ON \boldsymbol{H}-IRREGULARITY STRENGTH OF GRAPHS

Faraha Ashraf
Abdus Salam School of Mathematical Sciences
GC University, Lahore, Pakistan
e-mail: faraha27@gmail.com
Martin Bača ${ }^{1}$
Marcela Lascsáková
AND
Andrea Semaničová-Feñovčíková
Department of Applied Mathematics and Informatics
Technical University, Košice, Slovakia
e-mail: martin.baca@tuke.sk
marcela.lascsakova@tuke.sk
andrea.fenovcikova@tuke.sk

Abstract

New graph characteristic, the total H-irregularity strength of a graph, is introduced. Estimations on this parameter are obtained and for some families of graphs the precise values of this parameter are proved.

Keywords: H-covering, H-irregular labeling, H-irregularity strength.
2010 Mathematics Subject Classification: 05C78, 05C70.

1. Introduction

Let G be a connected, simple and undirected graph with vertex set $V(G)$ and edge set $E(G)$. A labeling of a graph is a map that carries graph elements to the numbers (usually to the positive or non-negative integers). If the domain is the vertex-set or the edge-set, the labelings are called respectively vertex labelings

[^0]or edge labelings. If the domain is $V(G) \cup E(G)$ then we call the labeling total labeling. The most complete recent survey of graph labelings is [12].

For an edge k-labeling $\delta: E(G) \rightarrow\{1,2, \ldots, k\}$ the associated weight of a vertex $x \in V(G)$ is $w_{\delta}(x)=\sum_{x y \in E(G)} \delta(x y)$, where the sum is over all vertices y adjacent to x.

Chartrand, Jacobson, Lehel, Oellermann, Ruiz and Saba in [9] introduced edge k-labeling δ of a graph G such that $w_{\delta}(x) \neq w_{\delta}(y)$ for all vertices $x, y \in V(G)$ with $x \neq y$. Such labelings are called irregular assignments and the irregularity strength $\mathrm{s}(G)$ of a graph G is known as the minimum k for which G has an irregular assignment using labels at most k. The irregularity strength $\mathrm{s}(G)$ can be interpreted as the smallest integer k for which G can be turned into a multigraph G^{\prime} by replacing each edge by a set of at most k parallel edges, such that the degrees of the vertices in G^{\prime} are all different.

Finding the irregularity strength of a graph seems to be hard even for graphs with simple structure, see $[2,3,4,7,10,11,17,18,19]$.

Motivated by irregularity strengths, Bača, Jendrol', Miller and Ryan in [5] defined the total labeling $\varphi: V(G) \cup E(G) \rightarrow\{1,2, \ldots, k\}$ to be an edge irregular total k-labeling of the graph G if for every two different edges $x y$ and $x^{\prime} y^{\prime}$ of G one has

$$
w t_{\varphi}(x y)=\varphi(x)+\varphi(x y)+\varphi(y) \neq w t_{\varphi}\left(x^{\prime} y^{\prime}\right)=\varphi\left(x^{\prime}\right)+\varphi\left(x^{\prime} y^{\prime}\right)+\varphi\left(y^{\prime}\right) .
$$

The minimum k for which the graph G has an edge irregular total k-labeling is called the total edge irregularity strength of the graph G, $\operatorname{tes}(G)$. The total edge irregularity strength is an invariant analogous to the irregularity strength.

A lower bound on the total edge irregularity strength of a graph G is given in [5]

$$
\begin{equation*}
\operatorname{tes}(G) \geq \max \left\{\left\lceil\frac{|E(G)|+2}{3}\right\rceil,\left\lceil\frac{\Delta(G)+1}{2}\right\rceil\right\} \tag{1}
\end{equation*}
$$

where $\Delta(G)$ is the maximum degree of G.
Ivančo and Jendrol' [14] posed a conjecture that for an arbitrary graph G different from K_{5} and with maximum degree $\Delta(G)$, tes $(G)=\max \{\lceil(|E(G)|+2) / 3\rceil$, $\lceil(\Delta(G)+1) / 2\rceil\}$. This conjecture has been verified for complete graphs and complete bipartite graphs in [15] and [16], for the categorical product of two cycles in [1], for generalized Petersen graphs in [13], for generalized prisms in [6], for corona product of a path with certain graphs in [20] and for large dense graphs with $(|E(G)|+2) / 3 \leq(\Delta(G)+1) / 2$ in $[8]$.

An edge-covering of G is a family of subgraphs $H_{1}, H_{2}, \ldots, H_{t}$ such that each edge of $E(G)$ belongs to at least one of the subgraphs $H_{i}, i=1,2, \ldots, t$. Then it is said that G admits an $\left(H_{1}, H_{2}, \ldots, H_{t}\right)$-(edge) covering. If every subgraph H_{i} is isomorphic to a given graph H, then the graph G admits an H-covering.

