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Abstract

New graph characteristic, the total H-irregularity strength of a graph,
is introduced. Estimations on this parameter are obtained and for some
families of graphs the precise values of this parameter are proved.
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1. Introduction

Let G be a connected, simple and undirected graph with vertex set V (G) and
edge set E(G). A labeling of a graph is a map that carries graph elements to the
numbers (usually to the positive or non-negative integers). If the domain is the
vertex-set or the edge-set, the labelings are called respectively vertex labelings

1Corresponding author.
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or edge labelings. If the domain is V (G) ∪ E(G) then we call the labeling total

labeling. The most complete recent survey of graph labelings is [12].
For an edge k-labeling δ : E(G) → {1, 2, . . . , k} the associated weight of

a vertex x ∈ V (G) is wδ(x) =
∑

xy∈E(G) δ(xy), where the sum is over all vertices
y adjacent to x.

Chartrand, Jacobson, Lehel, Oellermann, Ruiz and Saba in [9] introduced
edge k-labeling δ of a graph G such that wδ(x) 6= wδ(y) for all vertices x, y ∈ V (G)
with x 6= y. Such labelings are called irregular assignments and the irregularity

strength s(G) of a graph G is known as the minimum k for which G has an ir-
regular assignment using labels at most k. The irregularity strength s(G) can be
interpreted as the smallest integer k for which G can be turned into a multigraph
G′ by replacing each edge by a set of at most k parallel edges, such that the
degrees of the vertices in G′ are all different.

Finding the irregularity strength of a graph seems to be hard even for graphs
with simple structure, see [2, 3, 4, 7, 10, 11, 17, 18, 19].

Motivated by irregularity strengths, Bača, Jendrol’, Miller and Ryan in [5]
defined the total labeling ϕ : V (G)∪E(G) → {1, 2, . . . , k} to be an edge irregular

total k-labeling of the graph G if for every two different edges xy and x′y′ of G
one has

wtϕ(xy) = ϕ(x) + ϕ(xy) + ϕ(y) 6= wtϕ(x′y′) = ϕ(x′) + ϕ(x′y′) + ϕ(y′).

The minimum k for which the graph G has an edge irregular total k-labeling is
called the total edge irregularity strength of the graph G, tes(G). The total edge
irregularity strength is an invariant analogous to the irregularity strength.

A lower bound on the total edge irregularity strength of a graph G is given
in [5]

(1) tes(G) ≥ max

{⌈

|E(G)| + 2

3

⌉

,

⌈

∆(G) + 1

2

⌉}

,

where ∆(G) is the maximum degree of G.
Ivančo and Jendrol’ [14] posed a conjecture that for an arbitrary graph G dif-

ferent fromK5 and with maximum degree ∆(G), tes(G) = max {⌈(|E(G)| + 2)/3⌉ ,
⌈(∆(G) + 1)/2⌉} . This conjecture has been verified for complete graphs and com-
plete bipartite graphs in [15] and [16], for the categorical product of two cycles
in [1], for generalized Petersen graphs in [13], for generalized prisms in [6], for
corona product of a path with certain graphs in [20] and for large dense graphs
with (|E(G)| + 2)/3 ≤ (∆(G) + 1)/2 in [8].

An edge-covering of G is a family of subgraphs H1, H2, . . . , Ht such that each
edge of E(G) belongs to at least one of the subgraphs Hi, i = 1, 2, . . . , t. Then it
is said that G admits an (H1, H2, . . . , Ht)-(edge) covering. If every subgraph Hi

is isomorphic to a given graph H, then the graph G admits an H-covering.
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Let G be a graph admitting H-covering. For the subgraph H ⊆ G under the
total k-labeling ϕ, we define the associated H-weight as

wtϕ(H) =
∑

v∈V (H)

ϕ(v) +
∑

e∈E(H)

ϕ(e).

A total k-labeling ϕ is called an H-irregular total k-labeling of the graph G if for
every two different subgraphs H ′ and H ′′ isomorphic to H there is wtϕ(H ′) 6=
wtϕ(H ′′). The total H-irregularity strength of a graph G, denoted ths(G,H), is
the smallest integer k such that G has an H-irregular total k-labeling. If H is
isomorphic to K2, then the K2-irregular total k-labeling is isomorphic to the edge
irregular total k-labeling and thus the total K2-irregularity strength of a graph G
is equivalent to the total edge irregularity strength, that is ths(G,K2) = tes(G).

