
Discussiones Mathematicae
Graph Theory 37 (2017) 975–988
doi:10.7151/dmgt.1982

A SHARP LOWER BOUND FOR THE GENERALIZED

3-EDGE-CONNECTIVITY OF STRONG

PRODUCT GRAPHS

Yuefang Sun

Department of Mathematics

Shaoxing University

Zhejiang 312000, P.R. China

e-mail: yfsun2013@gmail.com

Abstract

The generalized k-connectivity κk(G) of a graph G, mentioned by Hager
in 1985, is a natural generalization of the path-version of the classical con-
nectivity. As a natural counterpart of this concept, Li et al. in 2011 in-
troduced the concept of generalized k-edge-connectivity which is defined as
λk(G) = min{λG(S) |S ⊆ V (G) and |S| = k}, where λG(S) denote the max-
imum number ℓ of pairwise edge-disjoint trees T1, T2, . . . , Tℓ in G such that
S ⊆ V (Ti) for 1 ≤ i ≤ ℓ. In this paper we get a sharp lower bound for the
generalized 3-edge-connectivity of the strong product of any two connected
graphs.

Keywords: generalized connectivity, generalized edge-connectivity, strong
product.

2010 Mathematics Subject Classification: 05C05, 05C40, 05C76.

1. Introduction

We refer to book [1] for graph theoretical notation and terminology not described
here. For a graph G, let V (G), E(G) be the set of vertices, the set of edges of
G, respectively. For X ⊆ V (G), we denote by G \X the subgraph obtained by
deleting from G the vertices of X together with the edges incident with them.
For a set S, we use |S| to denote its size. We use Pn, Cm and Kℓ to denote a
path of order n, a cycle of order m and a complete graph of order ℓ, respectively.

Connectivity is one of the most basic concepts in graph theory, both in
combinatorial sense and in algorithmic sense. The connectivity of G, written

http://dx.doi.org/10.7151/dmgt.1982

976 Y. Sun

κ(G), is the minimum size of a vertex set X ⊆ V (G) such that G \X is discon-
nected or has only one vertex. This definition is called the cut-version definition
of the connectivity. A well-known theorem of Menger provides an equivalent
definition, which can be called the path-version definition of the connectivity.
For any two distinct vertices x and y in G, the local connectivity κG(x, y) is
the maximum number of internally disjoint paths connecting x and y. Then
κ(G) = min{κG(x, y)|x, y ∈ V (G), x 6= y} is defined to be the connectivity of G.

Although there are many elegant and powerful results on connectivity in
graph theory, the basic notation of classical connectivity may not be general
enough to capture some computational settings and so people tried to generalize
this concept.

The cut-version definition of the connectivity does not concern the number
of components of G \ X. Two graphs with the same connectivity may have
different degrees of vulnerability in the sense that the deletion of a vertex cut-set
of minimum cardinality from one graph may produce a graph with considerably
more components than in the case of the other graph. For example, the star
K1,n−1 and the path Pn (n ≥ 3) are both trees of order n and therefore have
connectivity 1, but the deletion of a cut-vertex from K1,n−1 produces a graph
with n− 1 components while the deletion of a cut-vertex from Pn produces only
two components. Chartrand et al. [3] generalized the cut-version definition of
the connectivity as follows: For an integer k ≥ 2 and a graph G of order n ≥ k,
the k-connectivity κ′k(G) is the smallest number of vertices whose removal from
G produces a graph with at least k components or a graph with fewer than k

vertices. By definition, we clearly have κ′2(G) = κ(G). Thus, the concept of
k-connectivity could be seen as a generalization of the classical connectivity. For
more details about this topic, we refer to [3, 5, 24, 25, 33, 34].

The generalized k-connectivity κk(G) of a graph G which was mentioned by
Hager [9] in 1985 is a natural generalization of the path-version definition of the
connectivity. For a graph G = (V,E) and a set S ⊆ V of at least two vertices,
an S-Steiner tree or a Steiner tree connecting S (or simply, an S-tree) is such
a subgraph T of G that is a tree with S ⊆ V (T). Two S-trees T1 and T2 are
said to be internally disjoint if E(T1) ∩ E(T2) = ∅ and V (T1) ∩ V (T2) = S. The
generalized local connectivity κG(S) is the maximum number of internally disjoint
S-trees in G. For an integer k with 2 ≤ k ≤ n, the generalized k-connectivity is
defined as

κk(G) = min{κG(S)|S ⊆ V (G), |S| = k}.

Thus, κk(G) is the minimum value of κG(S) when S runs over all the k-subsets
of V (G). By definition, we clearly have κ2(G) = κ(G), which is the reason why
one addresses κk(G) as the generalized connectivity of G. By convention, for a
connected graph G with less than k vertices, we set κk(G) = 1, and κk(G) = 0
when G is disconnected.

A Sharp Lower Bound for the Generalized ... 977

As a natural counterpart of the generalized k-connectivity, recently Li et al.
[20] introduced the following concept of generalized edge-connectivity. Two S-
trees T1 and T2 are said to be edge-disjoint if E(T1)∩E(T2) = ∅. The generalized
local edge-connectivity λG(S) is the maximum number of edge-disjoint S-trees in
G. For an integer k with 2 ≤ k ≤ n, the generalized k-edge-connectivity is defined
as

λk(G) = min{λG(S)|S ⊆ V (G), |S| = k}.

