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Abstract

A graph is said to be characterized by its permanental spectrum if there
is no other non-isomorphic graph with the same permanental spectrum. In
this paper, we investigate when a complete bipartite graph Kp,p with some
edges deleted is determined by its permanental spectrum. We first prove that
a graph obtained from Kp,p by deleting all edges of a star K1,l, provided
l < p, is determined by its permanental spectrum. Furthermore, we show
that all graphs with a perfect matching obtained from Kp,p by removing five
or fewer edges are determined by their permanental spectra.
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1. Introduction

By a graph we always mean a simple undirected graph G with the vertex set
V (G) = {v1, v2, . . . , vn} and the edge set E(G) = {e1, e2, . . . , em}. Denote by G
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the complement of G. The degree of a vertex v ∈ V (G) is denoted by dG(v),
abbreviated as d(v). Let G− E(H) be a graph obtained from G by deleting the
edges of H, where H is a subgraph of G. Let G∪H be the union of two graphs G
and H which have no common vertices. For any positive integer l, let lG denote
the union of l disjoint copies of graph G. The complete graph, path, cycle and
star of order n are denoted by Kn, Pn, Cn and K1,n−1, respectively. Let ci(G)
and pi(G) denote respectively the number of i-cycles and i-vertex paths in G.

An r-matching in G is a set of r pairwise non-adjacent edges. The number of
r-matchings in G is denoted by q(G, r). For an r-matching M in G, if G has no
r′-matching such that r′ > r, then M is called a maximum matching of G. The
number ν(G) of edges in a maximum matching is called the matching number

of G.
The permanent of an n × n matrix X with entries xij (i, j = 1, 2, . . . , n) is

defined by

per(X) =
∑

σ

n
∏

i=1

xiσ(i),

where the sum is taken over all permutations σ of {1, 2, . . . , n}. Valiant [19] has
shown that computing the permanent is #P-complete even when restricted to
(0, 1)-matrices.

Let A(G) be the adjacency matrix of G. The polynomial φ(G, x) = det(xI −
A(G)), where I is the identity matrix, is called the characteristic polynomial

of graph G. The adjacency spectrum of graph G consists of the eigenvalues of
A(G) together with their multiplicities. Similarly, the permanental polynomial

of G, denoted by π(G, x), is defined as π(G, x) = per(xI − A(G)), where I is
the identity matrix. The permanental spectrum (per-spectrum for short) of G

is the collection of all roots (together with their multiplicities) of π(G, x). The
multiplicity of zeroes in the per-spectrum of G is called permanental nullity of G,
denoted by ηper(G).

The permanental polynomials of graphs was systematically introduced in
mathematical and chemical literature almost simultaneously by Merris et al. [18]
and Kasum et al. [14]. For a period of time, little about the study of permanental
polynomials seems to have been published. This may be due to the difficulty of
computing per(xI − A(G)). However, permanental polynomials and their appli-
cations have received a lot of attention from researchers in recent years. See, for
example, [1, 2, 3, 5–8, 12, 21, 23, 24, 25], and the references therein.

Two graphs are cospectral (respectively per-cospectral) if they share the same
adjacency spectrum (respectively per-spectrum). A graph G is said to be deter-

mined by its per-spectrum (DPS for short) if every graph per-cospectral with G

is isomorphic to G.
For any graph polynomial, it is of interest to determine its ability to char-

acterize graphs, see [9, 10]. Merris et al. [18] first found that the per-spectrum
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distinguishes the five cospectral graphs of [13]. And they stated that the per-
spectrum seems a little better than the adjacency spectrum when it comes to
distinguishing graphs which are not trees. Motivated by the Merris et al.’s state-
ment, Liu and Zhang [15, 16] investigated paths, stars, cycles and lollipop graphs
which are DPS. And they stated that graphs determined by the adjacency spectra
are not necessarily determined by the permanental spectra. Up to now, only a
few types of graphs with very special structures have been proved to be DPS, such
as, all graphs which are obtained from a complete graph by removing six or fewer
edges [22, 26], and complete bipartite graphs [20]. Furthermore, Borowiecki [4]
showed that if G1 and G2 are bipartite graphs without cycles of length k, k ≡ 0
(mod 4), then G1 and G2 are per-cospectral if and only if G1 and G2 are cospec-
tral. Yan and Zhang [23] gave a method to construct infinitely many pairs of
2-connected bipartite graphs which are per-cospectral.

In this paper, we intend to investigate when a complete regular bipartite
graph with some edges deleted is DPS. And we obtain the results as follows.
We show that Kp,p − E(K1,l) is DPS, and prove that all graphs with a perfect
matching obtained from Kp,p by removing at most five edges are DPS. If the
restriction “a perfect matching” is canceled in some graphs above, then these
graphs are not necessarily determined by their per-spectra.

2. Preliminaries

Zhang et al. [26] enumerated all graphs with at most five edges and no isolated
vertices. It is not difficult to check that there exist exactly 37 non-isomorphic
bipartite graphs in these graphs. Thus, up to isomorphism there exist exactly
37 bipartite graphs obtained from Kp,p by removing five or fewer edges, where
p ≥ 5, which are labeled by Gi, 1 ≤ i ≤ 37, and depicted in Figure 1.

Lovász gave a formula about the relation between q(G, r) and q(G, i), which
will play a key role in the proofs of our main results.

Lemma 2.1 [17]. Let G be a simple graph with n vertices and G the complement

of G. Then

q(G, r) =
r
∑

i=0

(−1)i
(

n− 2i

2r − 2i

)

(2r − 2i− 1)!!q(G, i),

where s!! = s× (s− 2)!!, and (−1)!! = 0!! = 1.