Let G be a graph admitting H-covering. For the subgraph $H \subseteq G$ under the total k-labeling φ, we define the associated H-weight as

$$
w t_{\varphi}(H)=\sum_{v \in V(H)} \varphi(v)+\sum_{e \in E(H)} \varphi(e) .
$$

A total k-labeling φ is called an H-irregular total k-labeling of the graph G if for every two different subgraphs H^{\prime} and $H^{\prime \prime}$ isomorphic to H there is $w t_{\varphi}\left(H^{\prime}\right) \neq$ $w t_{\varphi}\left(H^{\prime \prime}\right)$. The total H-irregularity strength of a graph G, denoted $\operatorname{ths}(G, H)$, is the smallest integer k such that G has an H-irregular total k-labeling. If H is isomorphic to K_{2}, then the K_{2}-irregular total k-labeling is isomorphic to the edge irregular total k-labeling and thus the total K_{2}-irregularity strength of a graph G is equivalent to the total edge irregularity strength, that is ths $\left(G, K_{2}\right)=\operatorname{tes}(G)$.

Analogously, we can define H-irregular edge k-labeling and H-irregular vertex k-labeling.

Let G be a graph admitting H-covering. For the subgraph $H \subseteq G$ under the edge k-labeling $\beta, \beta: E(G) \rightarrow\{1,2, \ldots, k\}$, we define the associated H-weight as

$$
w t_{\beta}(H)=\sum_{e \in E(H)} \beta(e) .
$$

An edge k-labeling β is called an H-irregular edge k-labeling of the graph G if for every two different subgraphs H^{\prime} and $H^{\prime \prime}$ isomorphic to H there is $w t_{\beta}\left(H^{\prime}\right) \neq$ $w t_{\beta}\left(H^{\prime \prime}\right)$. The edge H-irregularity strength of a graph G, denoted ehs (G, H), is the smallest integer k such that G has an H-irregular edge k-labeling.

Let G be a graph admitting H-covering. For the subgraph $H \subseteq G$ under the vertex k-labeling $\alpha, \alpha: V(G) \rightarrow\{1,2, \ldots, k\}$, we define the associated H-weight as

$$
w t_{\alpha}(H)=\sum_{v \in V(H)} \alpha(v) .
$$

A vertex k-labeling α is called an H-irregular vertex k-labeling of the graph G if for every two different subgraphs H^{\prime} and $H^{\prime \prime}$ isomorphic to H there is $w t_{\alpha}\left(H^{\prime}\right) \neq$ $w t_{\alpha}\left(H^{\prime \prime}\right)$. The vertex H-irregularity strength of a graph G, denoted $\operatorname{vhs}(G, H)$, is the smallest integer k such that G has an H-irregular vertex k-labeling. Note that $\operatorname{vhs}(G, H)=\infty$ if there exist two subgraphs in G isomorphic to H that have the same vertex sets. Evidently, if there exist two subgraphs $H_{i}, H_{j}, i \neq j$, such that $V\left(H_{i}\right)=V\left(H_{j}\right)$ then

$$
w t_{\alpha}\left(H_{i}\right)=\sum_{v \in V\left(H_{i}\right)} \alpha(v)=\sum_{v \in V\left(H_{j}\right)} \alpha(v)=w t_{\alpha}\left(H_{j}\right) .
$$

In the paper, we estimate the bounds of the parameter ths (G, H) and determine the exact values of the total H-irregularity strength for several families of graphs, namely, paths, ladders and fans.

2. Results

Our first result gives a lower bound of the total H-irregularity strength.
Theorem 1. Let G be a graph admitting an H-covering given by t subgraphs isomorphic to H. Then

$$
\operatorname{ths}(G, H) \geq\left\lceil 1+\frac{t-1}{|V(H)|+|E(H)|}\right\rceil
$$

Proof. Let G be a graph that admits an H-covering given by t subgraphs isomorphic to H. Assume that φ is an H-irregular total k-labeling of a graph G with $\operatorname{ths}(G, H)=k$. The smallest weight of a subgraph H under the total k-labeling is at least $|V(H)|+|E(H)|$ and the largest H-weight admits the value at most $(|V(H)|+|E(H)|) k$. Since H-covering of G is given by t subgraphs, we get

$$
|V(H)|+|E(H)|+t-1 \leq(|V(H)|+|E(H)|) k
$$

and

$$
k \geq\left\lceil 1+\frac{t-1}{|V(H)|+|E(H)|}\right\rceil
$$

If H is isomorphic to K_{2}, then immediately from Theorem 1 it follows the lower bound on the total edge irregularity strength given in [5].

Corollary 2. Let $G=(V, E)$ be a graph having non-empty edge set. Then

$$
\operatorname{ths}\left(G, K_{2}\right)=\operatorname{tes}(G) \geq\left\lceil\frac{|E(G)|+2}{3}\right\rceil
$$

The lower bound in Theorem 1 is tight as can be seen from the following theorems which determine the exact values of the total H-irregularity strength for paths and ladders.

