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UMR5205, F-69622, France

e-mail: eric.duchene@univ-lyon1.fr

and

M. Woźniak

Department of Discrete Mathematics

Faculty of Applied Mathematics

AGH University of Science and Technology, Kraków, Poland

Abstract

Graph packing generally deals with unlabeled graphs. In [4], the authors
have introduced a new variant of the graph packing problem, called the
labeled packing of a graph. This problem has recently been studied on trees
[M.A. Tahraoui, E. Duchêne and H. Kheddouci, Labeled 2-packings of trees,
Discrete Math. 338 (2015) 816–824] and cycles [E. Duchêne, H. Kheddouci,
R.J. Nowakowski and M.A. Tahraoui, Labeled packing of graphs, Australas.
J. Combin. 57 (2013) 109–126]. In this note, we present a lower bound on
the labeled packing number of any (n, n − 2)-graph into Kn. This result
improves the bound given by Woźniak in [Embedding graphs of small size,
Discrete Appl. Math. 51 (1994) 233–241].
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1. Context and Definitions

Graph theoretical definitions

All graphs considered in this paper are finite, undirected, without loops or mul-
tiple edges. If T is a rooted tree of order n, we define an end vertex as a vertex
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which does not have any son, and a leaf-parent as a vertex whose all of its sons
are end vertices.

Given a positive integer n, the graphs Kn, Pn and Cn will denote respectively
the complete graph, the path and the cycle on n vertices. For a graph G, we
will use V (G) and E(G) to denote its vertex and edge sets respectively. Given
V ′ ⊂ V , the subgraph G[V ′] denotes the subgraph of G induced by V ′, i.e.,
E(G[V ′]) contains all the edges of E which have both extremities in V ′. If a
graph G has order n and size m, we say that G is an (n,m)-graph.

An independent set of G is a subset of vertices X ⊆ V , such that no two
vertices in X are adjacent. An independent set is said to be maximal if no
independent set properly contains it. An independent set of maximum cardinality
is called a maximum independent set. For undefined terms, we refer the reader
to [2]. A permutation σ is a one-to-one mapping of {1, . . . , n} into itself. We say
that a permutation σ is fixed-point-free if σ(x) 6= x for all x of {1, . . . , n}.

The graph packing problem

The graph packing problem was introduced by Bollobás and Eldridge [1] and
Sauer and Spencer [5] in the late 1970s. Let G1, . . . , Gk be k graphs of order
n. We say that there is a packing of G1, . . . , Gk (into the complete graph Kn)
if there exist bijections σi : V (Gi) −→ V (Kn), where 1 ≤ i ≤ k, such that
σ∗

i (E(Gi)) ∩ σ∗

j (E(Gj)) = ∅ for i 6= j, and here the map σ∗

i : E(Gi) −→ E(Kn)
is the one induced by σi. A packing of k copies of a graph G will be called a
k-placement of G. A packing of two copies of G (i.e., a 2-placement) is also called
an embedding of G (into its complement G). In other words, an embedding of
a graph G is a permutation σ on V (G) such that for each edge uv belonging to
E(G), its image σ(u)σ(v) does not belong to E(G).

In the literature, the question of the existence of an embedding of a given
graph received a great attention (see the survey papers [8, 9]). In [3], full char-
acterizations of all the (n, n − 1) and (n, n) embeddable graphs are given. The
case of (n, n− 2)-graphs was also solved independently in [1, 3, 5]. In particular,
it is proved in [5] that any pair of (n, n− 2)-graphs can be packed into Kn.

In [4], Duchêne et al. introduced and studied the graph packing problem for
a vertex labeled graph. Roughly speaking, it consists of a graph packing which
preserves the labels of the vertices. We give below the formal definition of this
problem.