Lemma 2.2 [11]. Let G be a bipartite graph with n vertices and m edges. Then

(i) q(G, 2) =
(

m
2

)

−
∑

v∈V (G)

(

d(v)
2

)

,

(ii) q(G, 3) =
(

m
3

)

−(m−2)
∑

v∈V (G)

(

d(v)
2

)

+2
∑

v∈V (G)

(

d(v)
3

)

+
∑

uv∈E(G)(d(u)−1)
(d(v) − 1).
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Figure 1. All graphs obtained from Kp,p by deleting five or fewer edges drawn.

A subgraph H of a graph G is said to be a Sachs graph if each component of
H is either a single edge or a cycle.

Lemma 2.3 [18]. Let G be a graph with π(G, x) =
∑n

k=0 bk(G)xn−k. Then

bk(G) = (−1)k
∑

H

2c(H), 1 ≤ k ≤ n,

where the sum is taken over all Sachs subgraphs H of G on k vertices, and c(H)
is the number of cycles in H.

Lemma 2.4 [15]. Let G be a graph with n vertices and m edges, and let (d1, d2,
. . . , dn) be the degree sequence of G. Then

(i) b0(G) = 1,

(ii) b1(G) = 0,

(iii) b2(G) = m,

(iv) b3(G) = −2c3(G),

(v) b4(G) =
(

m
2

)

−
∑n

i=1

(

di
2

)

+ 2c4(G).

Lemma 2.5. Let G be a bipartite graph with m edges, and let dG(Qi) denote the

degree sum of four vertices which are on the ith quadrangle in G. Then

b6(G) = q(G, 3) + 2





c4(G)
∑

i=1

(m + 4 − dG(Qi)) + c6(G)



 .
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Proof. By the definition of Sachs subgraph, we get that the Sachs subgraphs
of G on six vertices are of three kinds: 3K2, C4 ∪ K2 and C6. The number of
3K2 in G is equal to q(G, 3). For the ith quadrangle in G, there exist exactly
m+4−dG(Qi) edges each which is not incident to any vertex of the ith quadrangle.

So, the number of C4 ∪K2 in G is equal to
∑c4(G)

i=1 (m + 4 − dG(Qi)). It follows,

by Lemma 2.3, that b6(G) = q(G, 3) + 2
(

∑c4(G)
i=1 (m + 4 − dG(Qi)) + c6(G)

)

.

Lemma 2.6 [15]. The following parameters and properties of a graph G can be

deduced from the per-spectrum.

(i) The number of vertices.

(ii) The number of edges.

(iii) The number of triangles.

(iv) Whether G is bipartite.

Lemma 2.7 [20]. Let G be a bipartite graph with n vertices. Then ηper(G) =
n− 2ν(G).

Remark 2.8. Lemma 2.7 implies that if the matching numbers of two bipartite
graphs are not equal, then the two bipartite graphs are not per-cospectral.

Zhang et al. [26] gave a formula to compute the number of 4-cycles in Lemma
2.7. From the proof of Lemma 2.7 of [26], we can easily obtain the following
lemma.

Lemma 2.9. Let H ⊆ Kp,p be a bipartite graph with l edges and let G = Kp,p −
E(H). Then

c4(G) =

[(

p

2

)]2

− l(p− 1)2 +

(

l

2

)

+ (p− 2)
∑

v∈V (H)

(

d(v)

2

)

− p4(H) + c4(H).

By Lemma 2.9, we calculate the number of quadrangles of all graphs except
for G1 in Figure 1, as shown in Table 1.

Lemma 2.10. Let H ⊆ Kp,p be a bipartite graph with l edges, and let G = Kp,p−
E(H). Then

c6(G) = 6

[(

p

3

)]2

− 4l

[(

p− 1

2

)]2

+ 3(p− 2)2
((

l

2

)

− z(H)

)

+ 2z(H)(p− 2)

×

(

p− 1

2

)

− p4(H)(p− 2)2 − 2(p− 2)

(

z(H)
∑

i=1

(l + 2 − di(P3))

)

(1)

− 2q(H, 3) + 2y1(H) + y2(H) + p5(H)(p− 2) − p6(H) + c6(H),
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where dj(P3) denotes the degree sum of three vertices on the jth P3 in H, z(H) =
∑

v∈V (H)

(

d(v)
2

)

, y2(H) denotes the number of P4 ∪K2 in H, and y1(H) denotes

the number of 2P3 in H such that the vertices of degree two in 2P3 belong to

different partite set of H.

Graph c4(G) Graph c4(G) Graph c4(G)