Thus, λk(G) is the minimum value of λG(S) when S runs over all the k-subsets
of V (G). By definition, we clearly have λ2(G) = λ(G).

The generalized k-connectivity and generalized k-edge-connectivity are also
called tree connectivities in the literature. There are many results on this type of
generalized connectivity, see [9, 14, 15, 17–22, 28–32, 34, 35].

In addition to being a natural combinatorial measure, the tree connectivity
can be motivated by its interesting interpretation in practice. For example, sup-
pose that G represents a network. If one considers to connect a pair of vertices of
G, then a path is used to connect them. However, if one wants to connect a set
S of vertices of G with |S| ≥ 3, then a tree has to be used to connect them. This
kind of tree with minimum order for connecting a set of vertices is usually called a
Steiner tree, and popularly used in the physical design of VLSI (see [7, 8, 27]) and
computer communication networks (see [6]). Usually, one wants to consider how
tough a network can be, for the connection of a set of vertices. Then, the number
of totally independent ways to connect them is a measure for this purpose. The
generalized k-connectivity can serve for measuring the capability of a network G

to connect any k vertices in G. For the topic of generalized connectivities and
their applications, the reader is referred to a recent survey [16].

Products of graphs occur naturally in discrete mathematics as tools in com-
binatorial constructions; they give rise to important classes of graphs and deep
structural problems. Many researchers have investigated the topic of graph prod-
ucts in the past several decades, such as [2, 4, 10–13, 23, 26, 36, 37, 38].

The Cartesian product of two graphs G and H, denoted by G�H, is defined
to have the vertex set V (G) × V (H) such that (u, u′) and (v, v′) are adjacent if
and only if either u = v and u′v′ ∈ E(H), or u′ = v′ and uv ∈ E(G). The strong

product of G andH is the graph G⊠H whose vertex set is V (G)×V (H) and whose
edge set is the set of all pairs (u, u′)(v, v′) such that either u = v and u′v′ ∈ E(H),
or u′ = v′ and uv ∈ E(G), or uv ∈ E(G) and u′v′ ∈ E(H). Clearly, both of these
two products are commutative, that is, G�H = H�G and G⊠H = H ⊠G. By
definition, we also know that the graph G�H is a spanning subgraph of the graph
G⊠H for any two graphs G and H. The lexicographic product of two graphs G
and H, written as G ◦H, is defined as follows: V (G ◦H) = V (G) × V (H), and
two distinct vertices (u, v) and (u′, v′) of G ◦H are adjacent if and only if either
(u, u′) ∈ E(G) or u = u′ and (v, v′) ∈ E(H).

978 Y. Sun

For the Cartesian product graphs, the exact formula of κ(G�H) was ob-
tained.

Theorem 1 [23, 36]. Let G and H be graphs on at least two vertices. Then

κ(G�H) = min{κ(G)|H|, κ(H)|G|, δ(G) + δ(H)}.

This theorem was first stated by Liouville [23]. However, the proof never
appeared. In the meantime, several partial results were obtained until Špacapan
[36] provided the proof. Theorem 1 in particular implies the following result of
Sabidussi [26].

Theorem 2 [26]. Let G and H be connected graphs. Then κ(G�H) ≥ κ(G) +
κ(H).

Li, Li and Sun [15] investigated the generalized 3-connectivity of the Carte-
sian product graphs and obtain the following result which can be seen as an
extension of Theorem 2.

Theorem 3 [15]. Let G and H be connected graphs such that κ3(G) ≥ κ3(H).

(a) If κ3(G) < κ(G), then κ3(G�H) ≥ κ3(G) + κ3(H). Moreover, the bound is

sharp.

(b) If κ3(G) = κ(G), then κ3(G�H) ≥ κ3(G) + κ3(H)− 1. Moreover, the bound

is sharp.

Li and Mao derived a sharp upper bound for κ3(G�H).

Theorem 4 [18]. Let G and H be two connected graphs. Then κ3(G�H) ≤
min

{⌊
4
3κ3(G) + r1−

4
3

⌈
r1
2

⌉⌋
|V (H)|,

⌊
4
3κ3(H) + r2−

4
3

⌈
r2
2

⌉⌋
|V (G)|, δ(G) + δ(H)

}
,

where r1 ≡ κ(G) (mod 4) and r2 ≡ κ(H) (mod 4). Moreover, the bound is sharp.

In [29], we obtained a sharp lower bound for the generalized 3-edge-connecti-
vity of Cartesian product graph.

Theorem 5 [29]. If G and H are connected graphs, then λ3(G�H) ≥ λ3(G) +
λ3(H). Moreover, the bound is sharp.

The following result concerns a sharp upper bound for the generalized 3-
edge-connectivity of Cartesian product graph.

