LABELED EMBEDDING OF ($\boldsymbol{n}, \boldsymbol{n}-2$)-GRAPHS IN THEIR COMPLEMENTS

M.-A. Tahraoui, E. Duchêne, H. Kheddouci
Université de Lyon, CNRS, Université Lyon 1, LIRIS
UMR5205, F-69622, France
e-mail: eric.duchene@univ-lyon1.fr

AND
M. Woźniak

Department of Discrete Mathematics
Faculty of Applied Mathematics
AGH University of Science and Technology, Kraków, Poland

Abstract

Graph packing generally deals with unlabeled graphs. In [4], the authors have introduced a new variant of the graph packing problem, called the labeled packing of a graph. This problem has recently been studied on trees [M.A. Tahraoui, E. Duchêne and H. Kheddouci, Labeled 2-packings of trees, Discrete Math. 338 (2015) 816-824] and cycles [E. Duchêne, H. Kheddouci, R.J. Nowakowski and M.A. Tahraoui, Labeled packing of graphs, Australas. J. Combin. 57 (2013) 109-126]. In this note, we present a lower bound on the labeled packing number of any ($n, n-2$)-graph into K_{n}. This result improves the bound given by Woźniak in [Embedding graphs of small size, Discrete Appl. Math. 51 (1994) 233-241].

Keywords: packing of graphs, labeled packing, permutation.
2010 Mathematics Subject Classification: 05C70.

1. Context and Definitions

Graph theoretical definitions

All graphs considered in this paper are finite, undirected, without loops or multiple edges. If T is a rooted tree of order n, we define an end vertex as a vertex
which does not have any son, and a leaf-parent as a vertex whose all of its sons are end vertices.

Given a positive integer n, the graphs K_{n}, P_{n} and C_{n} will denote respectively the complete graph, the path and the cycle on n vertices. For a graph G, we will use $V(G)$ and $E(G)$ to denote its vertex and edge sets respectively. Given $V^{\prime} \subset V$, the subgraph $G\left[V^{\prime}\right]$ denotes the subgraph of G induced by V^{\prime}, i.e., $E\left(G\left[V^{\prime}\right]\right)$ contains all the edges of E which have both extremities in V^{\prime}. If a graph G has order n and size m, we say that G is an (n, m)-graph.

An independent set of G is a subset of vertices $X \subseteq V$, such that no two vertices in X are adjacent. An independent set is said to be maximal if no independent set properly contains it. An independent set of maximum cardinality is called a maximum independent set. For undefined terms, we refer the reader to [2]. A permutation σ is a one-to-one mapping of $\{1, \ldots, n\}$ into itself. We say that a permutation σ is fixed-point-free if $\sigma(x) \neq x$ for all x of $\{1, \ldots, n\}$.

The graph packing problem

The graph packing problem was introduced by Bollobás and Eldridge [1] and Sauer and Spencer [5] in the late 1970s. Let G_{1}, \ldots, G_{k} be k graphs of order n. We say that there is a packing of G_{1}, \ldots, G_{k} (into the complete graph K_{n}) if there exist bijections $\sigma_{i}: V\left(G_{i}\right) \longrightarrow V\left(K_{n}\right)$, where $1 \leq i \leq k$, such that $\sigma_{i}^{*}\left(E\left(G_{i}\right)\right) \cap \sigma_{j}^{*}\left(E\left(G_{j}\right)\right)=\emptyset$ for $i \neq j$, and here the map $\sigma_{i}^{*}: E\left(G_{i}\right) \longrightarrow E\left(K_{n}\right)$ is the one induced by σ_{i}. A packing of k copies of a graph G will be called a k-placement of G. A packing of two copies of G (i.e., a 2 -placement) is also called an embedding of G (into its complement \bar{G}). In other words, an embedding of a graph G is a permutation σ on $V(G)$ such that for each edge $u v$ belonging to $E(G)$, its image $\sigma(u) \sigma(v)$ does not belong to $E(G)$.

In the literature, the question of the existence of an embedding of a given graph received a great attention (see the survey papers [8, 9]). In [3], full characterizations of all the $(n, n-1)$ and (n, n) embeddable graphs are given. The case of $(n, n-2)$-graphs was also solved independently in $[1,3,5]$. In particular, it is proved in [5] that any pair of $(n, n-2)$-graphs can be packed into K_{n}.