Definition [4]. Given a positive integer p, let G be a graph of order n and f be
a mapping from V (G) to the set {1, . . . , p}. The mapping f is called a p-labeled-
packing of k copies of G into Kn if there exist bijections σi : V (G) −→ V (Kn) for
1 ≤ i ≤ k, such that:

1. σ∗

i (E(G)) ∩ σ∗

j (E(G)) = ∅ for all i 6= j.
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2. For every vertex v of G, we have f(v) = f(σ1(v)) = f(σ2(v)) = · · · =
f(σk(v)).

The maximum positive integer p for which G admits a p-labeled-packing of
k copies of G is called the labeled packing number of k copies of G and is denoted
by λk(G). Throughout this paper, a labeled packing of two copies of G will be
called a labeled embedding of G. It will be denoted by a pair (f, σ).

Remark that the existence of a packing of k copies of a graph G is a necessary
condition for the existence of p-labeled-packing of k copies of G. Indeed, it
suffices to choose p = 1. Therefore, the result of Sauer and Spencer [5] ensures
the existence of a p-labeled packing for (n, n − 2)-graphs. An estimation of the
labeled packing number of such graphs is the main issue of the current paper.

The following result was proved in [4]. It gives an upper bound for the labeled
packing number of two copies of a general graph.

Lemma 1 (Duchêne et al., 2011). Let G be a graph of order n and let I be a

maximum independent set of G. If there exists an embedding of G into Kn, then

λ2(G) ≤ |I|+

⌊

n− |I|

2

⌋

.

In [4], exact values of λ2(G) are given when G is a cycle or a path. In almost
all cases, the upper bound of the above lemma is reached. More precisely, it is
shown that for all n ≥ 6,

λ2(Pn) ∈

{⌊

3n

4

⌋

,

⌊

3n

4

⌋

+ 1

}

,

λ2(Cn) =

⌊

3n

4

⌋

.

The case of trees is also considered [6], but only a lower bound is proposed.

2. Labeled Embedding of Graphs and Permutations

In this section, we give a strong relationship between a labeled embedding and
its permutation structure.

A permutation σ of a finite set can be written as the disjoint union of cycles
(two cycles being disjoint if they do not have any common element). Here, a
cycle (a1, . . . , an) is a permutation sending ai to ai+1 for 1 ≤ i ≤ n− 1 and an to
a1. This representation is called the cyclic decomposition of σ and is denoted by
C(σ). According to this definition, the cycles of length one correspond to fixed
points of σ. For example, the cyclic decomposition of the permutation induced
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by the labeled embedding of T (in Figure 1) is: {(v1), (v2), (v3), (v4), (v5), (v6),
(v7), (v8, v10),(v11, v13), (v9, v12)}.

We now recall a fundamental property of labeled embeddings (see [4]). For
any labeled embedding (f, σ) of a graph G, one can remark that the vertices of
every cycle of C(σ) share the same label. In other words, the labeled embedding
number of G exactly corresponds to the maximum number of cycles induced by
an embedding of G. It means that if G admits an embedding with k cycles, then
λ2(G) ≥ k.

Although this correlation between labeled embeddings and the permutation’s
number of cycles was rencently stated, several studies can be found about the
permutation structure of an embedding. In particular, the permutation structure
of embeddings of (n, n− 2)-graphs was investigated by Woźniak in [7].

Theorem 2 (Woźniak, 1994). Let G be a graph of order n, different from K3 ∪
2K1 and K4∪4K1. If |E(G)| ≤ n−2, then there exists a permutation σ on V (G)
such that σ1, σ2, σ3 define a 3-placement of G. Moreover, σ has all its cycles of

length three, except for one of length one if n ≡ 1 mod 3 or two of length one if

n ≡ 2 mod 3.

According to our previous remarks, the above theorem induces the following
result in the context of labeled embeddings.

Corollary 3. Let G be a graph of order n, different from K3∪ 2K1 and K4∪ 4K1.

If |E(G)| ≤ n− 2, then

λ2(G) ≥
⌊n

3

⌋

+ n mod 3.

