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Abstract

The proper connection number of a graph is the least integer k for which
the graph has an edge coloring with k colors, with the property that any
two vertices are joined by a properly colored path. We prove that given two
connected non-bipartite graphs, one of which is (vertex) 2-connected, the
proper connection number of their direct product is 2.
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An edge coloring of a graph is an assignment of colors to its edges. A proper

edge coloring is an edge coloring for which adjacent edges never have the same
color. The proper connection number of a graph is the least integer k for which
the graph has an edge coloring with k colors, with the property that any two
vertices are joined by a properly colored path. The proper connection number
of a graph G is denoted pc(G). This invariant has been studied in [2, 6] and
is a natural extension of the rainbow connection number of a graph [3, 4, 5].
(The rainbow connection number of G is the minimum number of colors needed
to edge-color G in such a way that any two vertices are joined by a path for which
no two edges are colored the same.)

The rainbow connection number of graph powers and graph products is in-
vestigated in [1]. (See [7] for a survey of graph products.) A recent paper [8]
determines the proper connection number of three of the four standard graph
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products. For the Cartesian product, the authors show pc(G�H) = 2 for non-
trivial connected graphs G and H. For the strong product pc(G⊠H) is either 1
or 2 depending on whether or not G and H are both complete. A similar result
holds for the lexicographic product, where pc(G ◦ H) is 1 or 2, depending on
whether or not the product is complete. However, the proper connection number
of a direct product G×H is not known. We prove here that if G and H are con-
nected non-bipartite graphs and one is 2-connected, then the proper connection
number of their direct product is 2.

Recall that the direct product of G and H is the graph G×H with vertex set
V (G) × V (H) and edges {(g, h)(g′, h′) | gg′ ∈ E(G) and hh′ ∈ E(H)}. Figure 1
shows an example. Here neither factor is 2-connected, and the proper connection
number of the product exceeds 2 because in any edge 2-coloring a pair of the
vertices a, b, c is joined only by a monochromatic path. Thus the assumption of
2-connectivity in our result cannot be relaxed.

a b

c

G

H

Figure 1. A direct product with pc(G×H) > 2.

Our results involve simple undirected finite graphs without loops, though our
proofs use orientations. Denote the vertices of an n-cycle Cn as 0, 1, 2, . . . , n− 1;
its edges are i(i+ 1), with addition modulo n.

Given two cycles Cm and Cn, we define the standard edge 2-coloring of the
product Cm × Cn to be the assignment of two colors, bold and dashed, to the
edges of Cm × Cn such that any edge of form (i, j)(i + 1, j + 1) is colored bold,
and any edge of form (i, j)(i+1, j−1) is colored dashed (with arithmetic modulo
m and n on respective arguments). This is illustrated in Figure 3, for odd cycles
m = 2p + 1 and n = 2q + 1, where we regard the product as embedded on a
torus. The left-most column of vertices is identified with the right-most column,
and the top row of vertices is identified with the bottom row.
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(0, 0)

(0, 0)
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Figure 2. The four paths when x and y are both even. For clarity the product is shown
embedded in a torus.

Lemma 1. The proper connection number of the direct product of two odd cycles

is 2. Further, in the standard edge 2-coloring any two vertices are joined by four

types of properly colored paths, namely those that

• begin in bold and end in dashed,

• begin in dashed and end in bold,

• begin in bold and end in bold,

• begin in dashed and end in dashed.

Proof. Let the cycles be C2p+1 and C2q+1. Give C2p+1 × C2q+1 the standard
edge 2-coloring. We now show that any two vertices in the product are joined by
paths of the prescribed types. By symmetry we can assume one vertex is (0, 0).
Say the other is (x, y). We break into cases, depending on the parity of x and y.

First assume x and y are both even. The following paths have the prescribed
types. (These paths are illustrated in Figure 2.)