In [4], Duchêne et al. introduced and studied the graph packing problem for a vertex labeled graph. Roughly speaking, it consists of a graph packing which preserves the labels of the vertices. We give below the formal definition of this problem.

Definition [4]. Given a positive integer p, let G be a graph of order n and f be a mapping from $V(G)$ to the set $\{1, \ldots, p\}$. The mapping f is called a p-labeledpacking of k copies of G into K_{n} if there exist bijections $\sigma_{i}: V(G) \longrightarrow V\left(K_{n}\right)$ for $1 \leq i \leq k$, such that:

1. $\sigma_{i}^{*}(E(G)) \cap \sigma_{j}^{*}(E(G))=\emptyset$ for all $i \neq j$.
2. For every vertex v of G, we have $f(v)=f\left(\sigma_{1}(v)\right)=f\left(\sigma_{2}(v)\right)=\cdots=$ $f\left(\sigma_{k}(v)\right)$.

The maximum positive integer p for which G admits a p-labeled-packing of k copies of G is called the labeled packing number of k copies of G and is denoted by $\lambda^{k}(G)$. Throughout this paper, a labeled packing of two copies of G will be called a labeled embedding of G. It will be denoted by a pair (f, σ).

Remark that the existence of a packing of k copies of a graph G is a necessary condition for the existence of p-labeled-packing of k copies of G. Indeed, it suffices to choose $p=1$. Therefore, the result of Sauer and Spencer [5] ensures the existence of a p-labeled packing for $(n, n-2)$-graphs. An estimation of the labeled packing number of such graphs is the main issue of the current paper.

The following result was proved in [4]. It gives an upper bound for the labeled packing number of two copies of a general graph.

Lemma 1 (Duchêne et al., 2011). Let G be a graph of order n and let I be a maximum independent set of G. If there exists an embedding of G into K_{n}, then

$$
\lambda^{2}(G) \leq|I|+\left\lfloor\frac{n-|I|}{2}\right\rfloor .
$$

In [4], exact values of $\lambda^{2}(G)$ are given when G is a cycle or a path. In almost all cases, the upper bound of the above lemma is reached. More precisely, it is shown that for all $n \geq 6$,

$$
\begin{gathered}
\lambda^{2}\left(P_{n}\right) \in\left\{\left\lfloor\frac{3 n}{4}\right\rfloor,\left\lfloor\frac{3 n}{4}\right\rfloor+1\right\}, \\
\lambda^{2}\left(C_{n}\right)=\left\lfloor\frac{3 n}{4}\right\rfloor .
\end{gathered}
$$

The case of trees is also considered [6], but only a lower bound is proposed.

2. Labeled Embedding of Graphs and Permutations

In this section, we give a strong relationship between a labeled embedding and its permutation structure.

A permutation σ of a finite set can be written as the disjoint union of cycles (two cycles being disjoint if they do not have any common element). Here, a cycle $\left(a_{1}, \ldots, a_{n}\right)$ is a permutation sending a_{i} to a_{i+1} for $1 \leq i \leq n-1$ and a_{n} to a_{1}. This representation is called the cyclic decomposition of σ and is denoted by $C(\sigma)$. According to this definition, the cycles of length one correspond to fixed points of σ. For example, the cyclic decomposition of the permutation induced
by the labeled embedding of T (in Figure 1) is: $\left\{\left(v_{1}\right),\left(v_{2}\right),\left(v_{3}\right),\left(v_{4}\right),\left(v_{5}\right),\left(v_{6}\right)\right.$, $\left.\left(v_{7}\right),\left(v_{8}, v_{10}\right),\left(v_{11}, v_{13}\right),\left(v_{9}, v_{12}\right)\right\}$.

We now recall a fundamental property of labeled embeddings (see [4]). For any labeled embedding (f, σ) of a graph G, one can remark that the vertices of every cycle of $C(\sigma)$ share the same label. In other words, the labeled embedding number of G exactly corresponds to the maximum number of cycles induced by an embedding of G. It means that if G admits an embedding with k cycles, then $\lambda^{2}(G) \geq k$.

Although this correlation between labeled embeddings and the permutation's number of cycles was rencently stated, several studies can be found about the permutation structure of an embedding. In particular, the permutation structure of embeddings of $(n, n-2)$-graphs was investigated by Woźniak in [7].

