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Abstract

Let D = (V,A) be a finite simple directed graph (shortly, digraph). A
function f : V −→ {−1, 0, 1} is called a twin minus total dominating function
(TMTDF) if f(N−(v)) ≥ 1 and f(N+(v)) ≥ 1 for each vertex v ∈ V .
The twin minus total domination number of D is γ∗

mt
(D) = min{w(f) |

f is a TMTDF of D}. In this paper, we initiate the study of twin minus
total domination numbers in digraphs and we present some lower bounds for
γ∗

mt
(D) in terms of the order, size and maximum and minimum in-degrees

and out-degrees. In addition, we determine the twin minus total domination
numbers of some classes of digraphs.
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1. Introduction

In this paper, D is a finite simple directed graph with vertex set V (D) and arc
set A(D) (briefly, V and A). A digraph without directed cycles of length 2 is
an oriented digraph. We write d+D(v) = d+(v) for the out-degree of a vertex v
and d−D(v) = d−(v) for its in-degree. The minimum and maximum in-degree and
minimum and maximum out-degree of D are denoted by δ−(D) = δ−, ∆−(D) =
∆−, δ+(D) = δ+ and ∆+(D) = ∆+, respectively. If (u, v) is an arc of D, then we
say that v is an out-neighbor of u and u is an in-neighbor of v, and we also say that
u dominates v or v is dominated by u. The sets N−(v) = N−

D (v) = {x | (x, v) ∈
A(D)} and N+(v) = N+

D (v) = {x | (v, x) ∈ A(D)} are called the in-neighborhood

and out-neighborhood of the vertex v. Likewise, N−

D [v] = N−[v] = N−(v) ∪ {v}
and N+

D [v] = N+[v] = N+(v)∪{v}. For S ⊆ V (D), we define N−(S) = N−

D (S) =
⋃

v∈S N−(v), N+(S) = N+
D (S) =

⋃

v∈S N+(v), N−[S] = N−

D [S] = N−(S)∪S and
N+[S] = N+

D [S] = N+(S) ∪ S. If X ⊆ V (D) and v ∈ V (D), then A(X, v) is the
set of arcs from X to v. We denote by A(X,Y ) the set of arcs from a subset
X to a subset Y . The notation D−1 is used for the digraph obtained from D
by reversing the arcs of D. With any digraph D, we can associate a graph G
with the same vertex set simply by replacing each arc by an edge with the same
vertices. This graph is the underlying graph of D, denoted G(D). The complete

digraph of order n, K∗

n, is a digraph D such that (u, v), (v, u) ∈ A(D) for any
two distinct vertices u, v ∈ V (D). For a real-valued function f : V (D) −→ R the
weight of f is w(f) =

∑

v∈V f(v), and for S ⊆ V , we define f(S) =
∑

v∈S f(v),
so w(f) = f(V ). Consult [13] for the notation and terminology which are not
defined here.

A signed total dominating function (abbreviated STDF) of D is a function
f : V → {−1, 1} such that f(N−(v)) ≥ 1 for every v ∈ V . The signed total

domination number of a digraph D is

γst(D) = min{w(f) | f is a STDF of D}.
A γst(D)-function is a STDF of D of weight γst(D). The signed total domination
number of a digraph was introduced by Sheikholeslami [12].

Recently, Atapour et al. [1] studied the twin signed total domination numbers
in digraphs. A signed total dominating function of a digraph D is called a twin

signed total dominating function (briefly, TSTDF) if it is also a signed total domi-
nating function of D−1, i.e., f(N+(v)) ≥ 1 for every v ∈ V . The twin signed total

domination number of a digraph D is γ∗st(D) = min{w(f) | f is a TSTDF of D}.
Let D be digraph with min{δ+(D), δ−(D)} ≥ 1. A minus total dominating

function (abbreviated MTDF) of D is a function f : V → {−1, 0, 1} such that
f(N−(v)) ≥ 1 for every v ∈ V . The minus total domination number for a digraph
D is

γmt(D) = min{w(f) | f is a MTDF of D}.
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A γmt(D)-function is a MTDF of D of weight γmt(D). The minus total dom-
ination number of a digraph was introduced by Li et al. [10]. We define a
twin minus total dominating function of D as a minus total dominating func-
tion of both D and D−1, i.e., f(N−(v)) ≥ 1 and f(N+(v)) ≥ 1 for every
v ∈ V . The twin minus total domination number for a digraph D is γ∗mt(D) =
min{w(f) | f is a TMTDF of D}. As the assumption δ−(D), δ+(D) ≥ 1 is nec-
essary, we always assume that when we discuss γ∗mt(D), all digraphs involved
satisfy δ−(D) ≥ 1 and δ+(D) ≥ 1.