Theorem 6 [32]. Let G and H be two graphs with at least two vertices. Then

λ3(G�H) ≤ min
{⌊

4
3λ3(G) + r1−

4
3

⌈
r1
2

⌉⌋
|V (H)|,

⌊
4
3λ3(H) + r2 −

4
3

⌈
r2
2

⌉⌋
|V (G)|,

δ(G) + δ(H)} , where r1 ≡ λ(G) (mod 4) and r2 ≡ λ(H) (mod 4). Moreover, the

bound is sharp.

A Sharp Lower Bound for the Generalized ... 979

Note that the minimum in Theorem 6 can be realized by any of three terms.
For the lexicographic product graphs, Li and Mao obtained the following bounds
for κ3(G ◦H).

Theorem 7 [18]. Let G and H be two connected graphs. If G is non-trivial

and non-complete, then κ3(G ◦ H) ≤
⌊
4
3κ3(G) + r − 4

3

⌈
r
2

⌉⌋
|V (H)|, where r ≡

κ(G) (mod 4). Moreover, the bound is sharp.

Theorem 8 [18]. Let G and H be two connected graphs. Then κ3(G ◦ H) ≥
κ3(G)|V (H)|. Moreover, the bound is sharp.

Li, Yue, and Zhao studied λ3(G ◦ H) and provided both sharp lower and
upper bounds.

Theorem 9 [22]. Let G and H be two non-trivial graphs such that G is connected.

Then λ3(H) + λ3(G)|V (H)| ≤ λ3(G ◦ H) ≤ min
{⌊

4λ3(G)+2
3

⌋
|V (H)|2, δ(H)+

δ(G)|V (H)|
}
. Moreover, both bounds are sharp.

For the strong product graphs, we obtained the following upper bound for
λ(G⊠H).

Theorem 10 [32]. Let G and H be two connected graphs. Then λ(G ⊠ H) ≤
min

{⌊
4
3λ3(G) + r1−

4
3

⌈
r1
2

⌉⌋
(|V (H)|+ 2|E(H)|),

⌊
4
3λ3(H) + r2−

4
3

⌈
r2
2

⌉⌋
(|V (G)|

+2|E(G)|), δ(G) + δ(H) + δ(G)δ(H)}. Moreover, the bound is sharp.

Note that the minimum in Theorem 10 can be realized by any of three terms.

In this paper, we continue the research on tree connectivities of the product
graphs and get a sharp lower bound for the generalized 3-edge-connectivity of
the strong product graph (Theorem 16). The proof of Theorem 16 consists of
Lemmas 13, 14 and 15. In order to prove these lemmas we need a few preliminary
results which will be given in the next section.

2. Preliminaries

We need the following useful notion which was used in [11, 12]. The mappings
pG : (u, v) 7→ u and pH : (u, v) 7→ v from V (G�H) into V (G), respectively V (H)
are weak homomorphisms from G�H onto the factors G, respectively H. They
are called projections in the literatures.

Let G and H be two graphs with V (G) = {ui|1 ≤ i ≤ n} and V (H) =
{vj |1 ≤ j ≤ m}. We use G(vj) to denote the subgraph of G�H induced by
the vertex set {(ui, vj)|1 ≤ i ≤ n} where 1 ≤ j ≤ m, and use H(ui) to denote
the subgraph of G�H induced by the vertex set {(ui, vj)|1 ≤ j ≤ m} where

980 Y. Sun

1 ≤ i ≤ n. Clearly, we have G(vj) ∼= G and H(ui) ∼= H. For example, as shown
in Figure 1, G(vj) ∼= G for 1 ≤ j ≤ 4 and H(ui) ∼= H for 1 ≤ i ≤ 3. For
1 ≤ j1 6= j2 ≤ m, (ui, vj1) and (ui, vj2) belong to the same graph H(ui) where
ui ∈ V (G), and we call (ui, vj2) the vertex corresponding to (ui, vj1) in G(vj2);
for 1 ≤ i1 6= i2 ≤ n, we call (ui2 , vj) the vertex corresponding to (ui1 , vj) in
H(ui2) [15]. Similarly, we can define the path and the tree corresponding to some
path and tree, respectively. For example, in the graph (c) of Figure 1, let P1,
respectively P2, be the paths whose edges are labelled 1, respectively 2, in H(u1),
respectively H(u2). Then P2 is called the path corresponding to P1 in H(u2).
Clearly, P1 and P2 correspond to the path v1, v2, v3, v4 in H.

G

u1

u2

u3

v1

v2

v3

v4

H

G(v1) G(v2) G(v3) G(v4)

H(u1)

H(u2)

H(u3)

1 1 1

2 2 2

(a) (b) (c)

Figure 1. Graphs G, H and their Cartesian product.

Lemma 11 [21]. Let G be a connected graph of order n. If there exist two

adjacent vertices of degree δ(G), then λk(G) ≤ δ(G)− 1 for every integer k with

3 ≤ k ≤ n, and moreover the bound is sharp.

For simplicity, we set ui,j = (ui, vj) in the sequel. The following result
concerns the strong product of P2 and Pn where n ≥ 3.

