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Abstract

A Roman dominating function (or just RDF) on a graph G = (V,E) is
a function f : V −→ {0, 1, 2} satisfying the condition that every vertex u
for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2.
The weight of an RDF f is the value f(V (G)) =

∑

u∈V (G) f(u). The Ro-

man domination number of a graph G, denoted by γR(G), is the minimum
weight of a Roman dominating function on G. A graph G is Roman dom-
ination stable if the Roman domination number of G remains unchanged
under removal of any vertex. In this paper we present upper bounds for the
Roman domination number in the class of Roman domination stable graphs,
improving bounds posed in [V. Samodivkin, Roman domination in graphs:

the class RUV R, Discrete Math. Algorithms Appl. 8 (2016) 1650049].
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1. Introduction

For notation and graph theory terminology in general we follow [5]. Let G =
(V,E) be a simple graph of order n. We denote the open neighborhood of a vertex
v of G by NG(v), or just N(v), and its closed neighborhood by NG[v] = N [v].
For a vertex set S ⊆ V (G), N(S) =

⋃

v∈S N(v) and N [S] =
⋃

v∈S N [v]. The
degree deg(x) (or degG(x) to refer to G) of a vertex x is the number of neighbors
of x in G. The maximum degree and minimum degree among the vertices of
G are denoted by ∆(G) and δ(G), respectively. A set S of vertices in G is a
dominating set, if N [S] = V (G). The domination number γ(G) of G is the
minimum cardinality of a dominating set of G. A dominating set S in G is an
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efficient dominating set, if |N [v] ∩ S| = 1 for every vertex v ∈ V (G). If S is a
subset of V (G), then we denote by G[S] the subgraph of G induced by S. A
graph G is claw-free if it has no induced subgraph isomorphic to K1,3. A subset
S of vertices of G is a 2-packing if N [u] ∩N [v] = ∅ for every pair u, v of vertices
of S. The 2-corona G ◦K2 of a graph G is a graph obtained from G by attaching
a path of order two to every vertex of G.

For a graph G, let f : V (G) → {0, 1, 2} be a function, and let (V0, V1, V2) be
the ordered partition of V (G) induced by f , where Vi = {v ∈ V (G) : f(v) = i}
for i = 0, 1, 2. There is a 1− 1 correspondence between the functions f : V (G) →
{0, 1, 2} and the ordered partitions (V0, V1, V2) of V (G). So we will write f =

(V0, V1, V2) (or f = (V f
0 , V f

1 , V f
2 ) to refer to f). A function f : V (G) → {0, 1, 2} is

a Roman dominating function (or just RDF) if every vertex u for which f(u) = 0
is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF
f is w(f) = f(V (G)) =

∑

u∈V (G) f(u). The Roman domination number of a
graph G, denoted by γR(G), is the minimum weight of an RDF on G. A function
f = (V0, V1, V2) is called a γR-function (or γR(G)-function when we want to refer
f to G), if it is an RDF and f(V (G)) = γR(G). A graph G is a Roman graph if
γR(G) = 2γ(G). If f = (V0, V1, V2) is an RDF in G then for any vertex v ∈ V2,

we define pn(v, V f
2 ) = {u ∈ V0 : N(u) ∩ V f

2 = {v}}. For references in Roman
domination see for example [1, 2, 3, 9].

The affection of vertex removal on Roman domination number in a graph
has been studied in [4]. Jafari Rad and Volkmann [6] introduced the concept
of Roman domination stable graphs. A graph G is Roman domination stable if
γR(G− v) = γR(G) for all v ∈ V (G). Let RUV R be the class of all Roman dom-
ination stable graphs. Samodivkin [10] studied properties of Roman domination
stable graphs.

Theorem 1 (Samodivkin [10]). Let G ∈ RUV R be a connected graph of order n.

Then γR(G) ≤ 2n
3 . If the equality holds, then for any γR(G)-function f , V f

2 is

an efficient dominating set of G and each vertex of V f
2 has degree 2. If G has an

efficient dominating set D and each vertex of D has degree 2, then γR(G) = 2n
3 .

Problem 2 (Samodivkin [10]). Find an attainable constant upper bound for
γR(G)
|V (G)| on all connected graphs G ∈ RUV R with δ(G) ≥ 3.