Analogously, we can define H-irregular edge k-labeling and H-irregular ver-
tex k-labeling.

Let G be a graph admitting H-covering. For the subgraph H ⊆ G under the
edge k-labeling β, β : E(G) → {1, 2, . . . , k}, we define the associated H-weight
as

wtβ(H) =
∑

e∈E(H)

β(e).

An edge k-labeling β is called an H-irregular edge k-labeling of the graph G if
for every two different subgraphs H ′ and H ′′ isomorphic to H there is wtβ(H ′) 6=
wtβ(H ′′). The edge H-irregularity strength of a graph G, denoted ehs(G,H), is
the smallest integer k such that G has an H-irregular edge k-labeling.

Let G be a graph admitting H-covering. For the subgraph H ⊆ G under the
vertex k-labeling α, α : V (G) → {1, 2, . . . , k}, we define the associated H-weight
as

wtα(H) =
∑

v∈V (H)

α(v).

A vertex k-labeling α is called an H-irregular vertex k-labeling of the graph G if
for every two different subgraphs H ′ and H ′′ isomorphic to H there is wtα(H ′) 6=
wtα(H ′′). The vertex H-irregularity strength of a graph G, denoted vhs(G,H),
is the smallest integer k such that G has an H-irregular vertex k-labeling. Note
that vhs(G,H) = ∞ if there exist two subgraphs in G isomorphic to H that have
the same vertex sets. Evidently, if there exist two subgraphs Hi, Hj , i 6= j, such
that V (Hi) = V (Hj) then

wtα(Hi) =
∑

v∈V (Hi)

α(v) =
∑

v∈V (Hj)

α(v) = wtα(Hj).

In the paper, we estimate the bounds of the parameter ths(G,H) and deter-
mine the exact values of the total H-irregularity strength for several families of
graphs, namely, paths, ladders and fans.
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2. Results

Our first result gives a lower bound of the total H-irregularity strength.

Theorem 1. Let G be a graph admitting an H-covering given by t subgraphs

isomorphic to H. Then

ths(G,H) ≥

⌈

1 +
t− 1

|V (H)| + |E(H)|

⌉

.

Proof. Let G be a graph that admits an H-covering given by t subgraphs iso-
morphic to H. Assume that ϕ is an H-irregular total k-labeling of a graph G with
ths(G,H) = k. The smallest weight of a subgraph H under the total k-labeling
is at least |V (H)| + |E(H)| and the largest H-weight admits the value at most
(|V (H)| + |E(H)|)k. Since H-covering of G is given by t subgraphs, we get

|V (H)| + |E(H)| + t− 1 ≤ (|V (H)| + |E(H)|)k

and

k ≥

⌈

1 +
t− 1

|V (H)| + |E(H)|

⌉

.

If H is isomorphic to K2, then immediately from Theorem 1 it follows the
lower bound on the total edge irregularity strength given in [5].

Corollary 2. Let G = (V,E) be a graph having non-empty edge set. Then

ths(G,K2) = tes(G) ≥

⌈

|E(G)| + 2

3

⌉

.

The lower bound in Theorem 1 is tight as can be seen from the following
theorems which determine the exact values of the total H-irregularity strength
for paths and ladders.

Theorem 3. Let n,m, 2 ≤ m ≤ n, be positive integers. Then

ths(Pn, Pm) =

⌈

m+ n− 1

2m− 1

⌉

.

Proof. Let Pn be a path with the vertex set V (Pn) = {vi : i = 1, 2, . . . , n}
and the edge set E(Pn) = {vivi+1 : i = 1, 2, . . . , n − 1}. Clearly, for every m,
2 ≤ m ≤ n, the path Pn admits a Pm-covering with exactly n−m+ 1 subpaths.

Put k =
⌈

m+n−1
2m−1

⌉

. According to Theorem 1, k is the lower bound of ths(Pn, Pm).
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In order to show the converse inequality, it only remains to describe a Pm-irregular
total k-labeling ϕ : V (Pn) ∪ E(Pn) → {1, 2, . . . , k} as follows

ϕ(vi) =

⌈

m− 1 + i

2m− 1

⌉

, for i = 1, 2, . . . , n,

ϕ(vivi+1) =

⌈

i

2m− 1

⌉

, for i = 1, 2, . . . , n− 1.