Lemma 12. Let G = P2 ⊠ Pn with V (G) = {ui,j}, where 1 ≤ i ≤ 2 and

1 ≤ j ≤ n. If x = u1,1, y = u1,j0 , z = u1,n for some 1 ≤ j0 ≤ n, then there are

two edge-disjoint trees connecting S in G, where S = {x, y, z}.

Proof. We get the first tree T1 by letting V (T1) = V (G) \ {u2,n} and E(T1) =
{u1,ju2,j , u2,ju1,j+1|1 ≤ j ≤ n−1}, then we construct the second tree T2 by letting
V (T2) = V (G) \ {u2,1} and E(T2) = {u2,ju2,j+1|2 ≤ j ≤ n − 1} ∪ {u1,1u2,2} ∪
{u1,j0u2,j0+1} ∪ {u1,nu2,n} ∪ {u1,ju2,j+1|1 ≤ j ≤ n − 1}. Clearly, T1 and T2 are
two edge-disjoint S-trees.

Note that in the proof of Lemma 12, we have E(Ti) ∩ E(Pn(u1)) = ∅ for
i ∈ {1, 2}. We need the following definition. Let G = Pm ⊠ Pn with n,m ≥ 2
and C := u1,1, u1,2, . . . , u1,n, u2,n, . . . , um,n, um,n−1, . . . , um,1, um−1,1, . . . , u1,1 be a
cycle of G; we call an edge of C an outer edge of G and an edge of E(G) \E(C)

A Sharp Lower Bound for the Generalized ... 981

an inner edge of G. A path is called an inner path if all edges of it are inner
edges. Let x = u1,1, y = um,n; there is an inner x − y path. We take P3 ⊠ P4

for an example as shown in Figure 2, edges labelled with 1 are outer edges of G.
Each edge of the x− y path labelled 2 is an inner edge.

x

y

1 1 1

1

1

111

1

1
2 2

2

2

Figure 2. P3 ⊠ P4.

Note that in the sequel, for a set S = {x, y, z}, we assume that every S-tree T
is minimal, that is, the subgraph which is obtained by deleting any set of vertices
or edges of T will not be an S-tree. We know T must be one of the following two
types: (a) T is a path whose two end vertices belong to S; (b) T is a tree with
exactly three end vertices and these end vertices are x, y, z. In the second type,
there is exactly one vertex u with degT (u) = 3. The above assumption will not
affect our results.

3. Main Results

The following fact which will be useful is clear: If H is a spanning subgraph of G,
then λ3(G) ≥ λ3(H). Let S = {x, y, z}, where x ∈ V (G(vα)), y ∈ V (G(vβ)), z ∈
V (G(vγ)) for some 1 ≤ α, β, γ ≤ m. Without loss of generality, we assume
that λ3(G) = k ≥ ℓ = λ3(H). Thus, min{2λ3(G) + λ3(H), λ3(G) + 2λ3(H)} =
λ3(G)+2λ3(H) = k+2ℓ. In order to prove our main result, we need the following
three lemmas.

Lemma 13. If α, β, γ are distinct, then there are at least k + 2ℓ edge-disjoint

S-trees.

Proof. Without loss of generality, we assume that x = u1,1, y ∈ V (G(v2)), z ∈
V (G(v3)). Furthermore, let y′, z′ be the vertices corresponding to y, z in G(v1),
x′, z′′ be the vertices corresponding to x, z in G(v2) and x′′, y′′ be the vertices
corresponding to x, y in G(v3).

Case 1. pG(x) = pG(y) = pG(z). Now we have that x, y′, z′ are the same
vertex in G(v1). Let x1 be a neighbor of x in G(v1). Without loss of generality,
we can assume that x1 ∈ H(u2). Let x

′

1 and x′′1 be the corresponding vertices of

982 Y. Sun

x1 in G(v2) and G(v3), respectively. Clearly, yx′1 ∈ E(G(v2)), zx
′′

1 ∈ E(G(v3)).
Let T ′

1 be a {x1, x
′

1, x
′′

1}-tree in H(u2). If T ′

1 is a path, then by Lemma 12, we
can find two edge-disjoint S-trees.

G(v1) G(v2) G(v3)
H(u1) x

x1 x′

1
x′′

1

zy

H(u2) T ′

1
u

u′

Figure 3. The graph of Case 1.

In the following of this case, we assume that T ′

1 is a tree of type (b) introduced
in the last paragraph of Section 2. Let u be the vertex of degree 3 in T ′

1 and u′

be the vertex corresponding to it in H(u1) as shown in Figure 3. The unique
x1 − x′1 path in T ′

1 is a path of order at least 3, redhence we can construct a
{x, y, u′}-tree Tx,y which is similar to T1 in the proof of Lemma 12. Similarly,
the unique x1 − x′′1 path in T ′

1 is a path of order at least 3, and we can construct
a {x, z, u′}-tree Tx,z similarly to T1 in the proof of Lemma 12. Now we can get
an S-tree from Tx,y and Tx,z. Similarly, we can get a {x, y, u′}-tree T ′

x,y and a
{x, z, u′}-tree T ′

x,z. Thus, another S-tree can be constructed from T ′

x,y and T ′

x,z.
Since x has at least k neighbors in G(v1), we can get 2k such trees. Then by

adding the ℓ edge-disjoint S-trees in H(u1), we can find at least 2k + ℓ ≥ k + 2ℓ
S-trees. It is not hard to show that any two of these trees are edge-disjoint by
the definition of the strong product.