In this paper we present upper bounds for the Roman domination number
in the class of Roman domination stable graphs. First we characterize Roman
domination stable graphs G with δ(G) = 2 that achieve the upper bound of
Theorem 1 as the cycles of order divisible by 3. Next, we consider the Roman
domination stable graphs G with δ(G) ≥ 3. In particular, we improve Theorem 1
for claw-free Roman domination stable graphs. Finally, we present several upper
bounds for the Roman domination number in Roman domination stable graphs,
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which are expressed in terms of the order, the maximum and the minimum degree
of a graph.

2. Known Results

The following proposition of Samodivkin plays an important role in this paper.

Proposition 3 (Samodivkin [10]). Let a graph G be in RUV R. Then G is a

Roman graph. For any γR(G)-function f =
(

V f
0 , V f

1 , V f
2

)

, V f
1 = ∅, V f

2 is a

γ(G)-set, and
∣

∣

∣
pn

(

v, V f
2

)∣

∣

∣
≥ 2 for any v ∈ V f

2 . If D is a γ(G)-set, then h =

(V (G)−D, ∅, D) is a γR(G)-function.

Let G1 be a graph obtained from a cycle C8 : v1v2 · · · v8v1 by joining v1 to
v5, and G2 be a graph obtained from G1 by joining v4 to v8. The following upper
bounds for the Roman domination number of a graph are given in [1, 7].

Theorem 4 (Chambers et al. [1]). If G is a connected graph of order n with

δ(G) ≥ 2 and G 6∈ {C4, C5, C8, G1, G2}, then γR(G) ≤ 8n
11 .

Theorem 5 (Liu et al. [8]). If G is a connected graph of order n with δ(G) ≥ 3,
then γR(G) ≤ 2n

3 .

Theorem 6 (Hansberg et al. [4]). Let v be a vertex of a graph G. Then γR(G−v)
< γR(G) if and only if there is a γR(G)-function f = (V0, V1, V2) with v ∈ V1.

3. Minimum Degree at Least Two

We characterize graphs with minimum degree at least two that achieve equality
for the bound of Theorem 1.

Theorem 7. Let G ∈ RUV R be a connected graph of order n with δ(G) ≥ 2.
Then γR(G) = 2n

3 if and only if G is a cycle of order 3k for some integer k.

Proof. Let G ∈ RUV R be a connected graph of order n with δ(G) ≥ 2 and

γR(G) = 2n
3 . Let f =

(

V f
0 , V f

1 , V f
2

)

be a γR(G)-function. By Theorem 1, V f
2 is

an efficient dominating set of G and each vertex of V f
2 has degree 2. By Propo-

sition 3, V f
1 = ∅. We show that ∆(G) = 2. Suppose that ∆(G) ≥ 3. Since each

vertex of V f
2 has degree 2, V f

0 has some vertex of degree at least three.

Assume that there are two adjacent vertices u1, v1 ∈ V f
0 with degG(u1) ≥ 3

and degG(v1) ≥ 3. We remove the edge u1v1 to obtain a graph G1. Clearly,
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δ(G1) ≥ 2, γR(G1) =
2n
3 . Suppose that G1 6∈ RUV R. Clearly, there is no γR(G1)-

function h with V h
1 6= ∅, since any γR(G1)-function is a γR(G)-function. Thus by

Theorem 6, there is a vertex v ∈ V (G) such that γR(G1 − v) > γR(G1). Clearly

v 6∈ V f
0 . Thus v ∈ V f

2 . By Theorem 1, degG(v) = 2. Let NG(v) = {w1, w2}. Then
h defined on V (G1 − v) by h(u) = f(u) if u 6∈ {w1, w2}, and h(w1) = h(w2) = 1,
is an RDF for G1, implying that γR(G1 − v) ≤ γR(G1), a contradiction. Thus

G1 ∈ RUV R. If there are two adjacent vertices u2, v2 ∈ V f
0 with degG1

(u2) ≥ 3
and degG1

(v2) ≥ 3, then we remove the edge u2v2 to obtain a graph G2 with
δ(G2) ≥ 2, γR(G2) =