We can see that all vertex and edge labels are at most k. Every subpath Pm
in Pn is of the form P jm = vjvj+1 · · · vm+j−1, where j = 1, 2, . . . , n −m + 1. For

the Pm-weight of the path P jm, j = 1, 2, . . . , n −m + 1, under the total labeling
ϕ we get

wtϕ(P jm) =
∑

v∈V (P j
m)

ϕ(v) +
∑

e∈E(P j
m)

ϕ(e).(2)

Since vertex labels and edge labels form non-decreasing sequences, it is enough
to prove that wtϕ(P jm) < wtϕ(P j+1

m ), j = 1, 2, . . . , n−m.

In fact, with respect to (2), we get

wtϕ(P jm) = ϕ(vj) + ϕ(vjvj+1) +

m+j−1
∑

i=j+1

ϕ(vi) +

m+j−2
∑

i=j+1

ϕ(vivi+1)(3)

and

wtϕ(P j+1
m ) =

m+j−1
∑

i=j+1

ϕ(vi) +

m+j−2
∑

i=j+1

ϕ(vivi+1) + ϕ(vm+j) + ϕ(vm+j−1vm+j).(4)

Because for every j = 1, 2, . . . , n−m

ϕ(vm+j) + ϕ(vm+j−1vm+j) =

⌈

2m− 1 + j

2m− 1

⌉

+

⌈

m− 1 + j

2m− 1

⌉

= 1 +

⌈

j

2m− 1

⌉

+

⌈

m− 1 + j

2m− 1

⌉

= 1 + ϕ(vjvj+1) + ϕ(vj),

then wtϕ(P jm) < wtϕ(P j+1
m ) and we are done.

Theorem 4. Let Ln ∼= Pn�P2, n ≥ 3, be a ladder admitting a Cm-covering,
m = 4, 6. Then

ths(Ln, Cm) =

⌈

3m+ 2n

4m

⌉

.
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Proof. Let Ln ∼= Pn�P2, n ≥ 3, be a ladder with the vertex set V (Ln) = {vi, ui :
i = 1, 2, . . . , n} and the edge set E(Ln) = {vivi+1, uiui+1 : i = 1, 2, . . . , n − 1} ∪
{viui : i = 1, 2, . . . , n}. The ladder Ln, n ≥ 3, admits a C4-covering with exactly
n− 1 cycles C4 and a C6-covering with exactly n− 2 cycles C6. With respect to
Theorem 1 we have ths(Ln, Cm) ≥

⌈

3m+2n
4m

⌉

. Put k =
⌈

3m+2n
4m

⌉

. To show that
k is an upper bound for redthe total Cm-irregularity strength of Ln we define a
Cm-irregular total k-labeling ϕm : V (Ln) ∪ E(Ln) → {1, 2, . . . , k}, m = 4, 6, in
the following way:

ϕ4(vi) =

⌈

i+ 6

8

⌉

, for i = 1, 2, . . . , n,

ϕ4(ui) =

⌈

i+ 2

8

⌉

, for i = 1, 2, . . . , n,

ϕ4(vivi+1) =

⌈

i+ 1

8

⌉

, for i = 1, 2, . . . , n− 1,

ϕ4(uiui+1) =

⌈

i

8

⌉

, for i = 1, 2, . . . , n− 1,

ϕ4(viui) =

⌈

i+ 4

8

⌉

, for i = 1, 2, . . . , n,

and

ϕ6(vi) =

⌈

i+ 10

13

⌉

, for i = 1, 2, . . . , n,

ϕ6(ui) =

⌈

i+ 7

13

⌉

, for i = 1, 2, . . . , n,

ϕ6(vivi+1) =

⌈

i+ 5

13

⌉

, for i = 1, 2, . . . , n− 1,

ϕ6(uiui+1) =

⌈

i+ 3

13

⌉

, for i = 1, 2, . . . , n− 1,

ϕ6(viui) =

⌈

i

13

⌉

, for i = 1, 2, . . . , n.