G2

(

p
2

)2
− 2p2 + 5p− 3 G3

(

p
2

)2
− 2p2 + 4p− 1 G4

(

p
2

)2
− 3p2 + 9p− 6

G5

(

p
2

)2
− 3p2 + 7p− 2 G6

(

p
2

)2
− 3p2 + 8p− 5 G7

(

p
2

)2
− 3p2 + 6p

G8

(

p
2

)2
− 4p2 + 14p− 10 G9

(

p
2

)2
− 4p2 + 11p− 4 G10,G17

(

p
2

)2
− 4p2 + 10p− 2

G11

(

p
2

)2
− 4p2 + 9p G12

(

p
2

)2
− 4p2 + 12p− 9 G13

(

p
2

)2
− 4p2 + 11p− 6

G14

(

p
2

)2
− 4p2 + 10p− 3 G15

(

p
2

)2
− 4p2 + 8p + 2 G16

(

p
2

)2
− 4p2 + 12p− 8

G18

(

p
2

)2
− 5p2 + 13p− 1 G19

(

p
2

)2
− 5p2 + 13p− 2 G20

(

p
2

)2
− 5p2 + 13p− 3

G21

(

p
2

)2
− 5p2 + 12p G22,G36

(

p
2

)2
− 5p2 + 12p + 1 G23

(

p
2

)2
− 5p2 + 11p + 3

G24

(

p
2

)2
− 5p2 + 14p− 5 G25

(

p
2

)2
− 5p2 + 20p− 15 G26

(

p
2

)2
− 5p2 + 15p− 8

G27

(

p
2

)2
− 5p2 + 16p− 7 G28,G37

(

p
2

)2
− 5p2 + 14p− 3 G29

(

p
2

)2
− 5p2 + 10p + 5

G30,G35

(

p
2

)2
− 5p2 + 14p− 6 G31

(

p
2

)2
− 5p2 + 15p− 9 G32

(

p
2

)2
− 5p2 + 17p− 12

G33

(

p
2

)2
− 5p2 + 16p− 11 G34

(

p
2

)2
− 5p2 + 16p− 12

Table 1. The number of quadrangles of all graphs except for G1 in Figure 1.

Proof. Let E(H) = {e1, e2, . . . , el}. For each i = 1, 2, . . . , l, let Ji denote the set

of hexagons (6-cycles) of Kp,p containing ei. We know that Kp,p contains 6
[(

p
3

)]2

hexagons. By the Inclusion-Exclusion Principle, we have

c6(G) = 6

[(

p

3

)]2

−
l
∑

i=1

|Ji| +
∑

i<j

|Ji ∩ Jj | −
∑

i<j<k

|Ji ∩ Jj ∩ Jk|

+
∑

i<j<k<r

|Ji ∩ Jj ∩ Jk ∩ Jr| −
∑

i<j<k<r<s

|Ji ∩ Jj ∩ Jk ∩ Jr ∩ Js|(2)

+
∑

i<j<k<r<s<t

|Ji ∩ Jj ∩ Jk ∩ Jr ∩ Js ∩ Jt|.

Since each edge of Kp,p is contained in 4
[(

p−1
2

)]2
hexagons, we have

∑l
i=1 |Ji| =

4l
[(

p−1
2

)]2
.

For i 6= j, |Ji ∩ Jj | =

{

2
(

p−2
1

)(

p−1
2

)

, if ei is adjacent to ej ,

3(p− 2)2, otherwise.

For any graph H, it contains exactly
(

l
2

)

−
∑

v∈V (H)

(

d(v)
2

)

pairs of pairwise disjoint

edges. On the other hand, the number of P3 in H equals z(H) =
∑

v∈V (H)

(

d(v)
2

)

.

It follows that
∑

i<j |Ji ∩ Jj | = 3(p− 2)2
(

(

l
2

)

− z(H)
)

+ 2z(H)(p− 2)
(

p−1
2

)

.
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Note that any three edges in a C6 induce a P4, 3K2 or P3 ∪ K2. Observe
that any P3 in H is contained in l+ 2− d(P3) disjoint unions of P3 and K2 in H.
Further, exactly 2(p−2)(l+2−di(P3)) hexagons in Kp,p contain the disjoint unions
of the ith P3 and K2 in H. We again note that any 3K2 in H is contained exactly
in two 6-cycles which are spanned by 3K2 in Kp,p, and the number of 3K2 in H

equals q(H, 3). Hence, there exist 2q(H, 3) hexagons in Kp,p containing all 3K2 in
H. Additionally, any P4 is contained in (p− 2)2 6-cycles in Kp,p. It follows that
∑

i<j<k |Ji∩Jj∩Jk| = p4(H)(p−2)2+2(p−2)
(

∑z(H)
i=1 (l + 2 − di(P3))

)

+2q(H, 3).

Similarly, any four edges in a C6 induce a P5, 2P3 or P4 ∪ K2, where the
vertices of degree two in 2P3 must belong to different partite in H. It can be
seen that any 2P3 is contained in two 6-cycles which are spanned by 2P3 in Kp,p.
For a P5, there exist exactly p− 2 hexagons in Kp,p containing it. It follows that
∑

i<j<k<r |Ji ∩ Jj ∩ Jk ∩ Ss| = 2y1(H) + y2(H) + p5(H)(p− 2).

Since every five edges in a C6 induce a P6, we have
∑

i<j<k<r<s |Ji∩Jj ∩Jk∩
Jr ∩ Js| = p6(H). Similarly,

∑

i<j<k<r<s<t |Ji ∩ Jj ∩ Jk ∩ Jr ∩ Js ∩ Jt| = c6(H).
Substituting such equations into the expression (2), we obtain equation (1).

Let Q4(G) be the set of all 4-cycles of G. For each Q ∈ Q4(G), define dG(Q)
=
∑

v∈V (Q) dG(v) and D(G) =
∑

Q∈Q4(G) dG(Q).

Lemma 2.11.

D(G) =



































4p
[(

p
2

)]2
− 20p3 + 60p2 − 24p− 28, if G = G10, G17 with p ≥ 4,

4p
[(

p
2

)]2
− 25p3 + 72p2 − p− 64, if G = G22, G36 with p ≥ 5,

4p
[(

p
2

)]2
− 25p3 + 84p2 − 40p− 46, if G = G28, G37 with p ≥ 5,

4p
[(

p
2

)]2
− 25p3 + 84p2 − 55p− 24, if G = G30 with p ≥ 3,

4p
[(

p
2

)]2
− 25p3 + 84p2 − 57p− 18, if G = G35 with p ≥ 3.