2n
3 , and G2 ∈ RUV R. Proceeding this process, if necessary,

we obtain a graph H = Gk (for some k ≥ 0) such that δ(H) ≥ 2, γR(H) = 2n
3 ,

H ∈ RUV R, and there is no pair of adjacent vertices u, v ∈ V f
0 with degH(u) ≥ 3

and degH(v) ≥ 3. Clearly, f is a γR(H)-function. Since δ(H) ≥ 2, H contains a

cycle C. Since there is no pair of adjacent vertices u, v ∈ V f
0 with degH(u) ≥ 3

and degH(v) ≥ 3, we find that V (C)∩V f
2 6= ∅. By Theorem 1, V f

2 ∩V (C) is a 2-

packing set for C. Thus for each v ∈ V f
0 ∩V (C),

∣

∣

∣NH(v) ∩ V (C) ∩ V f
0

∣

∣

∣ ≥ 1. By a

special Pk-path we mean a path of order k in C whose vertices belong to V f
0 (i.e., a

path v1v2 · · · vk with vi ∈ V (C) ∩ V f
0 for i = 1, 2, . . . , k, such that vivi+1 ∈ E(C)

for i = 1, 2, . . . , k − 1). A maximal special Pk-path is a special Pk-path that
cannot be extended to a special Pk+1-path. Clearly, C has no maximal P1-path.
Assume that C has a maximal special Pk-path with k ≥ 4. Let v1, v2, v3, v4 be
four consecutive vertices of this maximal special Pk-path. Then degH(v2) ≥ 3
and degH(v3) ≥ 3, a contradiction. Thus C has no maximal special Pk-path with
k ≥ 4. We consider the following cases.

Case 1. C has no maximal special P3-path. Since V f
2 is an efficient dom-

inating set of G, and thus an efficient dominating set of H, we conclude that
V f
2 ∩ V (C) is an efficient dominating set of C. Thus |V (C)| = 3t, for some in-

teger t ≥ 1. Without loss of generality, assume that V (C) = {v0, v1, . . . , v3t−1},
where vi is adjacent to vi+1 for i = 0, 1, 2, . . . , 3t− 2, and v0 is adjacent to v3t−1.
We may assume that V f

2 ∩ C = {v3i : i = 0, 1, . . . , t− 1}. Since ∆(G) ≥ 3 and G
is connected, there is a vertex vs ∈ V (C) with degG(vs) ≥ 3. Clearly, s ≡ 1 or 2
(mod 3). Assume that s ≡ 1 (mod 3). Let g be defined on V (H) by g(u) = f(u)
if u ∈ V (H)−V (C), and g(vi) = f(vi−1) (mod 3t) for i = 0, 1, 2, . . . , 3t−1. Then
g is a γR(G)-function, contradicting Theorem 1. If j ≡ 2 (mod 3), then h defined
on V (H) by g(u) = f(u) if u ∈ V (H) − V (C), and g(vi) = f(vi−2) (mod 3t) for
i = 0, 1, 2, . . . , 3t− 1 is a γR(G)-function, contradicting Theorem 1.

Case 2. C has some maximal special P3-path. Let j ≥ 1 be the number
of special P3-paths in C, and xiyizi (i = 1, 2, . . . , j) be the maximal special P3-
paths in C, where there is no maximal special P3-path on C between zi and
xi+1, i = 1, 2, . . . , j (mod j). Observe that (N(xi) ∩ V (C)) − {yi} ⊆ V f

2 , and
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(N(zi)∩V (C))−{yi} ⊆ V f
2 , for i = 1, 2, . . . , j. Let (N(zi)∩V (C))−{yi} = {z′i}

and (N(xi) ∩ V (C)) − {yi} = {x′i}, for i = 1, 2, . . . , j. On the other hand, any

vertex on V (C)∩ V f
0 lying between zi and xi+1, if any, belongs to some maximal

special P2-path. Note that it is possible that there are no vertices on V (C)∩ V f
0

lying between zi and xi+1 when zi and xi+1 have a common neighbor in V f
2 . Since

V f
2 ∩ V (C) is independent, for each i, the path on C starting at z′i and ending

at x′i+1 has 3ki + 1 vertices for some integer ki ≥ 0. Let vi0v
i
1 · · · v

i
3ki

be the path

on C starting at z′i and ending at x′i+1, where z′i = vi0 and x′i+1 = vi3ki . Thus C

is the cycle x1y1z1v
1
0v

1
1 · · · v

1
3k1

x2y2z2 · · ·xjyjzjv
j
0v

j
1 · · · v

j
3kj

x1. For i = 1, 2, . . . , j,

{vi3t : 0 ≤ t ≤ ki} ⊆ V f
2 and {vi3t+1, v

i
3t+2 : 0 ≤ t ≤ ki − 1} ⊆ V f

0 . For i = 1, 2,

. . . , j, let N(yi)∩V f
2 = {y′i}. Clearly, for i = 1, 2, . . . , j, y′i 6∈ C, and degG(y