G(v1) G(v2) G(v3)

H(u1)x

z

y H(u2)

Ti

T ′

j

x′

H(u3)

x′′

y′ y′′

z′′z′

1

2

Ti

G(v1) G(v2) G(v3)

H(u1) x

x1 x′

1 x′′

1

z

yH(u2)

T ′

j

x′

H(u3)

x′′

y′ y′′

z′′z′

(a) (b)

Figure 4. Graphs in the proof of Claim 1.

Case 2. pG(x), pG(y), pG(z) are three distinct vertices. In this case we have
that x, y′, z′ are three distinct vertices in G(v1). Without loss of generality, we can
assume that y′ ∈ V (H(u2)), z

′ ∈ V (H(u3)). As λ3(G(v1)) = k, there are k edge-

A Sharp Lower Bound for the Generalized ... 983

disjoint {x, y′, z′}-trees in G(v1), say T ′

j , where 1 ≤ j ≤ k. Let {Ti|1 ≤ i ≤ ℓ} be
a set of ℓ edge-disjoint {v1, v2, v3}-trees in H since λ3(H) = ℓ. Let k0, k1, . . . , kℓ
be integers such that 0 = k0 < k1 < · · · < kℓ = k since k ≥ ℓ.

Subcase 2.1. xy′, xz′ 6∈ E(G(v1)). We need the following claim.

Claim 1. If xy′, xz′ 6∈ E(G(v1)), then there are ki−ki−1+2 edge-disjoint S-trees

in
(⋃ki

j=ki−1+1 T
′

j

)
⊠ Ti for each 1 ≤ i ≤ ℓ.

Proof. Let 1 ≤ i ≤ ℓ. For the case ki−1 + 1 ≤ j ≤ ki − 1, we can construct
an S-tree in T ′

j ⊠ Ti as shown in the graph (a) of Figure 4. Here x1 ∈ V (T ′

j)
is a neighbor of x in G(v1), while x′1 and x′′1 are vertices corresponding to x1 in
G(v2) and G(v3), respectively. For simplicity, we also use Ti and T ′

j to denote
the {x1, x

′

1, x
′′

1}-tree and {x, y′, z′}-tree, respectively, as shown in the graph (a)
of Figure 4.

For the case j = ki, in T ′

ki
⊠Ti we first construct two S-trees as shown in the

graph (b) of Figure 4. In H(u1), let Pxx′ denote the x−x′ path which belongs to
Ti; in G(v1), let Pxy′ denote the x−y′ path which belongs to T ′

ki
. Then there is an

inner x−y path, denoted by Pxy, in the subgraph Pxx′⊠Pxy′ of T
′

ki
⊠Ti. Similarly,

we can find an inner y − z path Pyz. By combining Pxy and Pyz, we can obtain

the third S-tree in T ′

ki
⊠ Ti. Hence, for each 1 ≤ i ≤ ℓ, in

(⋃ki
j=ki−1+1 T

′

j

)
⊠ Ti,

we can get ki − ki−1 + 2 trees in total and it is not hard to show that any two of
these trees are edge-disjoint by the definition of the strong product. �

Now for the case that xy′, xz′ 6∈ E(G(v1)), we can construct
∑ℓ

i=1(ki−ki−1+
2) = k+2ℓ trees in total by Claim 1 and any two of these trees are edge-disjoint.

Subcase 2.2. xy′, xz′ ∈ E(G(v1)). If both xy′ and xz′ belong to the same tree,

say T ∈
{
T ′

j |1 ≤ j ≤ k
}
, then we reorder these trees such that T ′

k1
= T . With

a similar argument to that of Subcase 2.1, we can construct k + 2ℓ edge-disjoint
S-trees.

Thus, in the following we assume that xy′ and xz′ belong to distinct trees,
say T and T̃ , respectively. Both of them are paths by the assumption of the note
in the end of Section 2, that is, T = xy′ ∪Q and T̃ = xz′ ∪Q′ where Q is either
an x−z′ path or a y′−z′ path and Q′ is either an x−y′ path or a z′−y′ path. In
all cases we can set two new paths T ′ and T̃ ′ where T ′ = y′xz′ and T̃ ′ is obtained
from Q ∪Q′. Again we get a Subcase 2.1 and we are done.

The remaining subcase is that exactly one of xy′, xz′ belongs to E(G(v1)).
Without loss of generality, we can assume that xy′ ∈ E(G(v1)).

Subcase 2.3. xy′ ∈ E(G(v1)). Let xy′ belong to a tree of
{
T ′

j |1 ≤ j ≤ k
}
,

without loss of generality, we assume that xy′ ∈ T ′

k1
. Hence, we can construct

k + 2ℓ edge-disjoint S-trees with a similar argument to that of Subcase 2.1.