Let G be a graph with vertex V and edge set E. For every vertex v ∈ V , the
open neighborhood N(v) is the set {u ∈ V | uv ∈ E} and the closed neighborhood

of v is N [v] = N(v) ∪ {v}. A minus total dominating function of G, introduced
by Harris et al. [7], is a function f : V → {−1, 0, 1} such that f(N(v)) ≥ 1 for
every v ∈ V . The minus total domination number of G, denoted by γmt(G), is
the minimum weight of a minus total dominating function on G. The minus total
domination number in graphs and its related parameters was studied by several
authors, for example [8, 9, 11, 15].

For any function f : V (D) → {−1, 0, 1}, on a digraph D, we define P =
Pf = {v ∈ V | f(v) = 1}, Z = Zf = {v ∈ V | f(v) = 0} and M = Mf = {v ∈
V | f(v) = −1}. Since every TMTDF of D is a MTDF on both D and D−1 and
since the constant function 1 is a TMTDF of D, we have

(1) max{γmt(D), γmt(D
−1)} ≤ γ∗mt(D) ≤ |V (D)|.

Since every TSTDF of a digraph D is a TMTDF, we have

(2) γ∗mt(D) ≤ γ∗st(D).

In this paper, we initiate the study of the twin minus total domination num-
ber in digraphs and we present some lower bounds on this parameter.

2. Basic Properties

In this section, we present basic properties of the twin minus total domination
number. By (1), γ∗mt(D) ≤ |V (D)| for any digraph D. The next proposition
provides conditions to establish the equality.

Proposition 1. Let D be a digraph of order n. Then γ∗mt(D) = n if and only if

every vertex has either an out-neighbor with in-degree at most 1 or an in-neighbor

with out-degree at most 1.

Proof. The sufficiency is clear. Thus, we verify the necessity of the condition.
Assume to the contrary that there exists a vertex v ∈ V (D) such that d−(u) ≥ 2
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for each u ∈ N+(v) and d+(w) ≥ 2 for each w ∈ N−(v). Define f : V (D) →
{−1, 0, 1} by f(v) = 0 and f(x) = 1 for x ∈ V (D) \ {v}. Obviously, f is a twin
minus total dominating function of D of weight less than n, a contradiction. This
completes the proof.

The next result is an immediate consequence of Proposition 1.

Corollary 2. If
−→
C n is the directed cycle on n vertices, then γ∗mt(

−→
C n) = n.

Now we show that the twin minus total domination and also the twin signed
total domination number of digraphs can be arbitrarily small.

Theorem 3. For any positive integer k ≥ 2, there exists a digraph D such that

γ∗mt(D) ≤ 6k − 4k2.

Proof. Let k ≥ 2 be an integer and D be a digraph obtained from a complete
digraph of order 2k with vertex set V (K∗

2k) = {ui1 , ui2 | 1 ≤ i ≤ k} by adding
the set {vij , wij | 1 ≤ i ≤ k and 1 ≤ j ≤ 2k − 2} of new vertices and the set

{(vij , ui1), (ui1 , wij ), (wij , ui2), (ui2 , vij ) | 1 ≤ i ≤ k, 1 ≤ j ≤ 2k − 2}

of new arcs. It is easy to see that the function f : V (D) → {−1, 0, 1} defined by
f(x) = 1 for x ∈ {ui1 , ui2 | 1 ≤ i ≤ k} and f(x) = −1 otherwise, is a TMTDF of
D and so γ∗mt(D) ≤ 6k − 4k2.

The function defined in the proof of Theorem 3 is also a TSTDF of D and so
γ∗st(D) ≤ 6k − 4k2. Then the twin signed total domination number of digraphs
can be arbitrarily small.

As we observed in (1), γ∗mt(D) ≥ max{γmt(D), γmt(D
−1)}. Now we show

that the difference γ∗mt(D)−max{γmt(D), γmt(D
−1)} can be arbitrarily large.

Theorem 4. For every positive integer k ≥ 3, there exists a digraph D such that

γ∗mt(D)−max{γmt(D), γmt(D
−1)} ≥ k.

Proof. Let k ≥ 3 be an integer and D be a digraph obtained from the di-

rected cycle
−→
C k = (v1, . . . , vk) by adding new vertices ui, 1 ≤ i ≤ 2k, and arcs

{(vi, ui), (ui, uk+i), (uk+i, vi) | 1 ≤ i ≤ k}. Then the order of D is n = 3k. Obvi-
ously, D ∼= D−1 and so, γmt(D) = γmt(D

−1). By Proposition 1, γ∗mt(D) = n. On
the other hand, it is easy to verify that the function f : V (D) → {−1, 0, 1} defined
by f(x) = 1 for x ∈ {ui, vi | 1 ≤ i ≤ k} and f(x) = 0 otherwise, is a MTDF of
D and so γmt(D) ≤ 2k. This implies that γ∗mt(D)−max{γmt(D), γmt(D

−1)} ≥ k
and the proof is complete.
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A tournament is a digraph in which for every pair u and v of different vertices,
either (u, v) ∈ A(D) or (v, u) ∈ A(D), but not both. Next we determine the
exact value of the twin minus total domination number for a particular type of
tournaments.