Theorem 2 (Woźniak, 1994). Let G be a graph of order n, different from $K_{3} \cup$ $2 K_{1}$ and $K_{4} \cup 4 K_{1}$. If $|E(G)| \leq n-2$, then there exists a permutation σ on $V(G)$ such that $\sigma_{1}, \sigma_{2}, \sigma_{3}$ define a 3-placement of G. Moreover, σ has all its cycles of length three, except for one of length one if $n \equiv 1 \bmod 3$ or two of length one if $n \equiv 2 \bmod 3$.

According to our previous remarks, the above theorem induces the following result in the context of labeled embeddings.

Corollary 3. Let G be a graph of order n, different from $K_{3} \cup 2 K_{1}$ and $K_{4} \cup 4 K_{1}$. If $|E(G)| \leq n-2$, then

$$
\lambda^{2}(G) \geq\left\lfloor\frac{n}{3}\right\rfloor+n \bmod 3
$$

In the next section, we will show that the lower bound of Corollary 3 can be improved (including for the excluded graphs).

3. Main Result

We first define the notion of good permutation for a graph.
Definition. Given a graph G, a permutation σ on $V(G)$ is said to be good if

- σ is an embedding of G,
- σ has at least $\left\lfloor\frac{2 n}{3}\right\rfloor$ cycles,
- every cycle of σ is of order at most 2, i.e., for every pair of distinct vertices u, v of G, if $\sigma(u)=v$, then $\sigma(v)=u$.

The following lemma will be useful in a special case of our main result.
Lemma 4. For $k>0$, the graph $k C_{3} \cup 2 K_{1}$ admits a good permutation.

Proof. According to the next diagram (Figure 1), first remark that $3 C_{3}$ admits a good permutation. Indeed, the numbers inside the vertices correspond to a labeled embedding with 6 labels, with at most two vertices sharing the same label.

Figure 1. Good permutation for $3 C_{3}$.
Now let k be a positive integer and G be the graph $k C_{3} \cup 2 K_{1}$. Let u and t be the two isolated vertices of G. For $1 \leq i \leq k$, let $\left\{v_{i 1}, v_{i 2}, v_{i 3}\right\}$ be the vertices of the $i^{\text {th }}$ triangle C_{3}. For $k=1$, consider the permutation σ where v_{11} is a fixed point, v_{12} and u are mutual images, as well as v_{13} and t. One can easily check that σ is good for G. For $k=2$, Figure 2 shows a good permutation (more precisely, the corresponding labeled embedding).

Figure 2. Good permutation for $2 C_{3} \cup 2 K_{1}$.
For $k=3$, consider the permutation σ corresponding to the labeled embedding of Figure 1, and extend it to G by setting $\sigma(u)=u$ and $\sigma(t)=t$. Then σ remains good for G. For $k>3$, we can now conclude to the existence of a good permutation for G by pairing good permutations of $3 C_{3}$ with a good permutation of $r C_{3} \cup 2 K_{1}$ where r is in $\{1,2,3\}$.

We now present a lower bound for the labeled embedding number of any ($n, n-2$)-graph.

Theorem 5. Let $n \geq 2$ and G be an (n, m)-graph with $m \leq n-2$. The following inequality holds:

$$
\lambda^{2}(G) \geq\left\lfloor\frac{2 n}{3}\right\rfloor .
$$

Proof. Let $n \geq 2$ and G be an (n, m)-graph with $m \leq n-2$. Without loss of generality, we can assume $|E(G)|=n-2$. We will show that G admits a
good permutation by induction on n. If $n=2,3,4$, then $G \in\left\{2 K_{1}, 3 K_{1}, K_{1} \cup\right.$ $\left.K_{2}, 2 K_{2}, K_{1,2} \cup K_{1}\right\}$. In each case, one can quickly check that there exist good permutations with at least two cycles. The property still holds for $n=5$, where $G \in\left\{K_{3} \cup 2 K_{1}, K_{1} \cup K_{1,3}, K_{2} \cup K_{1,2}, P_{4} \cup K_{1}\right\}$. Good permutations with at least three cycles can be found.

Now let $n \geq 6$ and assume there exists a good permutation for every $\left(n^{\prime}, n^{\prime}-\right.$ 2)-graph of order $n^{\prime}<n$ with $n^{\prime} \geq 3$. Since G is an ($n, n-2$)-graph, at least two of its connected components are trees. Denote by T and H two trees of G of highest orders such that $|V(T)| \geq|V(H)|$. In what follows, we choose to consider T and H as rooted trees. We consider the following four cases.