(0, 0) (1, 1) (0, 2) (1, 3) . . . (1, y − 1) (0, y) | (1, y + 1)(2, y) (3, y + 1) (4, y) . . . (x− 1, y + 1)(x, y)

(0, 0)(1,−1)(2, 0)(3,−1) . . . (x− 1,−1)(x, 0) | (x− 1, 1) (x, 2)(x− 1, 3)(x, 4) . . . (x− 1, y − 1)(x, y)

(0, 0)(−1,−1)(−2, 0)(−3,−1) . . . (x+ 1, 0)(x,−1) | (x+ 1,−2)(x,−3)(x+ 1,−4) . . . (x+ 1, y + 1)(x, y)

(0, 0) (1,−1) (0,−2) (1,−3) . . . (0, y + 1) (1, y) | (0, y − 1) (−1, y) (−2, y − 1) . . . (x+ 1, y − 1)(x, y)

For clarity an artificial separating bar | shows where the pattern switches from
alternating back and forth along an edge in one factor to alternating in the other.

The case in which x and y are both odd is similar, though we will not write
the four paths explicitly. The construction is illustrated in Figure 3. The case
where x and y have opposite parity is shown in Figure 4.
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Figure 3. The four paths when x and y are both odd.
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Figure 4. The four paths when x and y have opposite parity.

The proof of our main result will use ear decompositions. Recall that an ear

decomposition of a graph is an edge-disjoint sequence C,P1, P2, P3, . . . , Pk, where
C is a cycle in the graph, each Pi is a path whose internal vertices have degree 2
in C ∪ P1 ∪ P2 ∪ · · · ∪ Pi, and any edge of the graph belongs to a unique member
of the sequence. A theorem of Whitney [9, 10] holds that a graph is 2-connected
if and only if it has an ear decomposition, and, moreover, an ear decomposition
may begin with any cycle of the graph.
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Theorem 2. If G and H are connected non-bipartite graphs, and one of them is

(vertex) 2-connected, then pc(G×H) = 2.

Proof. Let G and H be as stated, with H 2-connected.
First we argue that it suffices to assume that G has a particularly simple

structure. Let K be a connected spanning subgraph of G that has only one cycle,
B, which is an odd cycle (as in Figure 5). Then K ×H is a connected spanning
non-complete subgraph of G × H, so 1 < pc(G × H) ≤ pc(K × H). Thus it
suffices to prove the proposition for K×H instead of G×H. Equivalently, there
is no loss of generality in assuming that G has only one cycle B, which is odd.
We assume this henceforward.

Next we define an edge 2-coloring of G ×H. (We will eventually show that
under this coloring, any two vertices of G ×H are joined by a properly colored
path.) Our coloring will be defined in terms of certain orientations of G and H.

Give G an orientation for which B is a directed cycle and all other edges are
oriented toward it, as shown in Figure 5.

B

G

Figure 5. Orientation of the graph G.

We next construct an orientation of H that has neither sources nor sinks.
Give H an ear decomposition C,P1, P2, P3, . . . , Pk for which C is an odd cycle.
Orient the edges of C so that it is a directed cycle, and orient the edges of each Pi

so that it is a directed path, as in Figure 6. (Each Pi has two such orientations;
choose one arbitrarily.) By construction this orientation has neither sources nor
sinks.

Now we define our edge 2-coloring of G×H. Color an edge (g, h)(g′, h′) bold
if gg′ is directed from g to g′ in the orientation of G and hh′ is directed from h

to h′ in the orientation of H. (Or, symmetrically, if gg′ is directed from g′ to g

and hh′ from h′ to h.) Color (g, h)(g′, h′) dashed if gg′ is directed from g to g′

but hh′ is directed from h′ to h.
In essence, (g, h)(g′, h′) is colored bold if gg′ and hh′ are oriented the same

(both left to right, or both right to left), and (g, h)(g′, h′) is colored dashed if gg′

and hh′ are oriented oppositely.
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H

Figure 6. Orientation of the ear decomposition of H.

Notice that under this coloring the subgraph B × C has the standard edge
2-coloring for the product of two cycles. Lemma 1 says that any two vertices of
B×C are joined by properly colored paths that begin and end with edges of any
color we desire. We claim that this same property holds for B ×H.