′
i) = 2

by Theorem 1. Let N(y′i) − {yi} = {y′′i } for i = 1, 2, . . . , j. If y′′i ∈ V (C)

then y′′i ∈ {y1, . . . , yj} − {yi}, since V f
2 is an efficient dominating set for G. Let

D = {y′′i : i = 1, 2, . . . , j} ∩ V (C). Let g be defined on V (G) by g(u) = f(u) if

u 6∈ V (C)∪{y′i, y
′′
i : i = 1, 2, . . . , j}, g(u) = 2 if u ∈

⋃j
i=1{yi, v

i
3t+1 : 0 ≤ t ≤ ki−1},

g(u) = 0 if u ∈
⋃j

i=1{xi, zi, y
′
i, v

i
3t, v

i
3t+2 : 0 ≤ t ≤ ki − 1}, and g(u) = 1 if u ∈

⋃j
i=1{v3ki , y

′′
i } −D. It is straightforward to see that if D 6= ∅ then g is an RDF

for G of weight less than γR(G), and if D = ∅ then g is a γR(G)-function with

V f
1 6= ∅, a contradiction.

We conclude that ∆(G) = 2, and thus G is a cycle. Consequently, G is a
cycle of order 3k for some integer k. The converse is obvious.

Proposition 2 demonstrates that a graph G ∈ RUV R with ∆(G) > 2 should
have the Roman domination number less than 2n

3 .

Corollary 8. If G ∈ RUV R is a connected graph of order n with 2 ≤ δ(G) <
∆(G), then γR(G) ≤ 2n−2

3 . This bound is sharp.

Proof. Let G ∈ RUV R be a connected graph of order n with δ(G) ≥ 2. Let
f = (V0, V1, V2) be a γR(G)-function. Clearly, each vertex of V2 has at least two
private neighbors in V0. If each vertex of V2 has degree two, then by Theorem
1, γR(G) = 2n

3 , a contradiction. Thus there is a vertex x ∈ V2 with deg(x) ≥ 3.
Then

n ≥ deg(x) + 2(|V2| − 1) + |V2| = 3|V2|+ deg(x)− 2 =
3γR(G)

2
+ deg(x)− 2

implying that γR(G) ≤ 2n−2 deg(x)+4
3 ≤ 2n−2

3 . To see the sharpness consider the
graph K4 − e, where e ∈ E(K4).
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4. Minimum Degree at Least Three

We begin with the following lemma.

Lemma 9. Let G ∈ RUV R and f =
(

V f
0 , V f

1 , V f
2

)

be a γR(G)-function. If

v ∈ V f
2 is a vertex such that

∣

∣

∣
pn

(

v, V f
2

)∣

∣

∣
= 2, then deg

G[V f
2
]
(v) = 0.

Proof. Let v ∈ V f
2 be a vertex such that

∣

∣

∣
pn

(

v, V f
2

)∣

∣

∣
= 2. Suppose that v is ad-

jacent to a vertex x ∈ V f
2 . Let pn

(

v, V f
2

)

= {v1, v2}. Then
(

V f
0 ∪ {v}, {v1, v2},

V f
2 − {v}

)

is a γR(G)-function, contradicting Proposition 3.

In the following we present a sharp upper bound for the Roman domination
number of a claw-free graph G ∈ RUV R.

Theorem 10. If G ∈ RUV R is a claw-free graph of order n with δ(G) ≥ 3, then
γR(G) ≤ 4n−2

7 . This bound is sharp.

Proof. Let G ∈ RUV R be a claw-free graph of order n with δ(G) ≥ 3. Clearly,
any γR(G)-function satisfies Proposition 3.

Claim 1. There is a γR(G)-function f =
(

V f
0 , V f

1 , V f
2

)

such that one of the

following holds:

(1)
∣

∣

∣pn
(

v, V f
2

)∣

∣

∣ ≥ 3 for some v ∈ V f
2 .

(2) |N(x) ∩N(y)| ≥ 2 for some vertices x, y ∈ V f
2 .