Case 1. $|V(T)| \geq 3$ and $|V(H)| \geq 3$. Two subcases are considered as follows.
Subcase 1.1. T or H admits a leaf-parent of degree 2. By symmetry, we may assume that T admits a leaf-parent say x_{1}, of degree 2 . Let x_{0} and x_{2} be the two vertices of T such that $\left(x_{0}, x_{1}, x_{2}\right)$ is an induced path of T and x_{2} is an end vertex. Let y_{1} be an end vertex of H and y_{0} its parent. Now consider the graph $G^{\prime}=G-\left\{x_{1}, x_{2}, y_{1}\right\}$. Clearly, G^{\prime} is an $(n-3, n-5)$-graph with $n-3 \geq 3$. Hence the induction hypothesis guarantees the existence of a good permutation σ^{\prime} for G^{\prime}. This permutation can be extended to a good permutation σ for G as follows:

$$
\begin{aligned}
& \sigma\left(x_{1}\right)=\left\{\begin{array}{ll}
y_{1} & \text { if } \sigma^{\prime}\left(x_{0}\right)=x_{0}, \\
x_{1} & \text { otherwise. }
\end{array} \quad \sigma\left(x_{2}\right)= \begin{cases}x_{2} & \text { if } \sigma^{\prime}\left(x_{0}\right)=x_{0} \\
y_{1} & \text { otherwise }\end{cases} \right. \\
& \sigma\left(y_{1}\right)=\left\{\begin{array}{ll}
x_{1} & \text { if } \sigma^{\prime}\left(x_{0}\right)=x_{0}, \\
x_{2} & \text { otherwise } .
\end{array} \sigma(v)=\sigma^{\prime}(v) \text { if } v \in V\left(G^{\prime}\right)\right.
\end{aligned}
$$

Since the number of cycles of $\sigma_{\mid G-G^{\prime}}$ equals two, and they all are of length at most 2 , it ensures that σ is a good permutation for G.

Subcase 1.2. T and H do not have any leaf-parent of degree 2 and T is a star. Let ℓ be a leaf of H and v be its neighbour (of degree at least 3). Let u be the unique vertex of degree at least 3 in T. Now consider the graph $G^{\prime}=G-T-\{\ell, v\}$. Clearly, G^{\prime} is an (k, j)-graph with $k-2 \geq j$ and $k \geq 2$. Hence the induction hypothesis guarantees the existence of a good permutation σ^{\prime} for G^{\prime}. This permutation can be extended to a good permutation σ for G by setting $\sigma(u)=v, \sigma(v)=u, \sigma(\ell)=\ell$ and $\sigma\left(l_{i}\right)=l_{i}$ for all leaves l_{i} of T.

Subcase 1.3. T and H do not have any leaf-parent of degree 2 and T is not a star. Hence T admits two leaf-parents, say u and t. Let u_{1}, \ldots, u_{k} (resp. $t_{1}, \ldots, t_{k^{\prime}}$) be the leaves adjacent to u (resp. t), with $k, k^{\prime} \geq 2$. Let ℓ be a leaf of H and v be its neighbour (of degree at least 3). Let x be the non-leaf neighbour of u (it exists since T is not a star and $x=t$ if T is a bistar). See Figure 3 for a better view of these notations. Without loss of generality, we will assume $k \geq k^{\prime}$.

If $k \geq 3$, consider the graph $G^{\prime}=G-\left\{u, u_{1}, \ldots, u_{k}, t_{1}, \ell\right\}$. Hence G^{\prime} is a ($n-k-3, n-k-5$)-graph satisfying $\left|V\left(G^{\prime}\right)\right| \geq 3$ (since $|V(H)| \geq 4$), and the induction hypothesis can be applied. Let σ^{\prime} be a good permutation for G^{\prime}. We now define a permutation σ for G as follows:

$$
\begin{aligned}
& \sigma(u)=\left\{\begin{array}{ll}
t_{1} & \text { if } \sigma^{\prime}(x)=v, \\
\ell & \text { otherwise. }
\end{array} \quad \sigma\left(t_{1}\right)= \begin{cases}u & \text { if } \sigma^{\prime}(x)=v, \\
u_{1} & \text { otherwise } .\end{cases} \right. \\
& \sigma\left(u_{1}\right)=\left\{\begin{array}{ll}
\ell & \text { if } \sigma^{\prime}(x)=v, \\
t_{1} & \text { otherwise } .
\end{array} \quad \sigma(\ell)= \begin{cases}u_{1} & \text { if } \sigma^{\prime}(x)=v, \\
u & \text { otherwise } .\end{cases} \right. \\
& \sigma\left(u_{i}\right)_{i>1}=u_{i}, \quad \sigma(v)=\sigma^{\prime}(v) \text { if } v \in V\left(G^{\prime}\right) .
\end{aligned}
$$

Figure 3. Subcase 1.3.
This permutation remains good as $(k+1)$ cycles of lengths 1 or 2 and $(k+3)$ vertices have been added to σ^{\prime} and G^{\prime}, respectively.