It is a routine matter to verify that under the labelings ϕ4 and ϕ6 all vertex and
edge labels are at most k. For the Cm-weight of the cycle Cjm, j = 1, 2, . . . , n −
m
2 + 1, under the total labeling ϕm, m = 4, 6, we get

wtϕm(Cjm) =
∑

v∈V (Cj
m)

ϕm(v) +
∑

e∈E(Cj
m)

ϕm(e).(5)

One can see that vertex labels and edge labels form non-decreasing sequences,
therefore it is enough to prove that wtϕm(Cjm) < wtϕm(Cj+1

m ), j = 1, 2, . . . , n−m
2 .
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For every j = 1, 2, . . . , n− 2, we have

ϕ4(vj+1vj+2) + ϕ4(vj+2) + ϕ4(uj+1uj+2) + ϕ4(uj+2) + ϕ4(vj+2uj+2)

=

⌈

j + 2

8

⌉

+

⌈

j + 8

8

⌉

+

⌈

j + 1

8

⌉

+

⌈

j + 4

8

⌉

+

⌈

j + 6

8

⌉

= ϕ4(uj) + 1 + ϕ4(ujuj+1) + ϕ4(vjvj+1) + ϕ4(vjuj) + ϕ4(vj),

thus with respect to (5) wtϕ4
(Cj+1

4 ) = 1 + wtϕ4
(Cj4).

Because for every j = 1, 2, . . . , n− 3,

ϕ6(vj+2vj+3) + ϕ6(vj+3) + ϕ6(uj+2uj+3) + ϕ6(uj+3) + ϕ6(vj+3uj+3)

=

⌈

j + 7

13

⌉

+

⌈

j + 13

13

⌉

+

⌈

j + 5

13

⌉

+

⌈

j + 10

13

⌉

+

⌈

j + 3

13

⌉

= ϕ6(uj) + 1 + ϕ6(vjuj) + ϕ6(vjvj+1) + ϕ6(vj) + ϕ6(ujuj+1),

then by (5) wtϕ6
(Cj+1

6 ) = 1 + wtϕ6
(Cj6).

Thus, the labelings ϕm, for m = 4, 6, are desired Cm-irregular total k-
labelings.

Let G be a graph admitting H-covering. By the symbol HS
m =

(

HS
1 , H

S
2 ,

. . . , HS
m

)

we denote the set of all subgraphs of G isomorphic to H such that the
graph S, S 6∼= H, is their maximum common subgraph. Thus V (S) ⊂ V

(

HS
i

)

and E(S) ⊂ E
(

HS
i

)

for every i = 1, 2, . . . ,m. Next theorem gives another lower
bound of the total H-irregularity strength.

Theorem 5. Let G be a graph admitting an H-covering. Let Si, i = 1, 2, . . . , z,
be all subgraphs of G such that Si is a maximum common subgraph of mi, mi ≥ 2,
subgraphs of G isomorphic to H. Then

ths(G,H) ≥ max
{⌈

1 + m1−1
|V (H/S1)|+|E(H/S1)|

⌉

, . . . ,
⌈

1 + mz−1
|V (H/Sz)|+|E(H/Sz)|

⌉}

.

Proof. Let G be a graph admitting an H-covering. Suppose H
Si
mi

, i = 1, 2, . . . ,

z, is the set of all subgraphs HSi

1 , H
Si

2 , . . . , H
Si
mi

, where each of them is isomorphic
to H, and Si is their maximum common subgraph. Let ψ be an optimal total
labeling of G. The H-weights of the graphs HSi

1 , H
Si

2 , . . . , H
Si
mi

wt
(

HSi

j

)

=
∑

v∈V (Si)

ψ(v) +
∑

e∈E(Si)

ψ(e) +
∑

v∈V
(

H
Si
j /Si

)

ψ(v) +
∑

e∈E
(

H
Si
j /Si

)

ψ(e),

j = 1, 2, . . . ,mi, are all distinct. Moreover, each of them contains the value
∑

v∈V (Si)
ψ(v) +

∑

e∈E(Si)
ψ(e). The largest among these H-weights must be at

least
∑

v∈V (Si)

ψ(v) +
∑

e∈E(Si)

ψ(e) + |V (H/Si)| + |E(H/Si)| +mi − 1.