Theorem 3. Let $n, m, 2 \leq m \leq n$, be positive integers. Then

$$
\operatorname{ths}\left(P_{n}, P_{m}\right)=\left\lceil\frac{m+n-1}{2 m-1}\right\rceil
$$

Proof. Let P_{n} be a path with the vertex set $V\left(P_{n}\right)=\left\{v_{i}: i=1,2, \ldots, n\right\}$ and the edge set $E\left(P_{n}\right)=\left\{v_{i} v_{i+1}: i=1,2, \ldots, n-1\right\}$. Clearly, for every m, $2 \leq m \leq n$, the path P_{n} admits a P_{m}-covering with exactly $n-m+1$ subpaths. Put $k=\left\lceil\frac{m+n-1}{2 m-1}\right\rceil$. According to Theorem $1, k$ is the lower bound of $\operatorname{ths}\left(P_{n}, P_{m}\right)$.

In order to show the converse inequality, it only remains to describe a P_{m}-irregular total k-labeling $\varphi: V\left(P_{n}\right) \cup E\left(P_{n}\right) \rightarrow\{1,2, \ldots, k\}$ as follows

$$
\begin{aligned}
\varphi\left(v_{i}\right) & =\left\lceil\frac{m-1+i}{2 m-1}\right\rceil, & & \text { for } i=1,2, \ldots, n, \\
\varphi\left(v_{i} v_{i+1}\right) & =\left\lceil\frac{i}{2 m-1}\right\rceil, & & \text { for } i=1,2, \ldots, n-1 .
\end{aligned}
$$

We can see that all vertex and edge labels are at most k. Every subpath P_{m} in P_{n} is of the form $P_{m}^{j}=v_{j} v_{j+1} \cdots v_{m+j-1}$, where $j=1,2, \ldots, n-m+1$. For the P_{m}-weight of the path $P_{m}^{j}, j=1,2, \ldots, n-m+1$, under the total labeling φ we get

$$
\begin{equation*}
w t_{\varphi}\left(P_{m}^{j}\right)=\sum_{v \in V\left(P_{m}^{j}\right)} \varphi(v)+\sum_{e \in E\left(P_{m}^{j}\right)} \varphi(e) . \tag{2}
\end{equation*}
$$

Since vertex labels and edge labels form non-decreasing sequences, it is enough to prove that $w t_{\varphi}\left(P_{m}^{j}\right)<w t_{\varphi}\left(P_{m}^{j+1}\right), j=1,2, \ldots, n-m$.

In fact, with respect to (2), we get

$$
\begin{equation*}
w t_{\varphi}\left(P_{m}^{j}\right)=\varphi\left(v_{j}\right)+\varphi\left(v_{j} v_{j+1}\right)+\sum_{i=j+1}^{m+j-1} \varphi\left(v_{i}\right)+\sum_{i=j+1}^{m+j-2} \varphi\left(v_{i} v_{i+1}\right) \tag{3}
\end{equation*}
$$

and
(4) $\quad w t_{\varphi}\left(P_{m}^{j+1}\right)=\sum_{i=j+1}^{m+j-1} \varphi\left(v_{i}\right)+\sum_{i=j+1}^{m+j-2} \varphi\left(v_{i} v_{i+1}\right)+\varphi\left(v_{m+j}\right)+\varphi\left(v_{m+j-1} v_{m+j}\right)$.

Because for every $j=1,2, \ldots, n-m$

$$
\begin{aligned}
\varphi\left(v_{m+j}\right)+\varphi\left(v_{m+j-1} v_{m+j}\right) & =\left\lceil\frac{2 m-1+j}{2 m-1}\right\rceil+\left\lceil\frac{m-1+j}{2 m-1}\right\rceil \\
& =1+\left\lceil\frac{j}{2 m-1}\right\rceil+\left\lceil\frac{m-1+j}{2 m-1}\right\rceil \\
& =1+\varphi\left(v_{j} v_{j+1}\right)+\varphi\left(v_{j}\right),
\end{aligned}
$$

then $w t_{\varphi}\left(P_{m}^{j}\right)<w t_{\varphi}\left(P_{m}^{j+1}\right)$ and we are done.
Theorem 4. Let $L_{n} \cong P_{n} \square P_{2}, n \geq 3$, be a ladder admitting a C_{m}-covering, $m=4,6$. Then

$$
\operatorname{ths}\left(L_{n}, C_{m}\right)=\left\lceil\frac{3 m+2 n}{4 m}\right\rceil .
$$