Let n = 2r + 1 for some positive integer r. We define the circulant tourna-

ment CT(n) with n vertices as follows. The vertex set of CT(n) is V (CT(n)) =
{u0, u1, . . . , un−1} and for each i, the arcs go from ui to the vertices ui+1, . . . , ui+r

where the sum being taken modulo n.

The proof of the next result can be found in [10].

Proposition 5. For n ≥ 3, γmt(CT(n)) = 3.

The next proposition shows that γ∗mt(CT(n)) = γmt(CT(n))

Proposition 6. Let n ≥ 3 and n = 2r + 1 where r is a positive integer. Then

γ∗mt(CT(n)) = γmt(CT(n)).

Proof. By (1) and Proposition 5, we have γ∗mt(CT(n)) ≥ 3. On the other hand,
the function f : V (CT(n)) → {−1, 0, 1} defined by f(u0) = f(ur) = f(u2r) = 1
and f(x) = 0 otherwise, is TMTDF of CT(n) of weight 3. This completes the
proof.

As we observed in (2), γ∗st(D) ≥ γ∗mt(D). Next we show that γ∗st(D)−γ∗mt(D)
can be arbitrarily large.

The proof of the following proposition can be found in [1].

Proposition 7. Let D be a digraph of order n with δ+(D), δ−(D) ≥ 1. Then

γ∗st(D) = n if and only if every vertex has either an out-neighbor with indegree at

most 2 or an in-neighbor with outdegree at most 2.

Theorem 8. For every positive integer k, there exists a digraph D such that

γ∗st(D)− γ∗mt(D) ≥ 2k.

Proof. Let k ≥ 1 be an integer and for 1 ≤ j ≤ k, let Dj be a circulant
tournament CT(5) with vertex set {uij | 1 ≤ i ≤ 5}. LetD be a digraph obtained
from the union of Dj ’s by adding the set {(u31 , u32), (u32 , u33), . . . , (u3k−1

, u3k),
(u3k , u31)} of new arcs. Then the order of D is 5k. By Proposition 7, γ∗st(D) = 5k.
On the other hand, it is easy to see that the function f : V (D) → {−1, 0, 1}
defined by f(u1j ) = f(u3j ) = f(u5j ) = 1 and f(x) = 0 otherwise, is a TMTDF
of D and so γ∗mt(D) ≤ 3k. It follows that γ∗st(D)− γ∗mt(D) ≥ 2k and the proof is
complete.
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3. Lower Bounds on γ∗mt(D)

In this section we present some lower bounds for γ∗mt(D) in terms of the order,
size, the maximum and minimum in-degrees and out-degrees of D. We begin
with some results on the minus total domination number of a digraph.

Observation 9. Let f be any γmt(D)-function of a digraph D of order n. Then

1. n = |M |+ |P |+ |Z|.
2. w(f) = |P | − |M |.

Theorem 10. Let f be an MTDF on a digraph D of order n. If ∆+ = ∆+(D)
and δ+ = δ+(D), then

(a) (∆+ − 1)|P | ≥ (δ+ + 1)|M |+ |Z|.
(b) (∆+ + δ+)|P |+ δ+|Z| ≥ (δ+ + 1)n.

(c) δ+w(f) ≥ (δ+ −∆+)|P |+ n.

(d) w(f) ≥ 2δ+−∆++1
∆+−δ+

n+ |P |.

Proof. (a) It follows from Observation 9 (part 1) that

|P |+ |M |+ |Z| = n ≤
∑

v∈V

∑

x∈N−(v)

f(x) =
∑

v∈V

d+(v)f(v)

=
∑

v∈P

d+(v)−
∑

v∈M

d+(v) ≤ ∆+|P | − δ+|M |.

This inequality chain yields to the desired bound in (a).
(b) Observation 9 (part 1) implies that |M | = n − |P | − |Z|. Using this

identity and part (a), we arrive at (b).
(c) According to Observation 9 and part (b), we obtain part (c) as follows:

w(f) = 2|P | − n+ |Z|

and

δ+w(f) = δ+(2|P | − n+ |Z|) = (∆+ + δ+)|P |+ (δ+ −∆+)|P | − δ+n+ δ+|Z|
≥ (δ+ −∆+)|P | − δ+n+ (δ+ + 1)n = (δ+ −∆+)|P |+ n.