In the next section, we will show that the lower bound of Corollary 3 can be
improved (including for the excluded graphs).

3. Main Result

We first define the notion of good permutation for a graph.

Definition. Given a graph G, a permutation σ on V (G) is said to be good if

• σ is an embedding of G,

• σ has at least
⌊

2n
3

⌋

cycles,

• every cycle of σ is of order at most 2, i.e., for every pair of distinct vertices

u, v of G, if σ(u) = v, then σ(v) = u.

The following lemma will be useful in a special case of our main result.

Lemma 4. For k > 0, the graph kC3 ∪ 2K1 admits a good permutation.
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Proof. According to the next diagram (Figure 1), first remark that 3C3 admits
a good permutation. Indeed, the numbers inside the vertices correspond to a
labeled embedding with 6 labels, with at most two vertices sharing the same
label.

Figure 1. Good permutation for 3C3.

Now let k be a positive integer and G be the graph kC3 ∪ 2K1. Let u and t
be the two isolated vertices of G. For 1 ≤ i ≤ k, let {vi1, vi2, vi3} be the vertices
of the ith triangle C3. For k = 1, consider the permutation σ where v11 is a
fixed point, v12 and u are mutual images, as well as v13 and t. One can easily
check that σ is good for G. For k = 2, Figure 2 shows a good permutation (more
precisely, the corresponding labeled embedding).

Figure 2. Good permutation for 2C3 ∪ 2K1.

For k = 3, consider the permutation σ corresponding to the labeled embed-
ding of Figure 1, and extend it to G by setting σ(u) = u and σ(t) = t. Then σ
remains good for G. For k > 3, we can now conclude to the existence of a good
permutation for G by pairing good permutations of 3C3 with a good permutation
of rC3 ∪ 2K1 where r is in {1, 2, 3}.

We now present a lower bound for the labeled embedding number of any
(n, n− 2)-graph.

Theorem 5. Let n ≥ 2 and G be an (n,m)-graph with m ≤ n−2. The following

inequality holds:

λ2(G) ≥

⌊

2n

3

⌋

.

Proof. Let n ≥ 2 and G be an (n,m)-graph with m ≤ n − 2. Without loss
of generality, we can assume |E(G)| = n − 2. We will show that G admits a
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good permutation by induction on n. If n = 2, 3, 4, then G ∈ {2K1, 3K1,K1 ∪
K2, 2K2,K1,2 ∪ K1}. In each case, one can quickly check that there exist good
permutations with at least two cycles. The property still holds for n = 5, where
G ∈ {K3 ∪ 2K1,K1 ∪K1,3,K2 ∪K1,2, P4 ∪K1}. Good permutations with at least
three cycles can be found.

Now let n ≥ 6 and assume there exists a good permutation for every (n′, n′−
2)-graph of order n′ < n with n′ ≥ 3. Since G is an (n, n − 2)-graph, at least
two of its connected components are trees. Denote by T and H two trees of G of
highest orders such that |V (T )| ≥ |V (H)|. In what follows, we choose to consider
T and H as rooted trees. We consider the following four cases.

Case 1. |V (T )| ≥ 3 and |V (H)| ≥ 3. Two subcases are considered as follows.

Subcase 1.1. T or H admits a leaf-parent of degree 2. By symmetry, we may
assume that T admits a leaf-parent say x1, of degree 2. Let x0 and x2 be the
two vertices of T such that (x0, x1, x2) is an induced path of T and x2 is an end
vertex. Let y1 be an end vertex of H and y0 its parent. Now consider the graph
G′ = G−{x1, x2, y1}. Clearly, G

′ is an (n−3, n−5)-graph with n−3 ≥ 3. Hence
the induction hypothesis guarantees the existence of a good permutation σ′ for
G′. This permutation can be extended to a good permutation σ for G as follows:

σ(x1) =

{

y1 if σ′(x0) = x0,

x1 otherwise.
σ(x2) =

{

x2 if σ′(x0) = x0,

y1 otherwise.