If $k=k^{\prime}=2$, we first consider the case where $x=t$ (i.e., T is a bistar). Consider the graph $G^{\prime}=G-\left\{u_{1}, t_{1}, \ell\right\}$ and proceed by induction as above. Since $u t$ is an edge of T, we have $\sigma^{\prime}(u) \neq \sigma^{\prime}(t)$ and u and t cannot be fixed points simultaneously. Therefore, at least u_{1} or t_{1} can be set as a fixed point in σ and the two remaining vertices in $\left\{u_{1}, t_{1}, \ell\right\}$ can be images of each other (thus implying that σ is good).

In the case where $x \neq t$, consider the graph $G^{\prime}=G-\left\{u, u_{1}, u_{2}, t_{1}, t_{2}, \ell\right\}$, and proceed as previously with the following permutation:

$$
\begin{aligned}
& \sigma\left(t_{2}\right)= \begin{cases}\ell & \text { if } \sigma^{\prime}(t)=t, \\
t_{2} & \text { if } \sigma^{\prime}(t) \neq t \text { and } \sigma^{\prime}(x)=v, \quad \sigma(\ell)=\left\{\begin{array}{ll}
t_{2} & \text { if } \sigma^{\prime}(t)=t, \\
t_{2} & \text { otherwise. }
\end{array} \text { if } \sigma^{\prime}(t) \neq t \text { and } \sigma^{\prime}(x)=v,\right. \\
u & \text { otherwise. }\end{cases} \\
& \sigma\left(u_{i}\right)_{i=1,2}=u_{i}, \\
& \sigma(v)=\sigma^{\prime}(v) \text { if } v \in V\left(G^{\prime}\right) .
\end{aligned}
$$

One can easily check that σ remains good since six vertices and at least four cycles have been added to σ^{\prime}.

Case 2. $|V(T)| \geq 3$ and $H=K_{1}$.
Subcase 2.1. There exists a leaf-parent, say x, of degree at least 3 . Let ℓ be one of its leaves, and y be the unique vertex of H. Now consider the graph $G^{\prime}=G-\{x, \ell, y\}$, which satisfies $\left|E\left(G^{\prime}\right)\right| \leq\left|V\left(G^{\prime}\right)\right|-2$. Hence it admits a good permutation σ^{\prime} by induction hypothesis. A good permutation σ of G can thus be extended from G^{\prime} by setting $\sigma(x)=y, \sigma(y)=x$ and $\sigma(\ell)=\ell$.

Subcase 2.2. All the vertices of T which are adjacent to leaves are of degree 2. Let x_{0} be such a vertex (it exists since $|V(T)| \geq 3$), let ℓ_{1} be its adjacent leaf, and x_{1} its second neighbor. Now let ℓ_{2} be a distinct leaf from ℓ_{1} in T, and x_{2} be its neighbor. If $x_{1} \neq \ell_{2}$ and $x_{1} \neq x_{2}$, then consider $G^{\prime}=G-\left\{x_{0}, \ell_{1}, \ell_{2}\right\}$, which admits a good permutation σ^{\prime} by induction hypothesis. Then set $\sigma_{\mid G^{\prime}}=\sigma^{\prime}$. If $\sigma^{\prime}\left(x_{1}\right)=x_{1}$, then we put $\sigma\left(x_{0}\right)=\ell_{2}, \sigma\left(\ell_{2}\right)=x_{0}$, and $\sigma\left(\ell_{1}\right)=\ell_{1}$. Otherwise, we set $\sigma\left(x_{0}\right)=x_{0}, \sigma\left(\ell_{2}\right)=\ell_{1}$, and $\sigma\left(\ell_{1}\right)=\ell_{2}$. One can now easily check that σ is good for G. If $x_{1}=\ell_{2}$ or $x_{1}=x_{2}$, then T is either a P_{3} or a P_{4}. Since $n \geq 6$, it implies that G admits at least another connected component which is an $(n, n-1)$ or an (n, n) connected graph with $n \geq 2$ (since $|E(G)| \geq 4$, there exists at least one edge in $G-T)$. In other words, this component is either a tree T^{\prime}, or a tree with an edge $T^{\prime} \cup\{e\}$. Let ℓ_{3} be a leaf in T^{\prime}. Note that we do not care whether ℓ_{3} is adjacent to e or not. By considering $G^{\prime}=G-\left\{x_{0}, \ell_{1}, \ell_{3}\right\}$ together with the above permutation where ℓ_{2} is replaced by ℓ_{3}, we find a good permutation for G.