Proof. Let $L_{n} \cong P_{n} \square P_{2}, n \geq 3$, be a ladder with the vertex set $V\left(L_{n}\right)=\left\{v_{i}, u_{i}\right.$: $i=1,2, \ldots, n\}$ and the edge set $E\left(L_{n}\right)=\left\{v_{i} v_{i+1}, u_{i} u_{i+1}: i=1,2, \ldots, n-1\right\} \cup$ $\left\{v_{i} u_{i}: i=1,2, \ldots, n\right\}$. The ladder $L_{n}, n \geq 3$, admits a C_{4}-covering with exactly $n-1$ cycles C_{4} and a C_{6}-covering with exactly $n-2$ cycles C_{6}. With respect to Theorem 1 we have $\operatorname{ths}\left(L_{n}, C_{m}\right) \geq\left\lceil\frac{3 m+2 n}{4 m}\right\rceil$. Put $k=\left\lceil\frac{3 m+2 n}{4 m}\right\rceil$. To show that k is an upper bound for redthe total C_{m}-irregularity strength of L_{n} we define a C_{m}-irregular total k-labeling $\varphi_{m}: V\left(L_{n}\right) \cup E\left(L_{n}\right) \rightarrow\{1,2, \ldots, k\}, m=4,6$, in the following way:

$$
\begin{aligned}
\varphi_{4}\left(v_{i}\right) & =\left\lceil\frac{i+6}{8}\right\rceil, & & \text { for } i=1,2, \ldots, n, \\
\varphi_{4}\left(u_{i}\right) & =\left\lceil\frac{i+2}{8}\right\rceil, & & \text { for } i=1,2, \ldots, n, \\
\varphi_{4}\left(v_{i} v_{i+1}\right) & =\left\lceil\frac{i+1}{8}\right\rceil, & & \text { for } i=1,2, \ldots, n-1, \\
\varphi_{4}\left(u_{i} u_{i+1}\right) & =\left\lceil\frac{i}{8}\right\rceil, & & \text { for } i=1,2, \ldots, n-1, \\
\varphi_{4}\left(v_{i} u_{i}\right) & =\left\lceil\frac{i+4}{8}\right\rceil, & & \text { for } i=1,2, \ldots, n,
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi_{6}\left(v_{i}\right) & =\left\lceil\frac{i+10}{13}\right\rceil, & & \text { for } i=1,2, \ldots, n, \\
\varphi_{6}\left(u_{i}\right) & =\left\lceil\frac{i+7}{13}\right\rceil, & & \text { for } i=1,2, \ldots, n, \\
\varphi_{6}\left(v_{i} v_{i+1}\right) & =\left\lceil\frac{i+5}{13}\right\rceil, & & \text { for } i=1,2, \ldots, n-1, \\
\varphi_{6}\left(u_{i} u_{i+1}\right) & =\left\lceil\frac{i+3}{13}\right\rceil, & & \text { for } i=1,2, \ldots, n-1, \\
\varphi_{6}\left(v_{i} u_{i}\right) & =\left\lceil\frac{i}{13}\right\rceil, & & \text { for } i=1,2, \ldots, n .
\end{aligned}
$$

It is a routine matter to verify that under the labelings φ_{4} and φ_{6} all vertex and edge labels are at most k. For the C_{m}-weight of the cycle $C_{m}^{j}, j=1,2, \ldots, n-$ $\frac{m}{2}+1$, under the total labeling $\varphi_{m}, m=4,6$, we get

$$
\begin{equation*}
w t_{\varphi_{m}}\left(C_{m}^{j}\right)=\sum_{v \in V\left(C_{m}^{j}\right)} \varphi_{m}(v)+\sum_{e \in E\left(C_{m}^{j}\right)} \varphi_{m}(e) . \tag{5}
\end{equation*}
$$

One can see that vertex labels and edge labels form non-decreasing sequences, therefore it is enough to prove that $w t_{\varphi_{m}}\left(C_{m}^{j}\right)<w t_{\varphi_{m}}\left(C_{m}^{j+1}\right), j=1,2, \ldots, n-\frac{m}{2}$.

For every $j=1,2, \ldots, n-2$, we have

$$
\begin{aligned}
\varphi_{4}\left(v_{j+1} v_{j+2}\right) & +\varphi_{4}\left(v_{j+2}\right)+\varphi_{4}\left(u_{j+1} u_{j+2}\right)+\varphi_{4}\left(u_{j+2}\right)+\varphi_{4}\left(v_{j+2} u_{j+2}\right) \\
& =\left\lceil\frac{j+2}{8}\right\rceil+\left\lceil\frac{j+8}{8}\right\rceil+\left\lceil\frac{j+1}{8}\right\rceil+\left\lceil\frac{j+4}{8}\right\rceil+\left\lceil\frac{j+6}{8}\right\rceil \\
& =\varphi_{4}\left(u_{j}\right)+1+\varphi_{4}\left(u_{j} u_{j+1}\right)+\varphi_{4}\left(v_{j} v_{j+1}\right)+\varphi_{4}\left(v_{j} u_{j}\right)+\varphi_{4}\left(v_{j}\right),
\end{aligned}
$$

thus with respect to (5) $w t_{\varphi_{4}}\left(C_{4}^{j+1}\right)=1+w t_{\varphi_{4}}\left(C_{4}^{j}\right)$.
Because for every $j=1,2, \ldots, n-3$,