(d) The inequality chain in the proof of part (a) and Observation 9 (part 1)
show that

n ≤ ∆+|P ∪ Z| − δ+(n− |P ∪ Z|) = (∆+ − δ+)|P ∪ Z| − δ+n

and so

|P ∪ Z| ≥ δ+ + 1

∆+ − δ+
n.
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Using this inequality and Observation 9, we obtain

w(f) = |P | − n+ |P ∪ Z| ≥ δ+ + 1

∆+ − δ+
n− n+ |P | = 2δ+ −∆+ + 1

∆+ − δ+
n+ |P |.

This is the bound in part (d), and the proof is complete.

Corollary 11. Let D be a digraph of order n, minimum out-degree δ+ and max-

imum out-degree ∆+. If δ+ < ∆+, then

γmt(D) ≥ 2δ+ −∆+ + 2

∆+
n.

Proof. Multiplying both sides of the inequality in Theorem 10 (d) by (∆+− δ+)
and adding the resulting inequality to the inequality in Theorem 10 (c), we obtain
the desired lower bound.

Since δ+(D−1) = δ−(D) and ∆+(D−1) = ∆−(D) for any digraph D, Corol-
lary 11 implies the following corollary.

Corollary 12. Let D be a digraph of order n, minimum in-degree δ− and maxi-

mum in-degree ∆−. If δ− < ∆−, then

γmt(D
−1) ≥ 2δ− −∆− + 2

∆−
n.

The next corollary is a consequence of (1) and Corollaries 11 and 12.

Corollary 13. Let D be a digraph of order n, minimum in-degree δ−, maximum

in-degree ∆−, minimum out-degree δ+ and maximum out-degree ∆+. If δ− < ∆−

and δ+ < ∆+, then

γ∗mt(D) ≥ max

{

2δ+ −∆+ + 2

∆+
n,

2δ− −∆− + 2

∆−
n

}

.

Proposition 14. Let D be a digraph of order n ≥ 3. Then γ∗mt(D) ≥ 6− n with

equality if and only if D =
−→
C 3.

Proof. Let f be a γ∗mt(D)-function. Since D is a simple digraph, we have |P ∩
(N+(v) ∪ N−(v))| ≥ 2 for every v ∈ P . This implies that |P | ≥ 3 and so
|M | ≤ n− 3. Hence γ∗mt(D) ≥ 6− n.

Let nowD be a digraph such that γ∗mt(D) = 6−n and f be a γ∗mt(D)-function.
Then |P | = 3, |M | = n−3 and |Z| = 0. Also sinceD is a simple digraph, for every
v ∈ P , |N−(v) ∩ P | = |N+(v) ∩ P | = 1 and so |N−(v) ∩M | = |N+(v) ∩M | = 0.

It follows that M = ∅ and so D =
−→
C 3. On the other hand, if D =

−→
C 3, then

γ∗mt(D) = 3 = 6− n.
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Proposition 15. If D is a digraph with maximum out-degree ∆+(D) ≤ 4, then
γ∗mt(D) ≥ 0.

Proof. Let f be a twin minus total dominating function for which ω(f) =
γ∗mt(D). If M = ∅, then the result follows. Assume that M 6= ∅. Since
f(N−(v)) ≥ 1, for each v ∈ M , we have |A(P, v)| ≥ 1. It follows that |A(P,M)| ≥
|M |. On the other hand, since f(N+(v)) ≥ 1 for each v ∈ P , we have |A(v, P )| ≥
|A(v,M)|+ 1. Since |A(v, P )|+ |A(v,M)| = d+(v) ≤ ∆+(D) ≤ 4, it follows that
|A(v,M)| ≤ 1. Hence, we have |A(P,M)| = ∑

v∈P |A(v,M)| ≤ |P |. Combining
these, we have |M | ≤ |P |, and so γ∗mt(D) = |P | − |M | ≥ 0.

The condition ∆−(D) ≤ 4, in the Proposition 15, implies the following propo-
sition.

Proposition 16. If D is a digraph with maximum in-degree ∆−(D) ≤ 4, then
γ∗mt(D) ≥ 0.

A twin minus total dominating function f of D is called minimal if there
exists no twin minus total dominating function f ′ of D such that f ′ 6= f and
f ′(v) ≤ f(v) for every v ∈ V (D).

Proposition 17. A twin minus total dominating function f on a digraph D
is minimal if and only if for every vertex v ∈ V with f(v) ≥ 0, there exists a

vertex u ∈ N+(v) with f(N−(u)) = 1 or there exists a vertex w ∈ N−(v) with

f(N+(w)) = 1.