Proof. Suppose that for every γR(G)-function g = (V g
0 , V

g
1 , V

g
2 ), |pn(v, V

g
2 )| = 2

for all v ∈ V g
2 , and |N(x) ∩N(y)| ≤ 1 for any pair of vertices x, y ∈ V g

2 . Let f =
(

V f
0 , V f

1 , V f
2

)

be a γR(G)-function. Clearly,
∣

∣

∣
V f
2

∣

∣

∣
≥ 2. By Proposition 3, V f

1 = ∅.

By our assumption,
∣

∣

∣pn
(

v, V f
2

)∣

∣

∣ = 2 for all v ∈ V f
2 , and |N(x)∩N(y)| ≤ 1 for any

pair of vertices x, y ∈ V f
2 . Let u ∈ V f

2 , pn
(

u, V f
2

)

= {u1, u2}. Let v ∈ N(u)−

{u1, u2}. By Lemma 9, v ∈ V f
0 . Let w ∈ N(v) ∩

(

V f
2 − {u}

)

. Let pn
(

w, V f
2

)

=

{w1, w2}. Since G is claw-free, {vw1, vw2, w1w2} ∩ E(G) 6= ∅ and {vu1, vu2,

u1u2}∩E(G) 6= ∅. Assume that u1u2 ∈ E(G). Then g =
(

V f
0 ∪ {u}, ∅,

(

V f
2 − {u}

)

∪{u1}) is a γR(G)-function with |pn(w, V g
2 )| = 3, a contradiction. Thus u1u2 6∈

E(G) and similarly w1w2 6∈ E(G). Without loss of generality assume that

vw1, vu1 ∈ E(G). Observe that N(u)∩N(w) = {v}. Now
((

V f
0 − {u2, w2, v}

)

∪

{u,w}, {u2, w2},
(

V f
2 − {u,w}

)

∪ {v}
)

is a γR(G) function contradicting Propo-

sition 3. This completes the proof of Claim 1. �



On the Roman Domination Stable Graphs 865

Let f =
(

V f
0 , V f

1 , V f
2

)

be a γR(G)-function satisfying Claim 1. Let A =
{

v ∈ V f
2 :

∣

∣

∣
pn

(

v, V f
2

)∣

∣

∣
= 2

}

and B =
{

v ∈ V f
2 :

∣

∣

∣
pn

(

v, V f
2

)∣

∣

∣
≥ 3

}

. Clearly,

V f
2 = A ∪ B. By Lemma 9, A is independent. Now we count

∣

∣

∣V
f
0

∣

∣

∣. Let Z0 =
{

v ∈ V f
0 : v ∈ pn

(

x, V f
2

)

for some x ∈ V f
2

}

and Z1 = V f
0 − Z0. Clearly,

∣

∣

∣
V f
0

∣

∣

∣
=

|Z0| + |Z1|. For any vertex x ∈ A,
∣

∣

∣pn
(

x, V f
2

)∣

∣

∣ = 2, and for any vertex x ∈ B,
∣

∣

∣
pn

(

x, V f
2

)∣

∣

∣
≥ 3. Thus |Z0| ≥ 2|A|+ 3|B|. For any vertex x ∈ A, by Lemma 9,

N(x)∩Z1 6= ∅, since δ(G) ≥ 3. On the other hand, for any y ∈ Z1, |N(y)∩A| ≤ 2,

since G is claw-free and A is independent. Assume that
∣

∣

∣pn
(

v, V f
2

)∣

∣

∣ ≥ 3 for some

v ∈ V f
2 . Then |Z1| ≥

|A|
2 . Hence

∣

∣

∣V
f
0

∣

∣

∣ = |Z0|+ |Z1| ≥ 2|A|+ 3|B|+
|A|

2
≥ 2

∣

∣

∣V
f
2

∣

∣

∣+ |B|+
|A|

2
=

5
∣

∣

∣
V f
2

∣

∣

∣

2
+

|B|

2
.

Now n =
∣

∣

∣V
f
0

∣

∣

∣ +
∣

∣

∣V
f
2

∣

∣

∣ ≥
5
∣

∣

∣
V f
2

∣

∣

∣

2 + |B|
2 +

∣

∣

∣V
f
2

∣

∣

∣ =
7
∣

∣

∣
V f
2

∣

∣

∣

2 + |B|
2 ≥

7
∣

∣

∣
V f
2

∣

∣

∣

2 + 1
2 .