$$
\begin{aligned}
\varphi_{6}\left(v_{j+2} v_{j+3}\right) & +\varphi_{6}\left(v_{j+3}\right)+\varphi_{6}\left(u_{j+2} u_{j+3}\right)+\varphi_{6}\left(u_{j+3}\right)+\varphi_{6}\left(v_{j+3} u_{j+3}\right) \\
& =\left\lceil\frac{j+7}{13}\right\rceil+\left\lceil\frac{j+13}{13}\right\rceil+\left\lceil\frac{j+5}{13}\right\rceil+\left\lceil\frac{j+10}{13}\right\rceil+\left\lceil\frac{j+3}{13}\right\rceil \\
& =\varphi_{6}\left(u_{j}\right)+1+\varphi_{6}\left(v_{j} u_{j}\right)+\varphi_{6}\left(v_{j} v_{j+1}\right)+\varphi_{6}\left(v_{j}\right)+\varphi_{6}\left(u_{j} u_{j+1}\right),
\end{aligned}
$$

then by (5) $w t_{\varphi_{6}}\left(C_{6}^{j+1}\right)=1+w t_{\varphi_{6}}\left(C_{6}^{j}\right)$.
Thus, the labelings φ_{m}, for $m=4,6$, are desired C_{m}-irregular total k labelings.

Let G be a graph admitting H-covering. By the symbol $\mathbb{H}_{m}^{S}=\left(H_{1}^{S}, H_{2}^{S}\right.$, \ldots, H_{m}^{S}) we denote the set of all subgraphs of G isomorphic to H such that the graph $S, S \neq H$, is their maximum common subgraph. Thus $V(S) \subset V\left(H_{i}^{S}\right)$ and $E(S) \subset E\left(H_{i}^{S}\right)$ for every $i=1,2, \ldots, m$. Next theorem gives another lower bound of the total H-irregularity strength.
Theorem 5. Let G be a graph admitting an H-covering. Let $S_{i}, i=1,2, \ldots, z$, be all subgraphs of G such that S_{i} is a maximum common subgraph of $m_{i}, m_{i} \geq 2$, subgraphs of G isomorphic to H. Then

$$
\operatorname{ths}(G, H) \geq \max \left\{\left\lceil 1+\frac{m_{1}-1}{\left|V\left(H / S_{1}\right)\right|+\left|E\left(H / S_{1}\right)\right|}\right\rceil, \ldots,\left\lceil 1+\frac{m_{z}-1}{\left|V\left(H / S_{z}\right)\right|+\left|E\left(H / S_{z}\right)\right|}\right\rceil\right\} .
$$

Proof. Let G be a graph admitting an H-covering. Suppose $\mathbb{H}_{m_{i}}^{S_{i}}, i=1,2, \ldots$, z, is the set of all subgraphs $H_{1}^{S_{i}}, H_{2}^{S_{i}}, \ldots, H_{m_{i}}^{S_{i}}$, where each of them is isomorphic to H, and S_{i} is their maximum common subgraph. Let ψ be an optimal total labeling of G. The H-weights of the graphs $H_{1}^{S_{i}}, H_{2}^{S_{i}}, \ldots, H_{m_{i}}^{S_{i}}$

$$
w t\left(H_{j}^{S_{i}}\right)=\sum_{v \in V\left(S_{i}\right)} \psi(v)+\sum_{e \in E\left(S_{i}\right)} \psi(e)+\sum_{v \in V\left(H_{j}^{S_{i}} / S_{i}\right)} \psi(v)+\sum_{e \in E\left(H_{j}^{S_{i}} / S_{i}\right)} \psi(e),
$$

$j=1,2, \ldots, m_{i}$, are all distinct. Moreover, each of them contains the value $\sum_{v \in V\left(S_{i}\right)} \psi(v)+\sum_{e \in E\left(S_{i}\right)} \psi(e)$. The largest among these H-weights must be at least

$$
\sum_{v \in V\left(S_{i}\right)} \psi(v)+\sum_{e \in E\left(S_{i}\right)} \psi(e)+\left|V\left(H / S_{i}\right)\right|+\left|E\left(H / S_{i}\right)\right|+m_{i}-1 .
$$

This weight is the sum of at most $\left|V\left(H / S_{i}\right)\right|+\left|E\left(H / S_{i}\right)\right|$ labels (without labels from the set $\left.\left\{\psi(x): x \in V\left(S_{i}\right) \cup E\left(S_{i}\right)\right\}\right)$. So at least one label has the value at least $\left\lceil 1+\left(m_{i}-1\right) /\left(\left|V\left(H / S_{i}\right)\right|+\left|E\left(H / S_{i}\right)\right|\right)\right\rceil$, for $i=1,2, \ldots, z$. Thus for the total H-irregularity strength of graph G we have

$$
\operatorname{ths}(G, H) \geq \max \left\{\left\lceil 1+\frac{m_{1}-1}{\left|V\left(H / S_{1}\right)\right|+\left|E\left(H / S_{1}\right)\right|}\right\rceil, \ldots,\left\lceil 1+\frac{m_{z}-1}{\left|V\left(H / S_{z}\right)\right|+\left|E\left(H / S_{z}\right)\right|}\right\rceil\right\}
$$

If H is isomorphic to K_{2} then from Theorem 5 it follows the lower bound on the total edge irregularity strength given in [5].