Case 3. $|V(T)|=2$. Let $T=\left(x_{0}, x_{1}\right)$ and let y be a vertex of degree 2 of G. Such a vertex exists since $n \geq 6$. Consider the graph $G^{\prime}=G-\left\{x_{0}, x_{1}, y\right\}$. By induction hypothesis, there exists a good permutation for G^{\prime}, say σ^{\prime}. We set $\sigma\left(x_{0}\right)=y, \sigma(y)=x_{0}, \sigma\left(x_{1}\right)=x_{1}$ and for every vertex $v \in V\left(G^{\prime}\right), \sigma(v)=\sigma^{\prime}(v)$, which defines a good permutation for G.

Case 4. $|V(T)|=1$. In this case, G contains isolated vertices (at least two) and non-tree connected components. Two subcases are considered as follows.

Subcase 4.1. G has a vertex, say x, of degree at least 3 . Let y and z be two isolated vertices of G. Consider the graph $G^{\prime}=G-\{x, y, z\}$. The induction hypothesis guarantees the existence of a good permutation σ^{\prime} for G^{\prime}. By putting $\sigma(x)=y, \sigma(y)=x, \sigma(z)=z$ and for every vertex $v \in V\left(G^{\prime}\right), \sigma(v)=\sigma^{\prime}(v)$, we get a good permutation for G.

Subcase 4.2. The complementary subcase to 4.1 , i.e., G is the sum of two isolated vertices and an union of cycles. This case is solved as follows.
(a) $G=k C_{3} \cup 2 K_{1}$ for some $k \geq 1$. Lemma 4 allows us to conclude.
(b) G has at least one cycle, say H, of order at least 4, and one cycle, say Q, of order at least 3. Let $\left(x_{1}, x_{2}, x_{3}\right)$ be an induced path of H, let x_{4} be a vertex of Q and z, t be the two isolated vertices of G. Denote by x (resp. y) the neighbor of x_{1} (resp. x_{3}) different from x_{2}. Note that we may have $x=y$ in the case $H=C_{4}$. See Figure 4 for a graphical depiction of these notations.

Figure 4. Case 4.2(b).
Consider the graph $G^{\prime}=G-\left\{x_{1}, x_{2}, x_{3}, x_{4}, z, t\right\}$. Since $|V(G)| \geq 9$, we have $\left|V\left(G^{\prime}\right)\right| \geq 3$ and the induction hypothesis guarantees the existence of a good permutation σ^{\prime} for G^{\prime}. The permutation σ^{\prime} can be extended to a good permutation σ of G by setting $\sigma(t)=t$, and
$\sigma\left(x_{1}\right)=\left\{\begin{array}{l}x_{1} \text { if } \sigma^{\prime}(x) \neq x \text { and } \sigma^{\prime}(y) \neq y, \\ x_{4} \text { if } \sigma^{\prime}(x)=x, \\ z \quad \text { otherwise. }\end{array} \sigma\left(x_{2}\right)=\left\{\begin{array}{l}x_{4} \text { if } \sigma^{\prime}(x) \neq x \text { and } \sigma^{\prime}(y) \neq y, \\ x_{2} \text { otherwise. }\end{array}\right.\right.$
$\sigma\left(x_{3}\right)=\left\{\begin{array}{l}x_{3} \text { if } \sigma^{\prime}(x) \neq x \text { and } \sigma^{\prime}(y) \neq y, \\ z \text { if } \sigma^{\prime}(x)=x, \\ x_{4} \text { otherwise. }\end{array} \sigma\left(x_{4}\right)=\left\{\begin{array}{l}x_{2} \text { if } \sigma^{\prime}(x) \neq x \text { and } \sigma^{\prime}(y) \neq y, \\ x_{1} \text { if } \sigma^{\prime}(x)=x, \\ x_{3} \text { otherwise. }\end{array}\right.\right.$
$\sigma(z)= \begin{cases}z & \text { if } \sigma^{\prime}(x) \neq x \text { and } \sigma^{\prime}(y) \neq y, \\ x_{3} & \text { if } \sigma^{\prime}(x)=x, \\ x_{1} & \text { otherwise. }\end{cases}$
Hence $\sigma_{\mid G-G^{\prime}}$ has four cycles of size at most 2, and σ is thus good for G.
(c) G is the sum of C_{m} (for some $m \geq 4$) and two isolated vertices. If $m<8$, then Figure 5 shows labeled embeddings corresponding to good permutations.