Proof. We only consider the case G = G30. The proof of other cases is quite
similar to G30 and is thus omitted.

We use the notation in Figure 1 for G30 and let H be a path of order 6 as a
subgraph of Kp,p. Let e1 = v1v2, e2 = v2v3, e3 = v3v4, e4 = v4v5 and e5 = v5v6

denote the edges of H. Direct computation yields D(Kp,p) = 4p
[(

p
2

)]2
. We will

compute D(G30) by deleting the edges e1, . . . , e5 one edge in turn.

Step 1. We observe that Kp,p has (p− 1)2 quadrangles containing e1, and these
quadrangles will be destroyed in Kp,p − e1. We also note that Kp,p − e1 has
2(p−1)

(

p−1
2

)

quadrangles containing exactly one endpoint of e1 and three vertices
in V (Kp,p) − {v1, v2}. For each of such 4-cycle, its degree sum in Kp,p − e1 will
decrease by 1. As each quadrangle in Kp,p has degree sum 4p, it follows that

(3) D(Kp,p)−D(Kp,p−e1) = 4p(p−1)2+2(p−1)

(

p− 1

2

)

= 5p3−12p2+9p−2.
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Step 2. Note that Kp,p − e1 has (p − 1)(p − 2) quadrangles containing e2, and
these quadrangles will be destroyed in Kp,p − {e1, e2}, and that the degree sum
of each such quadrangle in Kp,p − e1 is 4p − 1. We also note that Kp,p − e1
has (p − 1)

(

p−2
2

)

+ (p − 2)
(

p−1
2

)

quadrangles containing exactly one endpoint of
e2 and three vertices in V (Kp,p) − {v1, v2, v3}, and for each of such 4-cycles, its
degree sum in Kp,p −{e1, e2} will decrease by 1 from its degree sum in Kp,p − e1.
Moreover, Kp,p − e1 has

(

p−1
2

)

quadrangles containing vertices v1 and v3 but not
v2, and for each of such 4-cycles, its degree sum in Kp,p−{e1, e2} will decrease by
1 from its degree sum in Kp,p − e1. Thus, after deleting e2 in Kp,p − e1, we have

(4)

D(Kp,p − e1) −D(Kp,p − e1 − e2)

= (p− 1)

(

(p− 2)(4p− 1) +

(

p− 2

2

)

+

(

p− 1

2

))

= 5p3 − 18p2 + 19p− 6.

Step 3. Again Kp,p − e1 − e2 has (p − 2)2 + (p − 2) quadrangles containing
e3, and these quadrangles will be destroyed in Kp,p − {e1, e2, e3}. Among these
quadrangles, there exist (p−2) 4-cycles each of which contains vertices {v1, v4, v3}
and one vertex in V (Kp,p) − {v1, v2, v3, v4}, and has degree sum 4p− 2 in Kp,p −
e1−e2; and each of the (p−2)2 others has degree sum 4p−1 in Kp,p−e1−e2, and
each of such 4-cycles contains two endpoints of e3 and two vertices in V (Kp,p) −
{v1, v2}. Moreover, Kn−e1−e2 has 2(p−2)

(

p−2
2

)

4-cycles each of which contains
exactly one endpoint of e3 and three vertices in V (Kp,p) − {v1, v2, v3, v4}; and
has 2

(

p−2
2

)

+ (p− 2)2 4-cycles each of which contains exactly one of vertex pairs
in {(v1, v3), (v1, v4), (v2, v4)} and two vertices in V (Kp,p) − {v1, v2, v3, v4}. The
degree sum of each of these (2p−2)

(

p−2
2

)

+(p−2)2 quadrangles in Kp,p−{e1, e2}
will be decreased by 1 in Kp,p − {e1, e2, e3}. Thus

(5)

D(Kp,p − e1 − e2) −D(Kp,p − e1 − e2 − e3)

= 4p(p− 2)2 + (p− 2)(4p− 2) + (2p− 2)

(

p− 2

2

)

= 5p3 − 18p2 + 17p− 2.

Step 4. We note that Kp,p − e1 − e2 − e3 has (p− 2)(p− 3) + 2p− 5 quadrangles
containing e4. Among these quadrangles, there exist (p−2) 4-cycles each of which
contains three vertices {v1, v4, v5} and one vertex in V (Kp,p)−{v1, v2, v3, v4, v5},
and has degree sum 4p − 2 in Kp,p − e1 − e2 − e3; there exist (p − 3) 4-cycles
each of which contains three vertices {v2, v4, v5} and one vertex in V (Kp,p) −
{v1, v2, v3, v4, v5}, and has degree sum 4p− 3 in Kp,p − e1 − e2 − e3; and each of
(p−2)(p−3) others has degree sum 4p−1 in Kp,p−e1−e2−e3, and each of such
4-cycles contains two endpoints of e4 and two vertices in V (Kp,p) − {v1, v2, v3}.
All these 4-cycles will be destroyed in Kn − {e1, e2, e3, e4}. Furthermore, Kp,p −
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e1 − e2 − e3 has (p − 2)
(

p−3
2

)

+ (p − 3)
(

p−2
2

)

4-cycles each of which contains
exactly one endpoint of e4 and three vertices in V (Kp,p)−{v1, v2, v3, v4, v5}; and
has 2(p − 2)(p − 3) + 2

(

p−2
2

)

+
(

p−3
2

)

4-cycles each of which contain exactly one
of vertex pairs in {(v1, v4), (v2, v4), (v1, v5), (v2, v5), (v3, v5)} and two vertices in
V (Kp,p) − {v1, v2, v3, v4, v5}. The degree sum of each of these 2(p − 2)(p − 3) +
(p− 1)

(

p−3
2

)

+ (p− 1)
(

p−2
2

)

quadrangles in Kp,p−{e1, e2, e3} will be decreased by
1 in Kp,p − {e1, e2, e3, e4}. Thus, after deleting e4 in Kp,p − e1 − e2 − e3, we have

(6)
D(Kp,p − e1 − e2 − e3) −D(Kp,p − e1 − e2 − e3 − e4)

= 4p3 − 11p2 − 6p + 19 + (p− 1)(p− 3)2 = 5p3 − 18p2 + 9p + 10.

