) ≤ γ′st(G) + |M | = |P | =
m+ γ′st(G)

2
.

Theorem 19. Let G 6= C6 be a graph of order n ≥ 5. Then

γ′stR(G) ≤ m− 1.



Signed Total Roman Edge Domination in Graphs 1051

Proof. If δ(G) ≥ 3, then the result is immediate by Theorem 17. Henceforth,
we assume δ(G) ≤ 2. Consider two cases.

Case 1. δ = 2. If ∆ = δ = 2, then G = Cn and since G 6= C6, we are
done by Corollary 8. Let ∆ ≥ 3 and u0 be a vertex of maximum degree and let
P = u0u1 · · ·uk be a longest path in G beginning at u0. Let w ∈ N(u0)−{u1}. If
either deg(u1) ≥ 3 or deg(u2) ≥ 3, then define f : E → {−1, 1, 2} by f(u0u1) =
−1, f(u0w) = 2 and f(e) = 1 otherwise. Let deg(u1) = deg(u2) = 2. If k = 2,
then clearly u3 = u0 and define f : E → {−1, 1, 2} by f(u0u1) = −1, f(u0u2) = 2
and f(e) = 1 otherwise. If k = 3, then u4 = u0 and define f : E → {−1, 1, 2}
by f(u0u3) = f(u3u2) = 2, f(u1u2) = f(u0u1) = −1 and f(e) = 1 otherwise. If
u0 6= u3, u4, then define f : E → {−1, 1, 2} by f(u0u1) = f(u3u4) = f(u4u5) = 2,
f(u1u2) = f(u2u3) = −1 and f(e) = 1 otherwise. It is easy to verify that, in all
cases, f is an STREDF of G with weight at most m− 1.

Case 2. δ = 1. Let v0 ∈ V be a vertex of minimum degree and P = v0v1 · · · vk
be a longest path in G beginning at v0. If G is a path, then we are done by
Corollary 7. Let deg(vi) ≥ 3 for some i. If either i = 1 or i = 2, then define f :
E → {−1, 1, 2} by f(v1v0) = −1, f(v2v1) = 2 and f(e) = 1 otherwise. It is easy
to see that f is an STREDF of G with weight m− 1. Let deg(v1) = deg(v2) = 2.
Note that since n ≥ 5, we have deg(v3) ≥ 2. Consider the following subcases.

Subcases 2.1. deg(v4) ≥ 3. If deg(v5) ≥ 2, then define f : E → {−1, 1, 2}
by f(v0v1) = f(v3v4) = −1, f(v1v2) = f(v2v3) = f(v4v5) = 2 and f(e) = 1
otherwise. If deg(v5) = 1, then define f : E → {−1, 1, 2} by f(v0v1) = f(v4v5) =
−1, f(v1v2) = f(v2v3) = f(v3v4) = 2 and f(e) = 1 otherwise. Obviously, in both
cases, f is an STREDF of G with weight m− 1.

Subcase 2.2. deg(v4) = 2. If deg(v5) ≥ 2, then define f : E → {−1, 1, 2}
by f(v0v1) = f(v3v4) = −1, f(v1v2) = f(v2v3) = f(v6v5) = 2 and f(e) = 1
otherwise. If deg(v5) = 1, then define f : E → {−1, 1, 2} by f(v0v1) = f(v4v5) =
−1, f(v1v2) = f(v2v3) = f(v4v5) = 2 and f(e) = 1 otherwise. Then f is an
STREDF of G with weight m− 1.

Subcase 2.3. deg(v4) = 1. Then the function f defined by f(v0v1) =
f(v3v4) = −1, f(v1v2) = f(v2v3) = 2 and f(e) = 1 otherwise, is an STREDF of
G with weight m− 1. This completes the proof.

Theorem 20. Let G be a connected graph of order n ≥ 3 and size m. Then

γstR(G) = m if and only if G ∼= P3, P4, C3, C4, C6, or K1,3.

Proof. Let G be a connected graph of size m ≥ 2 and let γstR(G) = m. By
Theorem 19, either n ≤ 4 or G = C6 and by Theorem 17, δ ≤ 2. The case
G = C6 is obvious by Corollary 8. Let n ≤ 4 and δ ≤ 2. If δ = 2, we must have
G = C3, C4 and C4+e. If G = C3, C4, we are done by Corollary 8. Let G = C4+e
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and V (C4+e) = {v1, v2, v3, v4}, where e = v1v3. Define f : E(C4+e) → {−1, 1, 2}
by f(v1v3) = −1, f(v2v3) = 2 and f(x) = 1 otherwise. Clearly, f is an STREDF
of C4 + e with weight 4. Thus G 6= C4 + e. Let δ = 1. It is easy to see that
the only graphs satisfying the conditions are P3, P4 or K1,3. This completes the
proof.

Theorem 21. If G is a graph of size m, maximum edge-degree ∆e and minimum

edge-degree δe, then

γ′stR(G) ≥
2− δe +

√

(δe − 2)2 + 12m(δe + 1)

3
−m.

Proof. Let f = (E−1, E1, E2) be a γ′stR(G)-function. Define P = E1 ∪ E2 and
|P | = p. Then γ′stR(G) ≥ 2p −m. For any edge e ∈ E, by the definition of the
signed total Roman edge domination number, we can easily verify the following
inequality:

|N(e) ∩ P | ≥

⌈

deg(e) + 1

3

⌉

,

and hence

∑

e∈E−1

|N(e) ∩ P | ≥
deg(e) + 1

3
(m− p) ≥

δe + 1

3
(m− p).

So there exists at least one edge e ∈ P such that e is adjacent to (δe+1)(m−p)
3p

edges of E−1. Hence

p− 1 ≥ |N(e) ∩ P | ≥ 1 +
(δe + 1)(m− p)

3p
.

By the above inequality, we deduce that

p ≥
2− δe +

√

(δe − 2)2 + 12m(δe + 1)

6
,

and so

γ′stR(G) ≥ 2p−m ≥
2− δe +

√

(δe − 2)2 + 12m(δe + 1)

3
−m.

4. Conclusion

In this paper, we introduce a new variant of the Roman domination problem,
called the signed total Roman edge domination problem, on graphs. We show
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that for any tree T of order n ≥ 4, γ′stR(G) ≥ 17−2n
5 and classify all extreme

trees. Moreover, we present some lower bounds for general graphs. As a further
study, it is interesting to establish sharp upper bounds for this parameter and to
determine the value of this parameter for some well-known classes of graphs. We
conclude this paper with an open problem.

Problem. Prove or disprove: For any tree of order n ≥ 3, γ′stR(T ) ≤
⌈

n+2
2

⌉

.
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