If $m \geq 8$, then let $\left(x_{1}, \ldots, x_{8}\right)$ be a path of C_{m}. Let z, t be the two isolated vertices of G. We consider the graph $G^{\prime}=G-\left\{x_{2}, x_{3}, x_{6}, x_{7}, z, t\right\}$ which admits a good permutation σ^{\prime} by induction hypothesis. Since v_{4} and v_{5} are adjacent, at least one of them is not a fixed point under σ^{\prime}. Without loss of generality, assume $\sigma^{\prime}\left(x_{4}\right) \neq x_{4}$. The permutation σ^{\prime} can be extended to a good permutation

Figure 5. Case $C_{m} \cup 2 K_{1}$ for $m=4, \ldots, 7$.
σ for G as follows: set x_{3} and t as fixed points. If $\sigma^{\prime}\left(x_{5}\right) \neq x_{1}$, we set $\sigma\left(x_{2}\right)=x_{6}$, $\sigma\left(x_{6}\right)=x_{2}, \sigma\left(x_{7}\right)=z$, and $\sigma(z)=x_{7}$. Otherwise, we set $\sigma\left(x_{2}\right)=x_{7}, \sigma\left(x_{7}\right)=$ $x_{2}, \sigma\left(x_{6}\right)=z$, and $\sigma(z)=x_{6}$. For the same reasons as in Case 4.2(b), this permutation is good for G.

Conclusion

Theorem 5 gives a first lower bound about the labeled embedding number of ($n, n-2$)-graphs. Yet, the computation of the exact value remains an open question, as this bound is not exact for many families of ($n, n-2$)-graphs. As an example, consider a cycle C_{n} without two edges. Its labeled packing number is at least the one of C_{n}, (i.e., $\lfloor 3 n / 4\rfloor$). Yet, for any large value of n, we can find an ($n, n-2$)-graph for which the bound is tight. Indeed, consider G as an union of k disjoint triangles with $K_{2} \cup K_{1}$. The size of a maximum independent set for this graph equals $k+2$. According to Lemma 1, we have that $\lambda_{2}(G)=2 k+2=\lfloor 2 n / 3\rfloor$.

In addition, we mention that this result can be used to study the labeled embedding of ($n, n-1$)-graphs. One can show for example that the same bound is valid for the union of cycles with a single tree.

References

[1] B. Bollobás and S.E. Eldridge, Packing of graphs and applications to computational complexity, J. Combin. Theory Ser. B 25 (1978) 105-124. doi:10.1016/0095-8956(78)90030-8
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (McMillan, London; Elsevier, New York, 1976).
[3] D. Burns and S. Schuster, Every ($p, p-2$) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279. doi:10.1002/jgt. 3190010308
[4] E. Duchêne, H. Kheddouci, R.J. Nowakowski and M.A. Tahraoui, Labeled packing of graphs, Australas. J. Combin. 57 (2013) 109-126.
[5] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978) 295-302. doi:10.1016/0095-8956(78)90005-9
[6] M.A. Tahraoui, E. Duchêne and H. Kheddouci, Labeled 2-packings of trees, Discrete Math. 338 (2015) 816-824. doi:10.1016/j.disc.2014.12.01
[7] M. Woźniak, Embedding graphs of small size, Discrete Appl. Math. 51 (1994) 233-241.
doi:10.1016/0166-218X(94)90112-0
[8] M. Woźniak, Packing of graphs and permutations - a survey, Discrete Math. 276 (2004) 379-391.
doi:10.1016/S0012-365X(03)00296-6
[9] H.P. Yap, Packing of graphs-a survey, Discrete Math. 72 (1988) 395-404. doi:10.1016/0012-365X(88)90232-4