Step 5. We observe that Kp,p−e1−e2−e3−e4 has (p−3)2+3(p−3) quadrangles
containing e5, and these quadrangles will be destroyed in Kn−{e1, e2, e3, e4, e5}.
Among these quadrangles, there exist (p − 3) 4-cycles each of which contains
three vertices {v1, v5, v6} and one vertex in V (Kp,p) − {v1, v2, v3, v4, v5, v6}, and
has degree sum 4p−2 in Kp,p−e1−e2−e3−e4; there exist 2(p−3) 4-cycles each
of which contains one of vertex pairs in {(v2, v5, v6), (v3, v5, v6)} and one vertex in
V (Kp,p)−{v1, v2, v3, v4, v5, v6}, and has degree sum 4p−3 in Kp,p−e1−e2−e3−e4;
and each of the (p−3)2 others has degree sum 4p−1 in Kp,p−e1−e2−e3−e4, and
each of such 4-cycles contains two endpoints of e5 and two vertices in V (Kp,p) −
{v1, v2, v3, v4}. Moreover, Kn − e1 − e2 − e3 − e4 has 2(p− 3)

(

p−3
2

)

4-cycles each
of which contains exactly one endpoint of e5 and three vertices in V (Kp,p) −
{v1, v2, v3, v4, v5, v6}; it has 4

(

p−3
2

)

+3(p−3)2 quadrangles each of which contains
one of vertex pairs in {(v1, v5), (v2, v5), (v3, v5), (v1, v6), (v2, v6), (v3, v6), (v4, v6)}
and two vertices in V (Kp,p)−{v1, v2, v3, v4, v5, v6}; and it has 2(p−3) quadrangles
each of which contains three vertices either {v1, v3, v6} or {v1, v4, v6}, and one
vertex in V (Kp,p) − {v1, v2, v3, v4, v5, v6}. The degree sum of each of these 2(p−
1)
(

p−3
2

)

+3(p−3)2+2(p−3) quadrangles in Kp,p−{e1, e2, e3, e4} will be decreased
by 1 in Kp,p−{e1, e2, e3, e4, e5}. Thus, after deleting e5 in Kp,p−e1−e2−e3−e4,
we have

(7)

D(Kp,p − e1 − e2 − e3 − e4) −D(Kp,p − e1 − e2 − e3 − e4 − e5)

= (4p + 2)(p− 3)2 + 2(p− 1)

(

p− 3

2

)

+ 12p2 − 42p + 18

= 5p3 − 18p2 + p + 24.

Combining equations (3)–(7), we have D(G30) = 4p
[(

p
2

)]2
− 25p3 + 84p2 −

55p− 24.

3. Main Results

Theorem 3.1. The graph Kp,p − E(K1,l) is DPS, where l < p.
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Proof. We directly verify that if p ≤ 2 then Kp,p − E(K1,l) is DPS. Assume
p ≥ 3. Let G be a graph per-cospectral with Kp,p − E(K1,l). By Lemma 2.6, we
know that G is a bipartite graph with 2p vertices and p2 − l edges. Moreover, by
Lemma 2.7, we have ν(G) = p. Thus, G must be isomorphic to some Kp,p−E(H)
for a subgraph H of Kp,p with |E(H)| = l. By Lemma 2.1, we have

q(Kp,p − E(H), 2)

= 3!!

(

2p

4

)

−

(

2

(

p

2

)

+ l

)(

2p− 2

2

)

+ 2q(Kp, 2) +

[(

p

2

)]2

+ 2l

(

p− 1

2

)

(8)

+

(

l

2

)

−
∑

v∈V (H)

(

d(v)

2

)

.

By Lemmas 2.4(v) and 2.9, and equation (8), we have

b4(Kp,p − E(K1,l)) − b4(Kp,p − E(H))

= (2p− 5)





∑

v∈V (K1,l))

(

d(v)

2

)

−
∑

v∈V (H)

(

d(v)

2

)



+ 2p4(H) − 2c4(H).

As
∑

v∈V (H)

(

d(v)
2

)

equals the number of P3’s in H,
∑

v∈V (H)

(

d(v)
2

)

≤
(

l
2

)

,

which implies that if H ≇ K1,l then
∑

v∈V (H)

(

d(v)
2

)

<
∑

v∈V (K1,l)

(

d(v)
2

)

. It can

be shown that every 4-cycle yields four distinct P4’s, which indicates that p4(H)
−c4(H) ≥ 0. It follows that b4(Kp,p −E(K1,l)) − b4(Kp,p −E(H)) > 0, a contra-
diction. Hence, H ∼= K1,l.

By Theorem 3.1, we obtain the following immediate consequence.

Corollary 3.2. If l < p, then graphs G1, G2, G4, G8 and G25 are DPS.