1074 F. Ashraf, M. Bača, M. Lascsáková and ...

This weight is the sum of at most |V (H/Si)| + |E(H/Si)| labels (without labels
from the set {ψ(x) : x ∈ V (Si) ∪ E(Si)}). So at least one label has the value at
least ⌈1 + (mi − 1)/(|V (H/Si)| + |E(H/Si)|)⌉, for i = 1, 2, . . . , z. Thus for the
total H-irregularity strength of graph G we have

ths(G,H) ≥ max
{⌈

1 + m1−1
|V (H/S1)|+|E(H/S1)|

⌉

, . . . ,
⌈

1 + mz−1
|V (H/Sz)|+|E(H/Sz)|

⌉}

.

If H is isomorphic to K2 then from Theorem 5 it follows the lower bound on
the total edge irregularity strength given in [5].

Corollary 6. Let G = (V,E) be a graph with maximum degree ∆(G). Then

ths(G,K2) = tes(G) ≥

⌈

∆(G) + 1

2

⌉

.

The lower bound in Theorem 5 is tight as can be seen from the next theorem.

Theorem 7. Let Fn, n ≥ 2, be a fan on n+ 1 vertices. Then

ths(Fn, C3) =

⌈

n+ 3

5

⌉

.

Proof. A fan Fn, n ≥ 2, is a graph obtained by joining all vertices of path Pn to a
new vertex, called the centre. Thus Fn contains n+1 vertices, say, w, v1, v2, . . . , vn
and 2n− 1 edges wvi, i = 1, 2, . . . , n, and vivi+1, i = 1, 2, . . . , n− 1. The fan Fn
admits a C3-covering with exactly n − 1 cycles C3. In view of the lower bound
from Theorem 5 it suffices to prove the existence of a C3-irregular total labeling
ψ : V (Fn) ∪ E(Fn) → {1, 2, . . . , ⌈(n+ 3)/5⌉} such that wtψ(Cj3) 6= wtψ(Ci3) for
every i, j = 1, 2, . . . , n − 1, j 6= i. We describe the irregular total labeling ψ in
the following way:

ψ(vi) =

⌈

i+ 3

5

⌉

, for i = 1, 2, . . . , n,

ψ(vivi+1) =

⌈

i+ 2

5

⌉

, for i = 1, 2, . . . , n− 1,

ψ(wvi) =

⌈

i

5

⌉

, for i = 1, 2, . . . , n,

ψ(w) = 1.

Under the labeling ψ all vertex labels and edge labels are at most ⌈(n+ 3)/5⌉
and for C3-weight of the cycle Cj3 = vjvj+1w, j = 1, 2, . . . , n− 1, we have

wtψ(Cj3) = ψ(vj) + ψ(vjvj+1) + ψ(vj+1) + ψ(wvj) + ψ(wvj+1) + ψ(w).(6)
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Since under the labeling ψ vertex labels and edge labels form non-decreasing
sequences and for every j = 1, 2, . . . , n− 2,

ψ(vj+1vj+2) + ψ(vj+2) + ψ(wvj+2) =

⌈

j + 3

5

⌉

+

⌈

j + 5

5

⌉

+

⌈

j + 2

5

⌉

= ψ(vj) + 1 + ψ(wvj) + ψ(vjvj+1),

with respect to (6) we get wtψ(Cj+1
3 ) = 1 +wtψ(Cj3). It proves that the irregular

total labeling ψ has the required properties.

Next we will introduce an upper bound for the parameter ths(G,H).

Theorem 8. Let G be a graph admitting an H-covering. Then

ths(G,H) ≤ 2|E(G)|−1.

Proof. Let G be a graph admitting H-covering given by subgraphs H1, H2, . . . ,
Ht. Let us denote the edges of G arbitrarily by the symbols e1, e2, . . . , e|E(G)|.

We define a total 2|E(G)|−1-labeling f of G in the following way:

f(v) = 1, for v ∈ V (G),

f(ei) = 2i−1, for i = 1, 2, . . . , |E(G)|.