Consequently, γR(G) ≤ 4n−2
7 . Next assume that |N(x) ∩ N(y)| ≥ 2 for some

vertices x, y ∈ V f
2 . Then |Z1| ≥

|A|+1
2 . Hence

∣

∣

∣
V f
0

∣

∣

∣
= |Z0|+ |Z1| ≥ 2|A|+ 3|B|+

|A|+ 1

2

≥ 2
∣

∣

∣
V f
2

∣

∣

∣
+ |B|+

|A|+ 1

2
=

5
∣

∣

∣V
f
2

∣

∣

∣

2
+

|B|

2
+

1

2
.

Now n =
∣

∣

∣
V f
0

∣

∣

∣
+
∣

∣

∣
V f
2

∣

∣

∣
≥

5
∣

∣

∣
V f
2

∣

∣

∣

2 + |B|
2 +1

2+
∣

∣

∣
V f
2

∣

∣

∣
=

7
∣

∣

∣
V f
2

∣

∣

∣

2 + |B|
2 +1

2 ≥
7
∣

∣

∣
V f
2

∣

∣

∣

2 +1
2 . Con-

sequently, γR(G) ≤ 4n−2
7 . To see the sharpness consider the complete graph K4.

We next present a sharp upper bound for the Roman domination number of
a graph G ∈ RUV R in terms of maximum degree.

Theorem 11. If G ∈ RUV R is a graph of order n with δ(G) ≥ 3, then

γR(G) ≤
2n

3





1

1 + δ(G)−2
3∆(G)



 .

This bound is sharp.



866 M. Hajian and N. Jafari Rad

Proof. LetG ∈ RUV R be a graph of order n with δ(G) ≥ 3. Let f=
(

V f
0 , V f

1 , V f
2

)

be a γR(G)-function. By Proposition 3, V f
1 = ∅. Let A,B, Z0 and Z1 be defined

as in the proof of Theorem 10. Thus |Z0| ≥ 2|A| + 3|B|. Any vertex of A has
at least δ(G)− 2 neighbors in Z1. Consequently, there are at least (δ(G)− 2)|A|

edges between V f
2 and Z1. But any vertex of Z1 is adjacent to at most ∆(G)

vertices of V f
2 . We conclude that |Z1| ≥

(δ(G)−2)|A|
∆(G) . Hence

∣

∣

∣
V f
0

∣

∣

∣
= |Z0|+ |Z1| ≥ 2|A|+ 3|B|+

(δ(G)− 2)|A|

∆(G)
(1)

= 2
∣

∣

∣
V f
2

∣

∣

∣
+ |B|+

(δ(G)− 2)|A|

∆(G)
(2)

Now

n =
∣

∣

∣
V f
0

∣

∣

∣
+
∣

∣

∣
V f
2

∣

∣

∣
≥ 2

∣

∣

∣
V f
2

∣

∣

∣
+ |B|+

(δ(G)− 2)|A|

∆(G)
+
∣

∣

∣
V f
2

∣

∣

∣
(3)

=
3∆(G)

∣

∣

∣
V f
2

∣

∣

∣
+∆(G)|B|+ (δ(G)− 2)|A|

∆(G)
(4)

=
(3∆(G) + δ(G)− 2)

∣

∣

∣
V f
2

∣

∣

∣
+ (∆(G)− (δ(G)− 2))|B|

∆(G)
(5)

≥
(3∆(G) + δ(G)− 2)

∣

∣

∣
V f
2

∣

∣

∣

∆(G)
(6)

and thus γR(G) ≤ 2n∆(G)
3∆(G)+δ(G)−2 = 2n

3

(

1
1+(δ(G)−2)/3∆(G)

)

. To see the sharpness

consider the graph G shown in Figure 1. Note that γR(G) = 6, and G ∈ RUV R.

�
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H
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��b
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tt

t tt t

t t

t

t

Figure 1. The graph G ∈ RUV R with γR(G) = 6 and n = 10.

Corollary 12. If G ∈ RUV R is a cubic graph of order n, then γR(G) ≤ 3n
5 , and

this bound is sharp.

We next improve Theorem 11 for C5-free graphs G with δ(G) = 3 and ∆(G)
≥ 4.
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Theorem 13. If G ∈ RUV R is a C5-free graph of order n with δ(G) = 3 and

∆(G) ≥ 4, then

γR(G) ≤
2n

3

(

∆(G)− 1/n

∆(G) + 1/3

)

.