Theorem 3.3. Graph G3 is DPS.

Proof. There exist exactly two non-isomorphic graphs obtained from Kp,p by
deleting two edges, that is, G2 and G3. By Theorem 3.1, G2 is DPS when p > 2.
If p = 2, then 1 = ν(G2) 6= ν(G3) = 2. By Lemma 2.7, G2 and G3 are not
per-cospectral. This indicates that G3 is DPS.

Theorem 3.4. Let G1 be a set of graphs obtained from Kp,p by removing three

edges. If the matching number of G ∈ G1 equals p, then G is DPS.

Proof. We know that G1 = {G4, G5, G6, G7}. By Theorem 3.1, we know that
G4 is DPS when p 6= 3. Additionally, we find that if p = 3, then ν(G4) = 2
and the matching number of every graph in G1 − {G4} equals 3. This indicates,
by Lemma 2.7, that G4 is not per-cospectral with every graph in G1 − {G4}.
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By the above argument, we note that Theorem 3.4 holds only when G5, G6 and
G7 are not pairwise per-cospectral. By Lemma 2.4(v) and Table 1, we have

b4(G6)− b4(G7) =
∑2p

i=1

(dG7
(vi)
2

)

−
∑2p

i=1

(dG6
(vi)
2

)

+ 2(c4(G6)− c4(G7)) = 4p−12.
Hence b4(G6) − b4(G7) = 0 only when p = 3. Using Maple 12.0, we compute
the permanental polynomials of G6 and G7 for p = 3, respectively, as π(G6, x) =
x6 + 6x4 + 9x2 + 1 and π(G7, x) = x6 + 6x4 + 9x2 + 4. So, G6 and G7 are
not per-cospectral. Similarly, we have b4(G5) − b4(G6) = −2p + 7 and b4(G5) −
b4(G7) = 2p − 5. There exists no integer p such that b4(G5) − b4(G6) = 0 or
b4(G5)− b4(G7) = 0. These indicate that neither the pair G5 and G6, nor G5 and
G7 are per-cospectral.

Theorem 3.5. Let G2 denote the set of graphs obtained from Kp,p by removing

four edges. If the matching number of G ∈ G2 equals p, then G is DPS.

Proof. It can be shown that G2 = {G8, G9, . . . , G17}. By Theorem 3.1, we know
that if p 6= 4, then G8 is DPS. Checking every graph in G2, we note that the
matching number of all graphs in G2−{G8} equals 4 and ν(G8) = 3 when p = 4.
So, we obtain, by Lemma 2.7, that if p = 4, then G8 is not per-cospectral with
any graph in G2 − {G8}. In what follows we show that G9, G10, . . . , G17 are not
pairwise per-cospectral. First, by Lemma 2.4(v) and Table 1, we compute the
subtractions of 4th coefficients of permanental polynomials of any two graphs in
G2 − {G8}, as shown in Table 2.

By Table 2, we note that b4(G10) = b4(G17). By Lemma 2.2(ii), we have

q(G10, 3) = q(G17, 3) =
(

p2−4
3

)

− (p2 − 6)
(

(2p− 6)
(

p
2

)

+ 4
(

p−1
2

)

+ 2
(

p−2
2

))

+

2
(

(2p− 6)
(

p
3

)

+ 4
(

p−1
3

)

+ 2
(

p−2
3

))

+ p4 − 2p3 − 11p2 + 28p − 8. Additionally, by

Lemma 2.10, we have c6(G10) = 6
[(

p
3

)

]2 − 16[
(

p−1
2

)]2
+12(p−2)2+4(p−2)

(

p−1
2

)

−

8(p−2) and c6(G17) = 6
[(

p
3

)]2
−16

[(

p−1
2

)]2
+12(p−2)2+4(p−2)

(

p−1
2

)

−8(p−2)+2.
By Lemmas 2.5 and 2.11, we have b6(G10) − b6(G17) = −4 6= 0, which implies
that G10 and G17 are not per-cospectral.

By Table 2, we see that b4(G14) − b4(G15) = 4p − 12, b4(G15) − b4(G16) =
−8p + 24 and b4(G14) − b4(G16) = −4p + 12. Hence b4(G14) − b4(G15) = 0,
b4(G15) − b4(G16) = 0 and b4(G14) − b4(G16) = 0 only when p = 3. However,
by the definition of G15, we have p ≥ 4 in G15. Thus, neither the pair G14

and G15, nor G15 and G16 are per-cospectral. Additionally, examining G14 and
G16, we note that ν(G14) = 3 and ν(G16) = 2 when p = 3. This implies, by
Lemma 2.7, that G14 and G16 are not per-cospectral. Similarly, we also note that
b4(G10)− b4(G12) = −4p+ 16 and b4(G12)− b4(G17) = 4p− 16. Hence b4(G10)−
b4(G12) = 0 and b4(G12) − b4(G17) = 0 only when p = 4. Employing Maple
12.0, we compute π(G10, x), π(G12, x) and π(G17, x) with p = 4, respectively, as
π(G10, x) = x8+12x6+60x4+112x2+64, π(G12, x) = x8+12x6+60x4+96x2+16
and π(G17, x) = x8 + 12x6 + 60x4 + 116x2 + 64. These imply that neither the
pair G10 and G12, nor G12 and G17 are per-cospectral.
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Finally, checking Table 2, we note that there exists no integer p such that the
subtractions of 4th coefficients of permanental polynomials of any two graphs in
G2 − {G8} equal 0 excepting the cases as above, which imply that these graphs
are not pairwise per-cospectral. So, the theorem is proved.