984 Y. Sun

Case 3. Two of pG(x), pG(y), pG(z) are the same vertex. Now we have that
two of x, y′, z′ are the same vertex in G(v1). Without loss of generality, we can
assume that y′ = z′. Since λ(G(v1)) ≥ λ3(G(v1)) = λ3(G) = k, there exist k

edge-disjoint x− y′ paths Pi in G(v1) where 1 ≤ i ≤ k. With a similar argument
to that of Case 2, we get at least k + 2ℓ edge-disjoint S-trees.

Lemma 14. If exactly two of α, β, γ are the same, then there are at least k+ 2ℓ
edge-disjoint S-trees.

Proof. Without loss of generality, we can assume that α = β = 1 and γ = 2.
Furthermore, we assume that x = u1,1 and y = u2,1. For the case that z = uτ,2
where 3 ≤ τ ≤ n, we can construct k + 2ℓ edge-disjoint S-trees since it is similar
to Case 3 of Lemma 13 by the commutativity of the strong product. It suffices
to consider the case τ = 1 since the case that τ = 2 is similar.

As λ(G) ≥ λ3(G) = k and λ(H) ≥ λ3(H) = ℓ, there are at least k edge-
disjoint x − y paths Pi : x = ai,0, ai,1, . . . , ai,ti = y in G(v1) and ℓ edge-disjoint
x − z paths Qj : x = bj,0, bj,1, . . . , bj,tj = z in H(u1) where 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ.
We set Pk := x, y if xy ∈ E(G(v1)) and Qℓ := x, z if xz ∈ E(H(u1)). Note that
ai1,1 6= ai2,1 for 1 ≤ i1 6= i2 ≤ k and bj1,1 6= bj2,1 for 1 ≤ j1 6= j2 ≤ k.

G(v1) G(v2)

H(u1) x

H(u2)

T ′

j

z

ai,1

y

bj,1

b′j,1

bℓ+1,1

b′ℓ+1,1

Ti

H(ai,1)
T ′

ℓ

G(bℓ+1,1)

Figure 5. Trees in the graph.

For 1 ≤ i ≤ k − 1, we can construct a tree Ti := Pi ∪ Qi
1 ∪ {a′i,1, z}, where

a′i,1 is the vertex corresponding to ai,1 in G(v2) and Qi
1 is the ai,1 − a′i,1 path

corresponding to Q1 in H(ai,1). See the lines labelled by Ti in Figure 5, and here
H(ai,1) ∼= H is a subgraph which contains ai,1. Similarly, for 1 ≤ j ≤ ℓ−1, we can

construct a tree T ′

j := Qj ∪ P
j
1 ∪ {b′j,1, y}, where b′j,1 is the vertex corresponding

to bj,1 in H(u2) and P
j
1 is the bj,1−b′j,1 path corresponding to P1 in G(bj,1). Note

that here G(bj,1) ∼= G is a subgraph which contains bj,1 as shown in Figure 5.
We further assume that xy 6∈ E(G(v1)) since the argument of the case that
xy ∈ E(G(v1)) is similar. We can construct a tree Tk from Pk which is similar

A Sharp Lower Bound for the Generalized ... 985

to Ti for 1 ≤ i ≤ k − 1. So far, k + ℓ − 1 S-trees have been constructed:{
Ti, T

′

j |1 ≤ i ≤ k, 1 ≤ j ≤ ℓ− 1
}
. Thus, we need to construct the remaining ℓ+1

trees by considering the following two cases.

Case 1. xz 6∈ E(H(u1)). In this case, we first get a tree T ′

ℓ from Qℓ with a
similar construction method to that of T ′

j(1 ≤ j ≤ ℓ− 1) in the above argument.
For each 1 ≤ i ≤ ℓ, we can use Pi and Qi to construct a tree Ti,i as follows: Let
Pxy be an inner x− y path in the subgraph Pi ⊠Qxbj,1 and Pxz be an inner x− z

path in the subgraph Qi ⊠ Pxai,1 , where Qxbj,1 is the edge xbj,1 and Qxai,1 is the
edge xai,1; then by combining Pxy and Pxz, we can get an S-tree.

For example, we consider two graphs G ∼= C4, H ∼= P4. Let S = {x, y, z}
where x = u1,1, y = u4,1, z = u1,4. By the above method, we can find three
edge-disjoint S-trees in C4 ⊠ P4 as shown in Figure 6.

G(v1) G(v2)

H(u1)
x

T2

z

y

T1
T3

G(v3) G(v4)

H(u2)

H(u3)

H(u4)

Figure 6. Three edge-disjoint S-trees in C4 ⊠ P4.

Case 2. xz ∈ E(H(u1)). If degH(u1)(x) = degH(u1)(z) = δ(H(u1)), then
we have ℓ = λ3(H(u1)) ≤ δ(H(u1)) − 1 by Lemma 11, it means that x has a
neighbor, say bℓ+1,1, which is distinct from bj,1 in H(u1), where 1 ≤ j ≤ ℓ. We
can construct a tree T ′

ℓ := {xz} ∪ {xbℓ+1,1} ∪ P ℓ+1
1 ∪ {yb′ℓ+1,1}, where b′ℓ+1,1 is

the vertex corresponding to bℓ+1,1 in H(u2) and P ℓ+1
1 is the path corresponding

to P1 in G(bℓ+1,1). Note that here G(bℓ+1,1) ∼= G is a subgraph of G ⊠H which
contains bℓ+1,1 as shown in Figure 5.