Let us define the labeling θ such that

θi,j =

{

1, if ei ∈ E(Hj),

0, if ei 6∈ E(Hj),

where i = 1, 2, . . . , |E(G)|, j = 1, 2, . . . , t.
The H-weights are the sums of all vertex labels and edge labels of vertices

and edges in the given subgraph. Thus, for j = 1, 2, . . . , t, we have

wtf
(

Hj
)

=
∑

v∈V (Hj)

f(v) +
∑

e∈E(Hj)

f(e) =
∑

v∈V (Hj)

1 +
∑

ei∈E(Hj)

2i−1

= |V (Hj)| +

|E(G)|
∑

i=1

θi,j2
i−1.(7)

As |V (Hj)| = |V (H)| for every j = 1, 2, . . . , t, for proving that the H-weights are

all distinct it is enough to show that the sums
∑|E(G)|

i=1 θi,j2
i−1 are distinct for

every j = 1, 2, . . . , t. However, this is evident if we note that the ordered |E(G)|-
tuple (θ|E(G)|,jθ|E(G)|−1,j · · · θ2,jθ1,j) corresponds to binary code representation of
the sum (7). As different subgraphs isomorphic to H cannot have the same
edge sets, we immediately get that the |E(G)|-tuples are different for different
subgraphs.
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In certain cases we can decrease the upper bound of ths(G,H) from Theorem
8 as follows.

Theorem 9. Let G be a graph admitting an H-covering given by t subgraphs

isomorphic to H. If every subgraph Hi, i = 1, 2, . . . , t, isomorphic to H contains

at least one edge e such that e 6∈ E(Hj) for every j = 1, 2, . . . , t, j 6= i, then

ths(G,H) ≤ t.

Proof. Let G be a graph admitting H-covering given by subgraphs H1, H2, . . . ,
Ht. Let us denote by ei, i = 1, 2, . . . , t, the edge of Hi such that ei /∈ E(Hj) for
every j = 1, 2, . . . , t, j 6= i.

We define a total t-labeling f of G in the following way:

f(v) = 1, for v ∈ V (G),

f(e) = 1, for e ∈ E(G) \ {e1, e2, . . . , et},

f(ei) = i, for i = 1, 2, . . . , t.

For the H-weight of the subgraph Hj , j = 1, 2, . . . , t, we obtain

wtf (Hj) =
∑

v∈V (Hj)

f(v) +
∑

e∈E(Hj)

f(e)

=
∑

v∈V (Hj)

f(v) +
∑

e∈E(Hj)\{ej}

f(e) + f(ej)

=
∑

v∈V (Hj)

1 +
∑

e∈E(Hj)\{ej}

1 + j = |V (Hj)| + (|E(Hj)| − 1) + j.

As |V (Hj)| = |V (H)| and |E(Hj)| = |E(H)| for every j = 1, 2, . . . , t, we get

wtf (Hj) = |V (H)| + |E(H)| − 1 + j,

which means that all H-weights are distinct. This concludes the proof.

3. Conclusion

In this paper we introduced a new graph parameter, the total H-irregularity
strength, ths(G,H), as a generalization of the well-known total edge irregularity
strength. We proved that for every graph G admitting an H-covering given by
t subgraphs isomorphic to H, ths(G,H) ≥ ⌈1 + (t− 1)/(|V (H)| + |E(H)|)⌉ and
the sharpness of this bound is reached for the following graphs: the path Pn
covered by paths Pm, m ≤ n, and the ladder covered by a cycle.
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Further, we proved that if Si, i = 1, 2, . . . , z, are all subgraphs of a graph
G admitting an H-covering such that Si is a maximum common subgraph of
mi, mi ≥ 2, subgraphs of G isomorphic to H, then ths(G,H) ≥ max{⌈1 + (m1 −
1)/(|V (H/S1)|+ |E(H/S1)|)⌉, . . . , ⌈1+(mz−1)/(|V (H/Sz)|+ |E(H/Sz)|)⌉}. The
tightness of this bound was proved for the fan Fn covered by cycles C3.

We conclude with the following conjecture which is a generalization of the
conjecture posed by Ivančo and Jendrol’ [14].

Conjecture 10. Let Si, i = 1, 2, . . . , z, be all subgraphs of G such that Si is

a maximum common subgraph of mi, mi ≥ 2, subgraphs of G isomorphic to H.

Then for every graph G admitting an H-covering given by t subgraphs isomorphic

to H, except when G is isomorphic to K5 and H is isomorphic to K2, it holds

ths(G,H) = max
{⌈

1 + t−1
|V (H)|+|E(H)|

⌉

,
⌈

1 + m1−1
|V (H/S1)|+|E(H/S1)|

⌉

, . . . ,

⌈

1 + mz−1
|V (H/Sz)|+|E(H/Sz)|

⌉}

.

Acknowledgement

The research for this article was supported by APVV-15-0116.

References
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