G10 G11 G12 G13 G14 G15 G16 G17

G9 2p− 5 4p− 10 −2p + 11 4 2p− 3 6p− 15 −2p + 9 2p− 5
G10 2p− 5 −4p + 16 −2p + 9 2 4p− 10 −4p + 14 0
G11 −6p + 21 −4p + 14 −2p + 7 2p− 5 −6p + 19 −2p + 5
G12 2p− 7 4p− 14 8p− 26 −2 4p− 16
G13 2p− 7 6p− 19 −2p + 5 2p− 9
G14 4p− 12 −4p + 12 −2
G15 −8p + 24 −4p + 10
G16 4p− 14

Table 2. The subtractions of 4th coefficients of permanental polynomials of any two
graphs in G2 − {G8}.

Theorem 3.6. Let G3 be a set of graphs obtained from Kp,p by removing five

edges. If the matching number of G ∈ G3 equals p, then G is DPS.

Proof. We know that G3 = {G18, G19, . . . , G37}. By Theorem 3.1, if p 6= 5, then
G25 is DPS. Checking every graph in G3, we note that the matching number of
all graphs in G3 − {G25} equals 5 and ν(G25) = 4 when p = 5. By Lemma 2.7,
G25 is not per-cospectral with any graph in G3−{G25}. In what follows we show
that any two graphs in G3 − {G25} are not per-cospectral. We first compute the
subtractions of 4th coefficients of permanental polynomials of any two graphs in
G3 − {G25}, see Table 3.

By Table 3, we observe that b4(G30) = b4(G35). By Lemma 2.2(ii), we have

q(G30, 3) =
(

p2−5
3

)

− (p2 − 7)
(

(2p− 6)
(

p
2

)

+ 2
(

p−1
2

)

+ 4
(

p−2
2

))

+ 2
(

(2p− 6)
(

p
3

)

+

2
(

p−1
3

)

+ 4
(

p−2
3

))

+ p4 − 2p3 − 14p2 + 38p− 14 and q(G35, 3) =
(

p2−5
3

)

− (p2 − 7)
(

(2p− 6)
(

p
2

)

+ 2
(

p−1
2

)

+ 4
(

p−2
2

))

+ 2
(

(2p− 6)
(

p
3

)

+ 2
(

p−1
3

)

+ 4
(

p−2
3

))

+ p4 − 2p3 −

14p2 + 38p − 15. Additionally, by Lemma 2.10, we have c6(G30) = 6
[(

p
3

)]2
−

20
[(

p−1
2

)]2
+ 15(p− 2)2 + 8(p− 2)

(

p−1
2

)

− 10(p− 2) + 1 and c6(G35) = 6
[(

p
3

)]2
−

20
[(

p−1
2

)]2
+ 14(p− 2)2 + 8(p− 2)

(

p−1
2

)

− 8(p− 2). By Lemmas 2.5 and 2.11, we
obtain that b6(G30) − b6(G35) = 2p2 − 16p + 31. Solving 2p2 − 16p + 31 = 0, we

have p = 8±
√
2

2 . This contradicts that p is an integer. So, π(G30, x) 6= π(G35, x).

Similarly, we note that b4(G22) = b4(G36). By Lemma 2.2(ii), we have

q(G22, 3) = q(G36, 3) =
(

p2−5
3

)

−(p2−7)
(

(2p− 8)
(

p
2

)

+ 6
(

p−1
2

)

+ 2
(

p−2
2

))

+2((2p−

8)
(

p
3

)

+ 6
(

p−1
3

)

+ 2
(

p−2
3

)

) + p4 − 2p3 − 14p2 + 34p − 3. By Lemma 2.10, we have
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c6(G22) = 6
[(

p
3

)]2
− 20

[(

p−1
2

)]2
+ 24(p− 2)2 + 4(p− 2)

(

p−1
2

)

− 12(p− 2) − 8 and

c6(G36) = 6
[(

p
3

)]2
− 20

[(

p−1
2

)]2
+ 24(p − 2)2 + 4(p − 2)

(

p−1
2

)

− 12(p − 2) − 6.
By Lemmas 2.5 and 2.11, we obtain that b6(G22) − b6(G36) = −4 6= 0, which
indicates that G22 and G36 are not per-cospectral.

By Table 3, we again observe that b4(G28) = b4(G37). By Lemma 2.2(ii),

we have q(G28, 3) = q(G37, 3) =
(

p2−5
3

)

− (p2 − 7)
(

(2p− 7)
(

p
2

)

+ 5
(

p−1
2

)

+
(

p−2
2

)

+
(

p−3
2

))

+2
(

(2p− 7)
(

p
3

)

+ 5
(

p−1
3

)

+
(

p−2
3

)

+
(

p−3
3

))

+p4−2p3−14p2+38p−11. By

Lemma 2.10, we have c6(G28) = 6
[(

p
3

)]2
−20

[(

p−1
2

)]2
+18(p−2)2+8(p−2)

(

p−1
2

)

−

18(p−2) and c6(G36) = 6
[(

p
3

)]2
−20

[(

p−1
2

)]2
+18(p−2)2+8(p−2)

(

p−1
2

)

−18(p−
2) + 6. By Lemmas 2.5 and 2.11, we have b6(G28) − b6(G37) = −12 6= 0, which
indicates that G28 and G37 are not per-cospectral.