Corollary 6. Let $G=(V, E)$ be a graph with maximum degree $\Delta(G)$. Then

$$
\operatorname{ths}\left(G, K_{2}\right)=\operatorname{tes}(G) \geq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil
$$

The lower bound in Theorem 5 is tight as can be seen from the next theorem.
Theorem 7. Let $F_{n}, n \geq 2$, be a fan on $n+1$ vertices. Then

$$
\operatorname{ths}\left(F_{n}, C_{3}\right)=\left\lceil\frac{n+3}{5}\right\rceil
$$

Proof. A fan $F_{n}, n \geq 2$, is a graph obtained by joining all vertices of path P_{n} to a new vertex, called the centre. Thus F_{n} contains $n+1$ vertices, say, $w, v_{1}, v_{2}, \ldots, v_{n}$ and $2 n-1$ edges $w v_{i}, i=1,2, \ldots, n$, and $v_{i} v_{i+1}, i=1,2, \ldots, n-1$. The fan F_{n} admits a C_{3}-covering with exactly $n-1$ cycles C_{3}. In view of the lower bound from Theorem 5 it suffices to prove the existence of a C_{3}-irregular total labeling $\psi: V\left(F_{n}\right) \cup E\left(F_{n}\right) \rightarrow\{1,2, \ldots,\lceil(n+3) / 5\rceil\}$ such that $w t_{\psi}\left(C_{3}^{j}\right) \neq w t_{\psi}\left(C_{3}^{i}\right)$ for every $i, j=1,2, \ldots, n-1, j \neq i$. We describe the irregular total labeling ψ in the following way:

$$
\begin{aligned}
\psi\left(v_{i}\right) & =\left\lceil\frac{i+3}{5}\right\rceil, & & \text { for } i=1,2, \ldots, n \\
\psi\left(v_{i} v_{i+1}\right) & =\left\lceil\frac{i+2}{5}\right\rceil, & & \text { for } i=1,2, \ldots, n-1 \\
\psi\left(w v_{i}\right) & =\left\lceil\frac{i}{5}\right\rceil, & & \text { for } i=1,2, \ldots, n, \\
\psi(w) & =1 & &
\end{aligned}
$$

Under the labeling ψ all vertex labels and edge labels are at most $\lceil(n+3) / 5\rceil$ and for C_{3}-weight of the cycle $C_{3}^{j}=v_{j} v_{j+1} w, j=1,2, \ldots, n-1$, we have

$$
\begin{equation*}
w t_{\psi}\left(C_{3}^{j}\right)=\psi\left(v_{j}\right)+\psi\left(v_{j} v_{j+1}\right)+\psi\left(v_{j+1}\right)+\psi\left(w v_{j}\right)+\psi\left(w v_{j+1}\right)+\psi(w) \tag{6}
\end{equation*}
$$

Since under the labeling ψ vertex labels and edge labels form non-decreasing sequences and for every $j=1,2, \ldots, n-2$,

$$
\begin{aligned}
\psi\left(v_{j+1} v_{j+2}\right)+\psi\left(v_{j+2}\right)+\psi\left(w v_{j+2}\right) & =\left\lceil\frac{j+3}{5}\right\rceil+\left\lceil\frac{j+5}{5}\right\rceil+\left\lceil\frac{j+2}{5}\right\rceil \\
& =\psi\left(v_{j}\right)+1+\psi\left(w v_{j}\right)+\psi\left(v_{j} v_{j+1}\right),
\end{aligned}
$$

with respect to (6) we get $w t_{\psi}\left(C_{3}^{j+1}\right)=1+w t_{\psi}\left(C_{3}^{j}\right)$. It proves that the irregular total labeling ψ has the required properties.

Next we will introduce an upper bound for the parameter ths (G, H).
Theorem 8. Let G be a graph admitting an H-covering. Then

$$
\operatorname{ths}(G, H) \leq 2^{|E(G)|-1}
$$

Proof. Let G be a graph admitting H-covering given by subgraphs H_{1}, H_{2}, \ldots, H_{t}. Let us denote the edges of G arbitrarily by the symbols $e_{1}, e_{2}, \ldots, e_{|E(G)|}$. We define a total $2^{|E(G)|-1}$-labeling f of G in the following way:

$$
\begin{aligned}
f(v) & =1, & & \text { for } v \in V(G), \\
f\left(e_{i}\right) & =2^{i-1}, & & \text { for } i=1,2, \ldots,|E(G)| .
\end{aligned}
$$