Proof. Let f be a minimal twin minus total dominating function and assume
that there is a vertex v ∈ V with f(v) ≥ 0, f(N+(u)) > 1 for every u ∈ N−(v)
and f(N−(w)) > 1 for every w ∈ N+(v). Define a new function g : V →
{−1, 0, 1} by g(v) = f(v) − 1 and g(x) = f(x) for all x 6= v. Then for all
u ∈ N+(v), g(N+(u)) = f(N+(u)) − 1 ≥ 1, g(N−(u)) = f(N−(u)) ≥ 1, for all
w ∈ N−(v), g(N+(w)) = f(N+(w)) ≥ 1, g(N−(w)) = f(N−(w))− 1 ≥ 1 and for
z /∈ N+(v) ∪N−(v), g(N+(z)) = f(N+(z)) ≥ 1 and g(N−(z)) = f(N−(z)) ≥ 1.
This implies that g is a twin minus total dominating function of D, contradiction
to the minimality of f .

Conversely, let f be a twin minus total dominating function such that for
all v ∈ V with f(v) ≥ 0, there exists a vertex u ∈ N+(v) with f(N−(u)) = 1
or there exists a vertex w ∈ N−(v) with f(N+(w)) = 1. Assume that f is not
minimal, i.e., there is a twin minus total dominating function g such that g 6= f
and g(x) ≤ f(x) for all x ∈ V . Then there is at least one v ∈ V with g(v) < f(v).
It follows that f(v) ≥ 0, and by assumption, there exists a vertex u ∈ N+(v) with
f(N−(u)) = 1 or there exists a vertex w ∈ N−(v) with f(N+(w)) = 1. Since
g(x) ≤ f(x) for all x ∈ V and g(v) < f(v), we have g(N−(u)) < f(N−(u)) = 1
or g(N+(w)) < f(N+(w)) = 1. This contradicts the fact that g is a twin minus



Twin Minus Total Domination Numbers in Directed Graphs 997

total dominating function. Hence f is a minimal twin minus total dominating
function and this completes the proof.

Theorem 18. Let D be a digraph of order n and size m. Then

γ∗mt(D) ≥ 2n−m,

and this bound is sharp.

Proof. Let f be a γ∗mt(D)-function. For any v ∈ M , we have |A(v, P )| ≥ 1
and |A(P, v)| ≥ 1 which implies that |A(M,P )| ≥ |M | and |A(P,M)| ≥ |M |.
Also for any v ∈ Z, we have |A(v, P )| ≥ 1 and |A(P, v)| ≥ 1 which implies
that |A(Z,P )| ≥ |Z| and |A(P,Z)| ≥ |Z|. On the other hand, if x ∈ P , then
it follows from f(N+(x)) ≥ 1 that |A(x, P )| ≥ |A(x,M)| + 1 implying that
|A(P, P )| ≥ |A(P,M)|+ |P | ≥ |M |+ |P |. Therefore,

(3)
m ≥ |A(M,P )|+ |A(P,M)|+ |A(Z,P )|+ |A(P,Z)|+ |A(P, P )|

≥ 2|M |+ 2|Z|+ |M |+ |P | = 2|M |+ 2|Z|+ n−|Z| = n+ 2|M |+ |Z|.

Hence, we have

γ∗mt(D) = w(f) = |P | − |M | = n− 2|M | − |Z| ≥ 2n−m.

To prove the sharpness, suppose that
−→
C t is a directed cycle of order t ≥ 3.

Let D be a digraph obtained from
−→
C t by adding the set {u1, . . . , uk | k ≥ 1}

of new vertices and arcs from vertices of
−→
C t to k new vertices and from k new

vertices to vertices of
−→
C t such that d+D(v) = d−D(v) = 1 for every new vertex v.

Then the order of D is n = t+ k and the size of D is m = t+2k. So 2n−m = t.
Now define f : V (D) → {−1, 0, 1} which assigns f(x) = 1 for x ∈ V (

−→
C t) and

f(x) = 0 otherwise. Obviously, f is a TMTDF ofD and ω(f) = t. This completes
the proof.

A set S ⊆ V (G) is a 2-packing if for each pair of vertices x, y ∈ S, N [x] ∩
N [y] = ∅. The 2-packing number ρ(G) is the cardinality of a maximum 2-packing.

Proposition 19. Let G be a graph of order n with minimum degree δ ≥ 2 and

let D be an orientation of G such that δ+(D) ≥ 1, δ−(D) ≥ 1. Then

γ∗mt(D) ≥ ρ(G)(δ + 1)− n.

Proof. Let S be a maximum 2-packing of G and f be a γ∗mt(D)-function. Since
f(N+(v)) ≥ 1 and f(N−(v)) ≥ 1, we have f(NG(v)) = f(N+(v))+f(N−(v)) ≥ 2
for each v ∈ S. This implies that
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γ∗mt(D) =
∑

v∈S

f(NG(v)) +
∑

v∈V (G)−NG(S)

f(v)

≥ |S|+
∑

v∈V (G)−NG(S)

(−1) ≥ |S| − (n− |S|δ) = ρ(G)(δ + 1)− n,

and the proof is complete.