By Table 3, note that b4(G19) − b4(G31) = −4p + 16, b4(G24) − b4(G34) =
−4p+ 16, b4(G30)− b4(G36) = 4p−16, and b4(G35)− b4(G36) = 4p−16. So, only
for p = 4 b4(G19) − b4(G31) = 0, b4(G24) − b4(G34) = 0, b4(G30) − b4(G36) = 0
and b4(G35)−b4(G36) = 0, hold. Using Maple 12.0, we compute the permanental
polynomials of G19, G24, G30, G31, G34, G35 and G36 for p = 4, respectively. We
have π(G19, x) = x8+11x6+46x4+74x2+36, π(G24, x) = x8+11x6+47x4+74x2+
16, π(G30, x) = x8+11x6+45x4+67x2+25, π(G31, x) = x8+11x6+46x4+65x2+9,
π(G34, x) = x8 +11x6 +47x4 +56x2 +4, π(G35, x) = x8 +11x6 +45x4 +68x2 +16
and π(G36, x) = x8+11x6+45x4+76x2+36, which indicate that none of the pairs
G19 and G31, G24 and G34, G30 and G36, and G35 and G36 are per-cospectral.
Similarly, we again note that b4(G28)−b4(G34) = −4p+20 and b4(G34)−b4(G37) =
4p−20. Hence b4(G28)−b4(G34) = 0 and b4(G34)−b4(G37) = 0 only when p = 5.
Employing Maple 12.0, we compute the permanental polynomials of G28, G34 and
G37 with p = 5, respectively. We obtained that π(G28, x) = x10 + 20x8 + 210x6 +
1116x4 + 2376x2 + 1296, π(G34, x) = x10 + 20x8 + 210x6 + 1092x4 + 2040x2 + 576
and π(G37, x) = x10 + 20x8 + 210x6 + 1128x4 + 2424x2 + 1296, which imply that
neither the pair G28 and G34, nor G34 and G37 are per-cospectral.

By Table 3, we find that b4(G30) − b4(G33) = −4p + 12. Hence, b4(G30) −
b4(G33) = 0 only when p = 3. Checking G30 and G33, note that ν(G30) = 3 and
ν(G32) = 2 when p = 3, which implies, by Lemma 2.7, that G30 and G30 are
not per-cospectral. Similarly, we again note that b4(G33) − b4(G35) = 4p − 12.
Checking G33 and G35, we know that the matching number of G33 and G35 equals
2 when p = 3. This contradicts the assumption p = 3.

By Table 3, we see that b4(G18) − b4(G26) = −4p + 16, b4(G22) − b4(G30) =
−4p + 16 and b4(G22) − b4(G35) = −4p + 16, respectively. Hence b4(G18) −
b4(G26) = 0, b4(G22) − b4(G30) = 0 and b4(G22) − b4(G35) = 0 only when p = 4.
However, by the definitions of G18 and G22, we have p ≥ 5 in G18 and G22. By
Lemma 2.6, these mean that none of the pairs G18 and G26, G22 and G30, and G22

and G35 are per-cospectral. Similarly, by Table 3, we see that b4(G21)−b4(G29) =
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4p − 12 and b4(G24) − b4(G29) = 8p − 24. Hence b4(G21) − b4(G29) = 0 and
b4(G24) − b4(G29) = 0 only when p = 3. These contradict the fact p ≥ 5 in G29

by the definition of G29. So, neither the pair G21 and G29, nor G24 and G29 are
per-cospectral.

Additionally, by Table 3, we also see that b4(G19) − b4(G23) = 4p − 12,
b4(G19)−b4(G26) = −6p+18, b4(G19)−b4(G32) = −8p+24, b4(G20)−b4(G26) =
−4p+ 12, b4(G21)− b4(G24) = −4p+ 12, b4(G21)− b4(G28) = −4p+ 8, b4(G21)−
b4(G37) = −4p + 8, b4(G23) − b4(G32) = −12p + 36, b4(G27) − b4(G30) = 4p− 4,
b4(G27) − b4(G35) = 4p − 4 and b4(G31) − b4(G32) = −4p + 8. Observing these
equations, it can be seen that only when p = 1, 2 or 3 these equations equal zero.
By the definitions of G19, G20, G21, G23, G24, G26, G27, G28, G30, G31, G32 and
G35, we have p ≥ 4 for these graphs. So, G19 and G23, G19 and G26, G19 and
G32, G20 and G26, G21 and G24, G21 and G28, G21 and G37, G23 and G32, G27

and G30, G27 and G35, and G31 and G32 are not per-cospectral.
Finally, checking Table 3, we note that there exists no integer p such that the

subtractions of 4th coefficients of permanental polynomials of any two graphs in
G2−{G25} equal 0 excepting the cases as above, which implies that these graphs
are not pairwise per-cospectral. So, the theorem is proved.

4. Discussions

In this paper, we investigated which graphs obtained from Kp,p by removing some
edges are DPS. From the proofs of main theorems in Section 3, we know that
the matching number plays a key role. If the matching number is less than p in
these graphs as above, then we do not find a suitable method to show whether
these graphs are DPS or not. But we find that G33 = C4 ∪ 2K1 and G35 = 2P3

are per-cospectral when p = 3, and the matching number of C4 ∪ 2K1 and 2P3

equals 2. Furthermore, we can show that C4 ∪ 2K1 and 2P3 is one of two pairs of
minimum per-cospectral graphs (with the minimum number of edges), and the
other pair is K1,3 ∪K2 and P5 ∪K1.

Professor Haemers conjectured that almost all graphs are determined by
their adjacency spectra. Thus, we propose an interesting question which can be
thought of parallel question of considered in this paper, i.e.,

Question. Which graphs obtained from Kp,p by removing five or fewer edges
are determined by their adjacency spectra?
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