σ(y1) =

{

x1 if σ′(x0) = x0,

x2 otherwise.
σ(v) = σ′(v) if v ∈ V (G′).

Since the number of cycles of σ G−G′ equals two, and they all are of length
at most 2, it ensures that σ is a good permutation for G.

Subcase 1.2. T and H do not have any leaf-parent of degree 2 and T is
a star. Let ℓ be a leaf of H and v be its neighbour (of degree at least 3).
Let u be the unique vertex of degree at least 3 in T . Now consider the graph
G′ = G − T − {ℓ, v}. Clearly, G′ is an (k, j)-graph with k − 2 ≥ j and k ≥ 2.
Hence the induction hypothesis guarantees the existence of a good permutation
σ′ for G′. This permutation can be extended to a good permutation σ for G by
setting σ(u) = v, σ(v) = u, σ(ℓ) = ℓ and σ(li) = li for all leaves li of T .

Subcase 1.3. T and H do not have any leaf-parent of degree 2 and T is
not a star. Hence T admits two leaf-parents, say u and t. Let u1, . . . , uk (resp.
t1, . . . , tk′) be the leaves adjacent to u (resp. t), with k, k′ ≥ 2. Let ℓ be a leaf of
H and v be its neighbour (of degree at least 3). Let x be the non-leaf neighbour
of u (it exists since T is not a star and x = t if T is a bistar). See Figure 3 for a
better view of these notations. Without loss of generality, we will assume k ≥ k′.
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If k ≥ 3, consider the graph G′ = G − {u, u1, . . . , uk, t1, ℓ}. Hence G′ is a
(n − k − 3, n − k − 5)-graph satisfying |V (G′)| ≥ 3 (since |V (H)| ≥ 4), and the
induction hypothesis can be applied. Let σ′ be a good permutation for G′. We
now define a permutation σ for G as follows:

σ(u) =

{

t1 if σ′(x) = v,

ℓ otherwise.
σ(t1) =

{

u if σ′(x) = v,

u1 otherwise.

σ(u1) =

{

ℓ if σ′(x) = v,

t1 otherwise.
σ(ℓ) =

{

u1 if σ′(x) = v,

u otherwise.

σ(ui)i>1 = ui, σ(v) = σ′(v) if v ∈ V (G′).

u2 t t2

t1

x

uk

u1

u

tk′

v

l
T H

Figure 3. Subcase 1.3.

This permutation remains good as (k+1) cycles of lengths 1 or 2 and (k+3)
vertices have been added to σ′ and G′, respectively.

If k = k′ = 2, we first consider the case where x = t (i.e., T is a bistar).
Consider the graph G′ = G−{u1, t1, ℓ} and proceed by induction as above. Since
ut is an edge of T , we have σ′(u) 6= σ′(t) and u and t cannot be fixed points
simultaneously. Therefore, at least u1 or t1 can be set as a fixed point in σ
and the two remaining vertices in {u1, t1, ℓ} can be images of each other (thus
implying that σ is good).

In the case where x 6= t, consider the graph G′ = G−{u, u1, u2, t1, t2, ℓ}, and
proceed as previously with the following permutation:

σ(u) =











t1 if σ′(t) = t,

t1 if σ′(t) 6= t and σ′(x) = v,

ℓ otherwise.

σ(t1) =











u if σ′(t) = t,

u if σ′(t) 6= t and σ′(x) = v,

t1 otherwise.

σ(t2) =











ℓ if σ′(t) = t,

t2 if σ′(t) 6= t and σ′(x) = v,

t2 otherwise.

σ(ℓ) =











t2 if σ′(t) = t,

ℓ if σ′(t) 6= t and σ′(x) = v,

u otherwise.