Claim. Consider the subgraph B × H ⊆ G × H. With the 2-coloring inherited

from G ×H, the graph B ×H has the property that any two of its vertices can

be joined by paths that begin and end with all possible combinations of the two

colors (as in Lemma 1).

To prove the claim, take two vertices (b0, h0) and (b′0, h
′
0) of B×H. We now

produce properly colored paths that join them and meet the requirements of the
proposition. If it happens that both (b0, h0) and (b′0, h

′
0) belong to B × C, then

the claim follows from Lemma 1 because the 2-coloring of G × H restricts to
the standard edge 2-coloring of the product of cycles B ×C. Otherwise, at least
one of h0 and h′0 is not a vertex of C (though possibly h0 = h′0). Because H is
2-connected, H − E(C) has two paths P : h0h1, h2 · · ·hk and P ′ : h′0h

′
1, h

′
2 · · ·h

′
ℓ

that are vertex-disjoint (except possibly h0 = h′0), and whose terminal vertices
hk and h′ℓ belong to C, but for which no internal vertices belong to C. (Possibly
one of these paths is trivial if h0 or h′0 already belongs to C.)

Note that neither P nor P ′ is necessarily a directed path in the orientation of
H. In traversing them we may go with the orientation and also against it. But we
can find a walk W : b0b1b2 · · · bk in B for which the path (b0, h0)(b1, h1)(b2, h2) · · ·
(bk, hk) in B×H is properly colored, and begins with an edge that is either solid
or bold. If we want (b0, h0)(b1, h1) to be solid, we select b1 so that b0b1 has the
same orientation as h0h1, and if we want it dashed we go the other way on B,
selecting b1 so b0b1 is oriented opposite to h0h1. Moving on to (b1, h1)(b2, h2) we
can make this edge either solid or dashed with a judicious choice of b2. Continuing
this process, we get a path Q : (b0, h0)(b1, h1)(b2, h2) · · · (bk, hk) in B ×H that is
properly colored, and we are free to choose the color of the first edge.
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Likewise there is a path Q′ : (b′0, h
′
0)(b

′
1, h

′
1)(b

′
2, h

′
2) · · · (b

′
ℓ, h

′
ℓ) in B ×H that

is properly colored, and again we are free to choose the color of the first edge. By
construction Q and Q′ are vertex-disjoint, and they terminate in B×C. With the
exception of their terminal vertices (bk, hk) and (b′ℓ, h

′
ℓ), no other vertex belongs

to B × C. Lemma 1 guarantees a path R in B × C from (bk, hk) to (b′ℓ, h
′
ℓ) for

which Q ∪R ∪Q′ is properly colored. The combinations of these paths yield the
desired set of four paths. This completes the claim.

To finish the proof we take two arbitrary vertices (g0, h0) and (g′0, h
′
0) of

G×H, and produce a properly colored path joining them.
Now, G − E(B) has directed (possibly trivial) paths P : g0g1g2 · · · gk and

P ′ : g′0g
′
1g

′
2 · · · g

′
ℓ that terminate at vertices of B. Our plan is to use them to

construct two disjoint properly colored paths in (G−E(B))×H, joining (g0, h0)
and (g′0, h

′
0) to distinct vertices of B ×H, and then use the above claim to join

these endpoints with an appropriate properly colored path in B ×H.

Case 1. Suppose g0 and g′0 are in different components of G−E(B), so P and
P ′ do not meet. Choose arbitrary edges h0h1 and h′0h

′
1 of H. In (G−E(B))×H

we have vertex-disjoint properly colored paths

Q : (g0, h0)(g1, h1)(g2, h0)(g3, h1)(g4, h0) · · · (gk, h∗),

Q′ : (g′0, h
′
0)(g

′
1, h

′
1)(g

′
2, h

′
0)(g

′
3, h

′
1)(g

′
4, h

′
0) · · · (g

′
ℓ, h

′
∗),

where h∗ = h0 or h∗ = h1 (depending on the parity of k), and h′∗ = h′0 or h
′
∗ = h′1.

By the above claim, B × H has a path R joining (gk, h∗) to (g′ℓ, h
′
∗), for which

the path Q ∪R ∪Q′ is properly colored.