Let us define the labeling θ such that

$$
\theta_{i, j}= \begin{cases}1, & \text { if } e_{i} \in E\left(H_{j}\right) \\ 0, & \text { if } e_{i} \notin E\left(H_{j}\right)\end{cases}
$$

where $i=1,2, \ldots,|E(G)|, j=1,2, \ldots, t$.
The H-weights are the sums of all vertex labels and edge labels of vertices and edges in the given subgraph. Thus, for $j=1,2, \ldots, t$, we have

$$
\begin{align*}
w t_{f}\left(H^{j}\right) & =\sum_{v \in V\left(H^{j}\right)} f(v)+\sum_{e \in E\left(H^{j}\right)} f(e)=\sum_{v \in V\left(H^{j}\right)} 1+\sum_{e_{i} \in E\left(H^{j}\right)} 2^{i-1} \\
& =\left|V\left(H_{j}\right)\right|+\sum_{i=1}^{|E(G)|} \theta_{i, j} 2^{i-1} . \tag{7}
\end{align*}
$$

As $\left|V\left(H_{j}\right)\right|=|V(H)|$ for every $j=1,2, \ldots, t$, for proving that the H-weights are all distinct it is enough to show that the sums $\sum_{i=1}^{|E(G)|} \theta_{i, j} 2^{i-1}$ are distinct for every $j=1,2, \ldots, t$. However, this is evident if we note that the ordered $|E(G)|-$ tuple $\left(\theta_{|E(G)|, j} \theta_{|E(G)|-1, j} \cdots \theta_{2, j} \theta_{1, j}\right)$ corresponds to binary code representation of the sum (7). As different subgraphs isomorphic to H cannot have the same edge sets, we immediately get that the $|E(G)|$-tuples are different for different subgraphs.

In certain cases we can decrease the upper bound of ths (G, H) from Theorem 8 as follows.

Theorem 9. Let G be a graph admitting an H-covering given by t subgraphs isomorphic to H. If every subgraph $H_{i}, i=1,2, \ldots, t$, isomorphic to H contains at least one edge e such that $e \notin E\left(H_{j}\right)$ for every $j=1,2, \ldots, t, j \neq i$, then

$$
\operatorname{ths}(G, H) \leq t
$$

Proof. Let G be a graph admitting H-covering given by subgraphs H_{1}, H_{2}, \ldots, H_{t}. Let us denote by $e_{i}, i=1,2, \ldots, t$, the edge of H_{i} such that $e_{i} \notin E\left(H_{j}\right)$ for every $j=1,2, \ldots, t, j \neq i$.

We define a total t-labeling f of G in the following way:

$$
\begin{aligned}
f(v) & =1, & & \text { for } v \in V(G) \\
f(e) & =1, & & \text { for } e \in E(G) \backslash\left\{e_{1}, e_{2}, \ldots, e_{t}\right\} \\
f\left(e_{i}\right) & =i, & & \text { for } i=1,2, \ldots, t
\end{aligned}
$$

For the H-weight of the subgraph $H_{j}, j=1,2, \ldots, t$, we obtain

$$
\begin{aligned}
w t_{f}\left(H^{j}\right) & =\sum_{v \in V\left(H^{j}\right)} f(v)+\sum_{e \in E\left(H^{j}\right)} f(e) \\
& =\sum_{v \in V\left(H^{j}\right)} f(v)+\sum_{e \in E\left(H^{j}\right) \backslash\left\{e_{j}\right\}} f(e)+f\left(e_{j}\right) \\
& =\sum_{v \in V\left(H^{j}\right)} 1+\sum_{e \in E\left(H^{j}\right) \backslash\left\{e_{j}\right\}} 1+j=\left|V\left(H_{j}\right)\right|+\left(\left|E\left(H_{j}\right)\right|-1\right)+j
\end{aligned}
$$

As $\left|V\left(H_{j}\right)\right|=|V(H)|$ and $\left|E\left(H_{j}\right)\right|=|E(H)|$ for every $j=1,2, \ldots, t$, we get

$$
w t_{f}\left(H^{j}\right)=|V(H)|+|E(H)|-1+j
$$

which means that all H-weights are distinct. This concludes the proof.

3. CONCLUSION

In this paper we introduced a new graph parameter, the total H-irregularity strength, $\operatorname{ths}(G, H)$, as a generalization of the well-known total edge irregularity strength. We proved that for every graph G admitting an H-covering given by t subgraphs isomorphic to H, ths $(G, H) \geq\lceil 1+(t-1) /(|V(H)|+|E(H)|)\rceil$ and the sharpness of this bound is reached for the following graphs: the path P_{n} covered by paths $P_{m}, m \leq n$, and the ladder covered by a cycle.

Further, we proved that if $S_{i}, i=1,2, \ldots, z$, are all subgraphs of a graph G admitting an H-covering such that S_{i} is a maximum common subgraph of $m_{i}, m_{i} \geq 2$, subgraphs of G isomorphic to H, then ths $(G, H) \geq \max \left\{\left\lceil 1+\left(m_{1}-\right.\right.\right.$ 1) $\left.\left./\left(\left|V\left(H / S_{1}\right)\right|+\left|E\left(H / S_{1}\right)\right|\right)\right\rceil, \ldots,\left\lceil 1+\left(m_{z}-1\right) /\left(\left|V\left(H / S_{z}\right)\right|+\left|E\left(H / S_{z}\right)\right|\right)\right\rceil\right\}$. The tightness of this bound was proved for the fan F_{n} covered by cycles C_{3}.