σ(ui)i=1,2 = ui, σ(v) = σ′(v) if v ∈ V (G′).
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One can easily check that σ remains good since six vertices and at least four
cycles have been added to σ′.

Case 2. |V (T )| ≥ 3 and H = K1.

Subcase 2.1. There exists a leaf-parent, say x, of degree at least 3. Let ℓ
be one of its leaves, and y be the unique vertex of H. Now consider the graph
G′ = G− {x, ℓ, y}, which satisfies |E(G′)| ≤ |V (G′)| − 2. Hence it admits a good
permutation σ′ by induction hypothesis. A good permutation σ of G can thus be
extended from G′ by setting σ(x) = y, σ(y) = x and σ(ℓ) = ℓ.

Subcase 2.2. All the vertices of T which are adjacent to leaves are of degree
2. Let x0 be such a vertex (it exists since |V (T )| ≥ 3), let ℓ1 be its adjacent leaf,
and x1 its second neighbor. Now let ℓ2 be a distinct leaf from ℓ1 in T , and x2 be
its neighbor. If x1 6= ℓ2 and x1 6= x2, then consider G′ = G − {x0, ℓ1, ℓ2}, which
admits a good permutation σ′ by induction hypothesis. Then set σ G′ = σ′. If
σ′(x1) = x1, then we put σ(x0) = ℓ2, σ(ℓ2) = x0, and σ(ℓ1) = ℓ1. Otherwise,
we set σ(x0) = x0, σ(ℓ2) = ℓ1, and σ(ℓ1) = ℓ2. One can now easily check that
σ is good for G. If x1 = ℓ2 or x1 = x2, then T is either a P3 or a P4. Since
n ≥ 6, it implies that G admits at least another connected component which is
an (n, n − 1) or an (n, n) connected graph with n ≥ 2 (since |E(G)| ≥ 4, there
exists at least one edge in G − T ). In other words, this component is either a
tree T ′, or a tree with an edge T ′ ∪ {e}. Let ℓ3 be a leaf in T ′. Note that we do
not care whether ℓ3 is adjacent to e or not. By considering G′ = G− {x0, ℓ1, ℓ3}
together with the above permutation where ℓ2 is replaced by ℓ3, we find a good
permutation for G.

Case 3. |V (T )| = 2. Let T = (x0, x1) and let y be a vertex of degree 2 of
G. Such a vertex exists since n ≥ 6. Consider the graph G′ = G − {x0, x1, y}.
By induction hypothesis, there exists a good permutation for G′, say σ′. We set
σ(x0) = y, σ(y) = x0, σ(x1) = x1 and for every vertex v ∈ V (G′), σ(v) = σ′(v),
which defines a good permutation for G.

Case 4. |V (T )| = 1. In this case, G contains isolated vertices (at least two)
and non-tree connected components. Two subcases are considered as follows.

Subcase 4.1. G has a vertex, say x, of degree at least 3. Let y and z be two
isolated vertices of G. Consider the graph G′ = G − {x, y, z}. The induction
hypothesis guarantees the existence of a good permutation σ′ for G′. By putting
σ(x) = y, σ(y) = x, σ(z) = z and for every vertex v ∈ V (G′), σ(v) = σ′(v), we
get a good permutation for G.

Subcase 4.2. The complementary subcase to 4.1, i.e., G is the sum of two
isolated vertices and an union of cycles. This case is solved as follows.

(a) G = kC3 ∪ 2K1 for some k ≥ 1. Lemma 4 allows us to conclude.
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(b) G has at least one cycle, say H, of order at least 4, and one cycle, say Q,
of order at least 3. Let (x1, x2, x3) be an induced path of H, let x4 be a vertex of
Q and z, t be the two isolated vertices of G. Denote by x (resp. y) the neighbor
of x1 (resp. x3) different from x2. Note that we may have x = y in the case
H = C4. See Figure 4 for a graphical depiction of these notations.

x1

x

z

H

x2

y

x3

x4

Q

t

Figure 4. Case 4.2(b).