The next theorem presents a lower bound on twin signed total domination
numbers in a digraph in terms of its order.

Theorem 20. Let D be a digraph of order n. Then

γ∗st(D) ≥ 1 +
√
1 + 4n− n.

Proof. Let f be a γ∗st(D)-function. For every v ∈ M , since f(N+(v)) ≥ 1, we
have |A(v, P )| ≥ 1 and thus |A(M,P )| ≥ |M |. If x ∈ P , then it follows from
f(N+(x)) ≥ 1 that |A(x, P )| ≥ |A(x,M)|+ 1. This implies that

|A(P, P )| ≥ |A(P,M)|+ |P | ≥ |M |+ (n− |M |) = n.

On the other hand, |A(P, P )| ≤ |P |(|P | − 1). It follows that |P |(|P | − 1) ≥ n and
so |P |2 − |P | − n ≥ 0. This implies that

|P | ≥ 1 +
√
4n+ 1

2
,

and thus we obtain

γ∗st(D) = 2|P | − n ≥ 1 +
√
4n+ 1− n.

The next theorem presents a lower bound on twin signed total domination
numbers in a bipartite digraph in terms of its order.

Theorem 21. Let D be a bipartite digraph of order n. Then

γ∗st(D) ≥ 2
√
2n− n.

Proof. Let f be a γ∗st(D)-function. In view of the proof of Theorem 20, |A(P, P )|
≥ n. Since the subdigraph induced by P is bipartite, we have |A(P, P )| ≤ |P |2/2.
It follows that |P |2/2 ≥ n and so |P | ≥

√
2n. This implies that

γ∗st(D) = 2|P | − n ≥ 2
√
2n− n.
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Next, we present lower bounds on twin minus total domination numbers in
digraphs in terms of their orders.

Theorem 22. Let D be a digraph of order n. Then

γ∗mt(D) ≥ 1 +
√
1 + 4n− n.

Proof. Let f be a γ∗mt(D)-function. If Z = ∅, then f is a TSTDF on D and
by Theorem 20, γ∗mt(D) = w(f) ≥ γ∗st(D) ≥ 1 +

√
1 + 4n − n. Suppose Z 6= ∅.

Let n1 = n − |Z| and D1 be a subdigraph of D induced by the set V (D) − Z.
Then f |V (D1) is a TSTDF onD1 and by Theorem 20, γ∗mt(D) = w(f) ≥ γ∗st(D1) ≥
1+

√
1 + 4n1−n1. Now we can easily see that the function g(x) = 1+

√
1 + 4x−x

is a non increasing function for any integer x ≥ 2 and so g(n1) ≥ g(n). This
implies that γ∗mt(D) ≥ 1 +

√
1 + 4n1 − n1 ≥ 1 +

√
1 + 4n− n.

Theorem 23. Let D be a bipartite digraph of order n. Then

γ∗mt(D) ≥ 2
√
2n− n.

Proof. Let f be a γ∗mt(D)-function. If Z = ∅, then f is a TSTDF on D and
by Theorem 21, γ∗mt(D) = w(f) ≥ γ∗st(D) ≥ 2

√
2n − n. Suppose Z 6= ∅. Let

n1 = n− |Z| and D1 be a subdigraph of D induced by the set V (D)− Z. Then
f |V (D1) is a TSTDF on D1 and by Theorem 21, γ∗mt(D) = w(f) ≥ γ∗st(D1) ≥
2
√
2n1 − n1. Now we can easily see that the function g(x) = 2

√
2x− x is a non

increasing function for any integer x ≥ 2 and so g(n1) ≥ g(n). This implies that
γ∗mt(D) ≥ 2

√
2n1 − n1 ≥ 2

√
2n− n.

The associated digraph D(G) of a graph G is the digraph obtained in such
a way that each edge e of G is replaced by two oppositely oriented arcs with
the same end vertices as e. Since N−

D(G)(v) = N+
D(G)(v) = NG(v) for each v ∈

V (G) = V (D(G)), the following useful observation is valid.

Observation 24. If D(G) is the associated digraph of a graph G, then γ∗mt(D(G))
= γmt(G).

Theorems 22, 23 and Observation 24 lead to the next well-known result.

Corollary 25 [14]. If G is a graph of order n, then γmt(G) ≥
√
1 + 4n+ 1− n.

If G is a bipartite graph of order n, then γmt(G) ≥ 2
√
2n− n.