We conclude with the following conjecture which is a generalization of the conjecture posed by Ivančo and Jendrol' [14].

Conjecture 10. Let $S_{i}, i=1,2, \ldots, z$, be all subgraphs of G such that S_{i} is a maximum common subgraph of $m_{i}, m_{i} \geq 2$, subgraphs of G isomorphic to H. Then for every graph G admitting an H-covering given by t subgraphs isomorphic to H, except when G is isomorphic to K_{5} and H is isomorphic to K_{2}, it holds

$$
\begin{aligned}
\operatorname{ths}(G, H)=\max \{ & {\left[1+\frac{t-1}{|V(H)|+|E(H)|}\right],\left\lceil 1+\frac{m_{1}-1}{\mid V\left(H / S_{1}| |+\left|E\left(H / S_{1}\right)\right|\right.}\right], \ldots, } \\
& \left\lceil\left. 1+\frac{m_{z}-1}{\left|V\left(H / S_{z}\right)\right|+\left|E\left(H / S_{z}\right)\right|} \right\rvert\,\right\} .
\end{aligned}
$$

Acknowledgement

The research for this article was supported by APVV-15-0116.

References

[1] A. Ahmad, M. Bača and M.K. Siddiqui, On edge irregular total labeling of categorical product of two cycles, Theory Comput. Syst. 54 (2014) 1-12. doi:10.1007/s00224-013-9470-3
[2] M. Aigner and E. Triesch, Irregular assignments of trees and forests, SIAM J. Discrete Math. 3 (1990) 439-449. doi:10.1137/0403038
[3] D. Amar and O. Togni, Irregularity strength of trees, Discrete Math. 190 (1998) 15-38.
doi:10.1016/S0012-365X(98)00112-5
[4] M. Anholcer and C. Palmer, Irregular labellings of circulant graphs, Discrete Math. 312 (2012) 3461-3466. doi:10.1016/j.disc.2012.06.017
[5] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378-1388. doi:10.1016/j.disc.2005.11.075
[6] M. Bača and M.K. Siddiqui, Total edge irregularity strength of generalized prism, Appl. Math. Comput. 235 (2014) 168-173.
doi:10.1016/j.amc.2014.03.001
[7] T. Bohman and D. Kravitz, On the irregularity strength of trees, J. Graph Theory 45 (2004) 241-254. doi:10.1002/jgt. 10158
[8] S. Brandt, J. Miškuf and D. Rautenbach, On a conjecture about edge irregular total labellings, J. Graph Theory 57 (2008) 333-343.
doi:10.1002/jgt. 20287
[9] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.
[10] R.J. Faudree, M.S. Jacobson, J. Lehel and R.H. Schlep, Irregular networks, regular graphs and integer matrices with distinct row and column sums, Discrete Math. 76 (1988) 223-240. doi:10.1016/0012-365X(89)90321-X
[11] A. Frieze, R.J. Gould, M. Karoński and F. Pfender, On graph irregularity strength, J. Graph Theory 41 (2002) 120-137. doi:10.1002/jgt. 10056
[12] J.A. Gallian, Graph labeling, Electron. J. Combin. 17 (2014) 1-389.
[13] K.M.M. Haque, Irregular total labellings of generalized Petersen graphs, Theory Comput. Syst. 50 (2012) 537-544. doi:10.1007/s00224-011-9350-7
[14] J. Ivančo and S. Jendrol', Total edge irregularity strength of trees, Discuss. Math. Graph Theory 26 (2006) 449-456. doi:10.7151/dmgt. 1337
[15] S. Jendrol', J. Miškuf and R. Soták, Total edge irregularity strength of complete and complete bipartite graphs, Electron. Notes Discrete Math. 28 (2007) 281-285. doi:10.1016/j.endm.2007.01.041
[16] S. Jendrol', J. Miškuf and R. Soták, Total edge irregularity strength of complete graphs and complete bipartite graphs, Discrete Math. 310 (2010) 400-407. doi:10.1016/j.disc.2009.03.006
[17] M. Kalkowski, M. Karoński and F. Pfender, A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math. 25 (2011) 1319-1321. doi:10.1137/090774112
[18] P. Majerski and J. Przybyło, On the irregularity strength of dense graphs, SIAM J. Discrete Math. 28 (2014) 197-205. doi:10.1137/120886650
[19] T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math. 13 (2000) 313-323.
doi:10.1137/S0895480196314291
[20] Nurdin, A.N.M. Salman and E.T. Baskoro, The total edge-irregular strengths of the corona product of paths with some graphs, J. Combin. Math. Combin. Comput. 65 (2008) 163-175.

Received 2 May 2016
Accepted 1 September 2016

[^0]: ${ }^{1}$ Corresponding author.