Consider the graph G′ = G − {x1, x2, x3, x4, z, t}. Since |V (G)| ≥ 9, we
have |V (G′)| ≥ 3 and the induction hypothesis guarantees the existence of a
good permutation σ′ for G′. The permutation σ′ can be extended to a good
permutation σ of G by setting σ(t) = t, and

σ(x1) =











x1 if σ′(x) 6= x and σ′(y) 6= y,

x4 if σ′(x) = x,

z otherwise.

σ(x2) =

{

x4 if σ′(x) 6= x and σ′(y) 6= y,

x2 otherwise.

σ(x3) =











x3 if σ′(x) 6= x and σ′(y) 6= y,

z if σ′(x) = x,

x4 otherwise.

σ(x4) =











x2 if σ′(x) 6= x and σ′(y) 6=y,

x1 if σ′(x) = x,

x3 otherwise.

σ(z) =











z if σ′(x) 6= x and σ′(y) 6= y,

x3 if σ′(x) = x,

x1 otherwise.

Hence σ G−G′ has four cycles of size at most 2, and σ is thus good for G.

(c) G is the sum of Cm (for some m ≥ 4) and two isolated vertices. If m < 8,
then Figure 5 shows labeled embeddings corresponding to good permutations.

If m ≥ 8, then let (x1, . . . , x8) be a path of Cm. Let z, t be the two isolated
vertices of G. We consider the graph G′ = G− {x2, x3, x6, x7, z, t} which admits
a good permutation σ′ by induction hypothesis. Since v4 and v5 are adjacent,
at least one of them is not a fixed point under σ′. Without loss of generality,
assume σ′(x4) 6= x4. The permutation σ′ can be extended to a good permutation
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4

C4 ∪ 2K1

2

31

3 4

2

C5 ∪ 2K1

3

3 4

4

1

2

C6 ∪ 2K1

4 5

5

1

3

23

4

C7 ∪ 2K1

5 6

6

1

4

23

4 5

Figure 5. Case Cm ∪ 2K1 for m = 4, . . . , 7.

σ for G as follows: set x3 and t as fixed points. If σ′(x5) 6= x1, we set σ(x2) = x6,
σ(x6) = x2, σ(x7) = z, and σ(z) = x7. Otherwise, we set σ(x2) = x7, σ(x7) =
x2, σ(x6) = z, and σ(z) = x6. For the same reasons as in Case 4.2(b), this
permutation is good for G.

Conclusion

Theorem 5 gives a first lower bound about the labeled embedding number of
(n, n − 2)-graphs. Yet, the computation of the exact value remains an open
question, as this bound is not exact for many families of (n, n− 2)-graphs. As an
example, consider a cycle Cn without two edges. Its labeled packing number is
at least the one of Cn, (i.e., ⌊3n/4⌋). Yet, for any large value of n, we can find an
(n, n−2)-graph for which the bound is tight. Indeed, consider G as an union of k
disjoint triangles with K2 ∪K1. The size of a maximum independent set for this
graph equals k+2. According to Lemma 1, we have that λ2(G) = 2k+2 = ⌊2n/3⌋.

In addition, we mention that this result can be used to study the labeled
embedding of (n, n− 1)-graphs. One can show for example that the same bound
is valid for the union of cycles with a single tree.



Labeled Embedding of (n, n-2)-Graphs in Their Complements 1025

References

[1] B. Bollobás and S.E. Eldridge, Packing of graphs and applications to computational

complexity , J. Combin. Theory Ser. B 25 (1978) 105–124.
doi:10.1016/0095-8956(78)90030-8

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (McMillan, London;
Elsevier, New York, 1976).

[3] D. Burns and S. Schuster, Every (p, p− 2) graph is contained in its complement , J.
Graph Theory 1 (1977) 277–279.
doi:10.1002/jgt.3190010308
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