Xing et al. [14] have presented examples with equality in the two inequalities
of Corollary 25. The associated digraphs of these examples show that Theorems
22 and 23 are both sharp.
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4. Twin Minus Total Domination in Oriented Graphs

Let G be the complete bipartite graphK4,4 with bipartite sets V1 = {v1, v2, v3, v4}
and V2 = {u1, u2, u3, u4}. Let D1 be a 2-regular oriented graph of G and D2 be an
orientation of G such that A(D2) = {(vi, ui), (uj , vr) | 1 ≤ i, j, r ≤ 4 and j 6= r}.
It is easy to see that γ∗mt(D1) = 4 and γ∗mt(D2) = 8. Thus two distinct orientations
of a graph can have distinct twin minus total domination numbers. Motivated by
this observation, we define lower orientable twin minus total domination number

dom∗

mt(G) and upper orientable twin minus total domination number Dom∗

mt(G)
of a graph G with δ(G) ≥ 2 as follows:

dom∗

mt(G) = min{γ∗mt(D) | D is an orientation of G},

and

Dom∗

mt(G) = max{γ∗mt(D) | D is an orientation of G}.

Corresponding concepts have been defined and studied for orientable domination
(out-domination) [6], twin domination number [5], twin signed domination num-
ber [3], twin signed total domination number [1], twin minus domination number
[2] and twin signed Roman domination number [4].

Note that the definitions are well-defined because every graph G with δ(G) ≥
2, has an orientation D such that δ+(D), δ−(D) ≥ 1. Since for any orientation
D of a graph G, γ∗mt(D) ≤ γ∗st(D), we have

(4) dom∗

mt(G) ≤ dom∗

st(G)

Proposition 26. For any graph G of order n with δ(G) ≥ 2, γmt(G) ≤ dom∗

mt(G).

Proof. Let D be an orientation of G and let f be a γ∗mt(D)-function. Then
f(NG(v)) = f(N+

D (v)) + f(N−

D (v)) for each v ∈ V . Since f(N+
D (v)) ≥ 1 and

f(N−

D (v)) ≥ 1, we have f(NG(v)) ≥ 2 for each v ∈ V , and so f is a MTDF of G.
Therefore γmt(G) ≤ w(f) = dom∗

mt(G) as desired.

The proof of the next result is straightforward and therefore omitted.

Proposition 27. Let G be a graph of order n and v ∈ V (G). If deg(u) ≤ 3, for
some u ∈ NG(v), then for any orientation D of G and any γ∗mt(D)-function f ,
we have f(v) ≥ 0.

Proposition 28. For n ≥ 3, dom∗

mt(Cn) = n.

Proof. If D is an orientation of Cn with δ+(D) ≥ 1 and δ−(D) ≥ 1, then
obviously D is a directed cycle and the result follows from Corollary 2.



Twin Minus Total Domination Numbers in Directed Graphs 1001

We now proceed to determine the lower orientable twin minus total domi-
nation numbers of several classes of graphs including complete graphs, complete
bipartite graphs and wheels.

Lemma 29. For n ≥ 3, dom∗

mt(Kn) ≥ 3.

Proof. The result is immediate for n = 3. Let n ≥ 4, D be an orientation of Kn

and let f be a γ∗mt(D)-function. Assume that v ∈ P . Since f(N+
D (v)) ≥ 1 and

f(N−

D (v)) ≥ 1, we have

dom∗

mt(Kn) = w(f) = f(N+
D (v)) + f(N−

D (v)) + f(v) ≥ 3,

as desired.

Theorem 30. For n ≥ 3, dom∗

mt(Kn) = 3.

Proof. The result is immediate for n = 3, so assume n ≥ 4. Let D1 be an
orientation of Kn−3 with vertex set V (Kn−3) = {ui | 1 ≤ i ≤ n − 3}. Suppose
that D is obtained from D1 by adding the set {v1, v2, v3} of new vertices and the
set

{(v1, v2), (v2, v3), (v3, v1), (v1, ui), (v2, ui), (ui, v3) | 1 ≤ i ≤ n− 3}
of new arcs. Then D is an orientation of Kn. It is easy to see that the function f :
V (D) → {−1, 0, 1} defined by f(v1) = f(v2) = f(v3) = 1 and f(x) = 0 otherwise,
is a TMTDF of D of weight 3. This implies that dom∗

mt(Kn) ≤ w(f) = 3. Now
the result follows from Lemma 29.

Lemma 31. For m,n ≥ 2, dom∗

mt(Km,n) ≥ 4.

Proof. Let V (Km,n) = X ∪ Y . Let D be an orientation of Km,n and let f
be a γ∗mt(D)-function. Assume that v ∈ X and u ∈ Y . Since f(N+

D (v)) ≥ 1
and f(N−

D (v)) ≥ 1, and since Y = f(N+
D (v)) ∪ f(N−

D (v)), f(Y ) ≥ 2. Similarly,
f(X) ≥ 2. It follows that

dom∗

mt(Km,n) = w(f) = f(X) + f(Y ) ≥ 4,

as desired.