Case 2. Suppose g0 and g′0 are in the same component of G−E(B). Now, P
and P ′ terminate at the same vertex gk = g′ℓ of B, and they merge at some vertex
gk−a = g′ℓ−a. That is, a is the largest non-negative integer for which gk−i = g′ℓ−i

for a ≥ i ≥ 0. (Possibly a = 0, in which case P and P ′ meet only at gk = g′ℓ. At
the other extreme, P ⊆ P ′ if a = k, and P ′ ⊆ P if a = ℓ.)

First suppose k − a and ℓ − a have opposite parity (and w.l.o.g., suppose it
is k − a that is even). Choose h0h1 ∈ E(H) and h′0h

′
1 ∈ E(H) with h0 6= h′1 and

h1 6= h′0. Form the following properly colored paths in (G− E(B))×H:

Q : (g0, h0)(g1, h1)(g2, h0)(g3, h1)(g4, h0) · · · (gk−a, h0)(gk−a+1, h1)(gk−a+2,h0) · · · (gk,h∗),

Q′ : (g′0, h
′

0)(g
′

1, h
′

1)(g
′

2, h
′

0)(g
′

3, h
′

1)(g
′

4, h
′

0) · · · (g
′

ℓ−a
, h′

1)(g
′

ℓ−a+1
, h′

0)(g
′

ℓ−a+2
, h′

1) · · · (g
′

ℓ
, h′

∗
).

Notice h∗ 6= h′∗, and these paths are disjoint and end in B × H. By our claim,
B ×H has a path R joining (gk, h∗) to (g′ℓ, h

′
∗), for which the path Q ∪R ∪Q′ is

properly colored.
Next suppose k − a and ℓ − a are both even. Choose h0h1 ∈ E(H) and

h′0h
′
1 ∈ E(H) with h1 6= h′1, and also so that their orientations are opposite (i.e.,
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h0h1 is directed from h0 to h1, and h′0h
′
1 is directed from h′1 to h′0, or vice versa).

This is possible because H is 2-connected and its orientation has neither sources
nor sinks. We have paths

Q : (g0, h0)(g1, h1)(g2, h0)(g3, h1)(g4, h0)(g5, h1) · · · (gk−a+1, h1)(gk−a, h0),

Q′ : (g′0, h
′
0)(g

′
1, h

′
1)(g

′
2, h

′
0)(g

′
3, h

′
1)(g

′
4, h

′
0)(g5, h

′
1) · · · (gℓ−a+1, h

′
1)(g

′
ℓ−a, h

′
0).

The first begins with a bold edge and ends with a dashed edge. The second begins
dashed and ends bold. If it happens that h0 = h′0, then Q and Q′ intersect only
at their last vertex, so Q∪Q′ is a properly colored path from (g0, h0) to (g′0, h

′
0).

If h0 6= h′0 then the paths may be continued as indicated until reaching B ×H.
Then, by our claim, B × H has a path R for which Q ∪ R ∪ Q′ is a properly
colored path joining (g0, h0) to (g′0, h

′
0).

Finally suppose k − a and ℓ − a are both odd. Let h0h1 and h′0h
′
1 be as in

the previous paragraph. We have properly colored paths

Q : (g0, h0)(g1, h1)(g2, h0)(g3, h1)(g4, h0)(g5, h1) · · · (gk−a, h1)(gk−a+1, h0),

Q′ : (g′0, h
′
0)(g

′
1, h

′
1)(g

′
2, h

′
0)(g

′
3, h

′
1)(g

′
4, h

′
0)(g

′
5, h

′
1) · · · (g

′
ℓ−a, h

′
1)(g

′
ℓ−a+1, h

′
0).

Now, Q begins bold and ends dashed, and Q′ begins dashed and ends bold. If
h0 = h′0, then Q and Q′ meet only at their last vertex, so Q ∪ Q′ is a properly
colored path from (g0, h0) to (g′0, h

′
0). If h0 6= h′0 then the paths may be continued

as indicated until reaching B×H. Then B×H has a path R for which Q∪R∪Q′

is a properly colored path joining (g0, h0) to (g′0, h
′
0).
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