If degH(u1)(x) > δ(H(u1)) or degH(u1)(z) > δ(H(u1)), then we can also get
a tree T ′

ℓ with a similar argument. The remaining ℓ trees can be found with a
similar argument to that of Case 1.

Thus, there are k + 2ℓ trees in total and it is not hard to show that any two
of them are edge-disjoint by the definition of the strong product.

In the final case that α, β, γ are the same we can get at least k + 2ℓ edge-
disjoint trees by Lemma 13 and by the commutativity of the strong product.

986 Y. Sun

Lemma 15. If α, β, γ are the same, then there are at least k + 2ℓ edge-disjoint

trees connecting S.

According the above three lemmas, we can get our main result.

Theorem 16. If G and H are two connected graphs, then λ3(G ⊠ H) ≥
min{2λ3(G) + λ3(H), λ3(G) + 2λ3(H)}. Moreover, the bound is sharp.

Proof. By Lemmas 13, 14 and 15, we have λ3(G⊠H) ≥ k+2ℓ = min{2λ3(G)+
λ3(H), λ3(G) + 2λ3(H)}. Thus, for any pair of two trees T1 and T2 with orders
at least 3, λ3(T1 ⊠ T2) ≥ 3 = k + 2ℓ since λ3(T1) = λ3(T2) = 1. Since we also
have λ3(T1 ⊠ T2) ≤ 3 = δ(T1 ⊠ T2), the bound is sharp.

Acknowledgements

This research was supported by National Natural Science Foundation of China
(No. 11401389) and China Scholarship Council (No. 201608330111). We would
like to thank two anonymous referees for helpful comments and suggestions which
indeed help us greatly to improve the quality of our paper.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM 244 (Springer, Berlin, 2008).

[2] B. Brešar and S. Špacapan, Edge-connectivity of strong products of graphs , Discuss.
Math. Graph Theory 27 (2007) 333–343.
doi:10.7151/dmgt.1365

[3] G. Chartrand, S.F. Kappor, L. Lesniak and D.R. Lick, Generalized connectivity in

graphs , Bull. Bombay Math. Colloq. 2 (1984) 1–6.

[4] W.S. Chiue and B.S. Shieh, On connectivity of the Cartesian product of two graphs ,
Appl. Math. Comput. 102 (1999) 129–137.
doi:10.1016/S0096-3003(98)10041-3

[5] D.P. Day, O.R. Oellermann and H.C. Swart, The ℓ-connectivity function of trees

and complete multipartite graphs , J. Combin. Math. Combin. Comput. 10 (1991)
183–192.

[6] D. Du and X. Hu, Steiner Tree Problems in Computer Communication Networks
(World Scientific, 2008).
doi:10.1142/6729

[7] M. Grötschel, The Steiner tree packing problem in VLSI design, Math. Program. 78
(1997) 265–281.
doi:10.1007/BF02614374

[8] M. Grötschel, A. Martin and R. Weismantel, Packing Steiner trees: A cutting plane

algorithm and commputational results , Math. Program. 72 (1996) 125–145.
doi:10.1007/BF02592086

http://dx.doi.org/10.7151/dmgt.1365
http://dx.doi.org/10.1016/S0096-3003\(98\)10041-3
http://dx.doi.org/10.1142/6729
http://dx.doi.org/10.1007/BF02614374
http://dx.doi.org/10.1007/BF02592086

A Sharp Lower Bound for the Generalized ... 987

[9] M. Hager, Pendant tree-connectivity , J. Combin. Theory Ser. B 38 (1985) 179–189.
doi:10.1016/0095-8956(85)90083-8

[10] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second
Edition (CRC Press, 2011).

[11] W. Imrich and S. Klavžar, Product Graphs—Structure and Recognition (Wiley,
New York, 2000).

[12] W. Imrich, S. Klavžar and D.F. Rall, Topics in Graph Theory: Graphs and Their
Cartesian Product (A K Peters, 2008).

[13] S. Klavžar and S. Špacapan, On the edge-connectivity of Cartesian product graphs ,
Asian-Eur. J. Math. 1 (2008) 93–98.

[14] H. Li, X. Li, Y. Mao and Y. Sun, Note on the generalized connectivity , Ars Combin.
114 (2014) 193–202.

[15] H. Li, X. Li and Y. Sun, The generalized 3-connectivity of Cartesian product graphs ,
Discrete Math. Theor. Comput. Sci. 14 (2012) 43–54.