Theorem 32. For m,n ≥ 2, dom∗

mt(Km,n) = 4.

Proof. Let D1 be an orientation of Km−2,n−2 with vertex set V (Km−2,n−2) =
{ui, vj | 1 ≤ i ≤ m− 2, 1 ≤ j ≤ n− 2} and suppose that D is obtained from D1

by adding the set {w1, w2, w3, w4} of new vertices and the set {(w1, w2), (w2, w3),
(w3, w4), (w4, w1), (w1, ui), (ui, w3), (w2, vj), (vj , w4) | 1 ≤ i ≤ m − 2, 1 ≤ j ≤
n− 2} of new arcs. Then D is an orientation of Km,n. It is easy to see that the
function f : V (D) → {−1, 0, 1} defined by f(wk) = 1 for 1 ≤ k ≤ 4 and f(x) = 0
otherwise, is a TMTDF of D of weight 4. This implies that dom∗

mt(Km,n) ≤
w(f) = 4. Now the result follows from Lemma 31.



1002 N. Dehgardi and M. Atapour

The wheel, Wn, is a graph with vertex set {w, v0, . . . , vn−1} and edge set
{wvi, vivi+1 | 0 ≤ i ≤ n − 1} where the indices are taken modulo n. Next we
determine the lower orientable twin minus total domination number of wheels.

Lemma 33. For n ≥ 3,

dom∗

mt(Wn) ≥











⌈

n+3
2

⌉

n ≡ 2 (mod 4),
⌈

n+1
2

⌉

n ≡ 0 (mod 4),
⌈

n+2
2

⌉

otherwise.

Proof. Let D be an orientation of Wn with γ∗mt(D) = dom∗

mt(Wn) and f be a
γ∗mt(D)-function. It follows from Proposition 27 that f(vi) ≥ 0 for each 0 ≤ i ≤
n−1. Also since for each 0 ≤ i ≤ n−1, d+(vi) = 1 or d−(vi) = 1, then f(w) ≥ 0.
If f(w) = 0, then f(vi) = 1 for each 0 ≤ i ≤ n− 1 and so

dom∗

mt(Wn) = w(f) = n ≥











⌈

n+3
2

⌉

n ≡ 2 (mod 4),
⌈

n+1
2

⌉

n ≡ 0 (mod 4),
⌈

n+2
2

⌉

otherwise.

Let f(w) = 1. Suppose that vi ∈ P for some 0 ≤ i ≤ n − 1. Since d+(vi) = 1
or d−(vi) = 1, then f(vi−1) = 1 or f(vi+1) = 1. Also it is easy to see that
f(vi) + f(vi+1) + f(vi+2) + f(vi+3) ≥ 2, for each 0 ≤ i ≤ n − 1. It follows that
|{vi, vi+1, vi+2, vi+3} ∩ P | ≥ 2, for each 0 ≤ i ≤ n − 1. Summing the above
inequalities for each 0 ≤ i ≤ n − 1, we have |P | ≥ |Z| + 3 when n ≡ 2 (mod 4),
|P | ≥ |Z|+ 1 when n ≡ 0 (mod 4) and |P | ≥ |Z|+ 2 otherwise. It follows that

dom∗

mt(Wn) = w(f) = |P | ≥











⌈

n+3
2

⌉

n ≡ 2 (mod 4),
⌈

n+1
2

⌉

n ≡ 0 (mod 4),
⌈

n+2
2

⌉

otherwise.

Theorem 34. For n ≥ 3,

dom∗

mt(Wn) =











⌈

n+3
2

⌉

n ≡ 2 (mod 4),
⌈

n+1
2

⌉

n ≡ 0 (mod 4),
⌈

n+2
2

⌉

otherwise.

Proof. Let D be an orientation of Wn such that

A(D) =
{

(vi, vi+1), (w, v4j), (v4j+1, w), (v4j+2, w), (w, v4j+3) | 0 ≤ i ≤ n− 1,

0 ≤ j ≤
⌊

n
4

⌋}

.

It is easy to verify that the function f : V (D) → {−1, 0, 1} defined by f(x) = 1
for x ∈

{

w, v4j , v4j+1 | 0 ≤ j ≤
⌊

n
4

⌋}

and f(x) = 0 otherwise, is a TMTDF of
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D of weight
⌈

n+3
2

⌉

when n ≡ 2 (mod 4),
⌈

n+1
2

⌉

when n ≡ 0 (mod 4) and
⌈

n+2
2

⌉

otherwise. This implies that

dom∗

mt(Wn) ≤ w(f) =











⌈

n+3
2

⌉

n ≡ 2 (mod 4),
⌈

n+1
2

⌉

n ≡ 0 (mod 4),
⌈

n+2
2

⌉

otherwise.

Now the result follows from Lemma 33.
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