[16] X. Li and Y. Mao, A survey on the generalized connectivity of graphs.
arXiv:1207.1838[math.CO]

[17] X. Li and Y. Mao, On extremal graphs with at most ℓ internally disjoint Steiner

trees connecting any n− 1 vertices , Graphs Combin. 31 (2015) 1–29.
doi:10.1007/s00373-014-1465-6

[18] X. Li and Y. Mao, The generalized 3-connectivity of lexicographic product graphs ,
Discrete Math. Theor. Comput. Sci. 16 (2014) 339–354.
doi:10.1007/978-3-319-12691-3 31

[19] X. Li and Y. Mao, Nordhaus-Gaddum-type results for the generalized edge-

connectivity of graphs , Discrete Appl. Math. 185 (2015) 102–112.
doi:10.1016/j.dam.2014.12.009

[20] X. Li, Y. Mao and Y. Sun, On the generalized (edge-)connectivity of graphs , Aus-
tralas. J. Combin. 58 (2014) 304–319.

[21] X. Li, Y. Mao and L. Wang, Graphs with large generalized 3-edge-connectivity.
arXiv:1201.3699v1 [math.CO]

[22] X. Li, J. Yue, and Y. Zhao, The generalized 3-edge-connectivity of lexicographic

product graphs, Proc. COCOA 2014, Lecture Notes in Comput. Sci. 8881 (2014)
412–425.
doi:10.1007/978-3-319-12691-3 31

[23] B. Liouville, Sur la connectivité des produits de graphes , C.R. Acad. Sci. Paris Sér.
A–B 286 (1978) A363–A365.

[24] O.R. Oellermann, On the ℓ-connectivity of a graph, Graphs Combin. 3 (1987)
285–299.
doi:10.1007/BF01788551

http://dx.doi.org/10.1016/0095-8956\(85\)90083-8
http://dx.doi.org/10.1007/s00373-014-1465-6
http://dx.doi.org/10.1007/978-3-319-12691-3_31
http://dx.doi.org/10.1016/j.dam.2014.12.009
http://dx.doi.org/10.1007/978-3-319-12691-3_31
http://dx.doi.org/10.1007/BF01788551

988 Y. Sun

[25] O.R. Oellermann, A note on the ℓ-connectivity function of a graph, Congr. Numer.
60 (1987) 181–188.

[26] G. Sabidussi, Graphs with given group and given graph theoretical properties , Cana-
dian J. Math. 9 (1957) 515–525.
doi:0.4153/CJM-1957-060-7

[27] N.A. Sherwani, Algorithms for VLSI Physical Design Automation, 3rd Edition
(Kluwar Acad. Pub., London, 1999).

[28] Y. Sun, Generalized 3-(edge)-connectivity for undirected double-loop networks , J.
Discrete Math. Sci. Cryptogr. 17 (2014) 19–28.
doi:10.1080/09720529.2013.867672

[29] Y. Sun, Generalized 3-edge-connectivity of Cartesian product graphs , Czechoslovak
Math. J. 65 (2015) 107–117.
doi:10.1007/s10587-015-0162-9

[30] Y. Sun, Generalized 3-connectivity and 3-edge-connectivity for the Cartesian prod-

ucts of some graph classes , J. Combin. Math. Combin. Comput. 94 (2015) 215–225.

[31] Y. Sun, Maximum generalized local connectivities of cubic Cayley graphs on Abelian

groups , J. Combin. Math. Combin. Comput. 94 (2015) 227–236.

[32] Y. Sun, Sharp upper bounds for generalized edge-connectivity of product graphs ,
Discuss. Math. Graph Theory 36 (2016) 833–843.
doi:10.7151/dmgt.1924

[33] Y. Sun, On the maximum and minimum sizes of a graph with given k-connectivity ,
Discuss. Math. Graph Theory 37 (2017) 623–632.
doi:10.7151/dmgt.1941

[34] Y. Sun and X. Li, On the difference of two generalized connectivities of a graph, J.
Comb. Optim. 33 (2017) 283–291.
doi:10.1007/s10878-015-9956-9.

[35] Y. Sun and S. Zhou, Tree connectivities of Cayley graphs on Abelian groups with

small degrees, Bull. Malays. Math. Sci. Soc. 39 (2016) 1673–1685.
doi:10.1007/s40840-015-0147-8.

[36] S. Špacapan, Connectivity of Cartesian products of graphs , Appl. Math. Lett. 21
(2008) 682–685.
doi:10.1016/j.aml.2007.06.010

[37] S. Špacapan, Connectivity of strong products of graphs , Graphs Combin. 26 (2010)
457–467.
doi:10.1007/s00373-010-0919-8

[38] J. Xu and C. Yang, Connectivity of Cartesian product graphs , Discrete Math. 306
(2006) 159–165.
doi:10.1016/j.disc.2005.11.010

Received 13 February 2016
Revised 17 August 2016

Accepted 17 August 2016

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/0.4153/CJM-1957-060-7
http://dx.doi.org/10.1080/09720529.2013.867672
http://dx.doi.org/10.1007/s10587-015-0162-9
http://dx.doi.org/10.7151/dmgt.1924
http://dx.doi.org/10.7151/dmgt.1941
http://dx.doi.org/10.1007/s10878-015-9956-9.
http://dx.doi.org/10.1007/s40840-015-0147-8.
http://dx.doi.org/10.1016/j.aml.2007.06.010
http://dx.doi.org/10.1007/s00373-010-0919-8
http://dx.doi.org/10.1016/j.disc.2005.11.010
http://www.tcpdf.org