Proof. Let G ∈ RUV R be a C5-free of order n with δ(G) = 3 and ∆(G) ≥ 4. Let

f =
(

V f
0 , V f

1 , V f
2

)

be a γR(G)-function satisfying Proposition 3. Let A, B, Z0 and

Z1 be defined as in the proof of Theorem 10. By Theorem 11, γR(G) ≤ 2n∆(G)
3∆(G)+1 .

We show that γR(G) < 2n∆(G)
3∆(G)+1 . Suppose that γR(G) = 2n∆(G)

3∆(G)+1 . Then each of

the inequalities in the proof of Theorem 11 will be equality. From (5) and (6) we

find that B = ∅, and from (1) we obtain |Z1| =
|A|

∆(G) . Consequently, each vertex of

Z1 is adjacent to precisely ∆(G) vertices of A, and each vertex of A has precisely
one neighbor in Z1 and two neighbors in Z0. Observe that γR(G) = 2|A| and

|Z1| =
|A|

∆(G) and |Z0| = 2|A|. Let H be the graph obtained from G by removal of

the vertices of N [x] for all x ∈ Z1. Clearly, V (H) = Z0. If H has no component

isomorphic to C4 or C8, then by Theorem 4, γR(H) ≤ 8|V (H)|
11 = 16|A|

11 . Let g
be a γR(H)-function. Then g1 defined on V (G) by g1(x) = g(x) if x ∈ V (H),
g1(x) = 2 if x ∈ Z1, and g1(x) = 0 if x ∈ A, is an RDF for G. Thus

γR(G) ≤
16|A|

11
+

2|A|

∆(G)
=

16∆(G)|A|+ 22|A|

11∆(G)
< 2|A|,

since ∆(G) ≥ 4. This is a contradiction. Thus assume that H has some comp-
onent isomorphic to C4 or C8. Let H has r1 components isomorphic to C4 and
r2 components isomorphic to C8. For any component C of H with C 6∈ {C4, C8},

by Theorem 4, γR(C) ≤ 8|V (C)|
11 . Let H ′′ be the union of C4-components and C8-

components of H, and H ′ = H −H ′′. (Thus H ′ is obtained from H by removing

each C4-component and also each C8-component of H.) Thus γR(H
′) ≤ 8|V (H′)|

11 .
Let g be a γR(H

′)-function, and g1 be a γR(H
′′)-function with V g1

1 6= ∅. Now
define h on V (G) by h(x) = g(x) if x ∈ V (H ′), h(x) = g1(x) if x ∈ V (H ′′),
h(x) = 2 if x ∈ Z1, and h(x) = 0 if x ∈ A. Then h is an RDF for G. Then by
Theorem 4,

γR(G) ≤
8|V (H ′)|

11
+ 3r1 + 6r2 + 2|Z1|

=
8(2|A| − 4r1 − 8r2)

11
+ 3r1 + 6r2 + 2

|A|

∆(G)

=
16∆(G)|A|+ r1∆(G) + 2r2∆(G) + 22|A|

11∆(G)
.

But 4r1 + 8r2 ≤ 2|A|, and thus ∆(G)(r1 + 2r2) ≤ ∆(G)|A|
2 . Thus γR(G) ≤
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(33∆(G)+44)|A|
22∆(G) ≤ 2|A|, since ∆(G) ≥ 4. This produces a contradiction, since G ∈

RUV R. We deduce that γR(G) < 2n∆(G)
3∆(G)+1 .

We conclude that B 6= ∅ or |Z1| >
|A|

∆(G) . Assume that B 6= ∅. Thus |B| ≥ 1.
Now

n =
∣

∣

∣V
f
0

∣

∣

∣+
∣

∣

∣V
f
2

∣

∣

∣ ≥
(2∆(G) + 1)

∣

∣

∣
V f
2

∣

∣

∣
+ (∆(G)− 1)|B|

∆(G)
+
∣

∣

∣V
f
2

∣

∣

∣

≥
(3∆(G) + 1)

∣

∣

∣
V f
2

∣

∣

∣
+ (∆(G)− 1)

∆(G)

and thus γR(G) ≤ 2n∆(G)−2∆(G)+2
3∆(G)+1 . Next assume that B = ∅. Then |Z1| >

|A|
∆(G) .

We have the following possibilities:

Possibility 1. There is a vertex a ∈ A such that |N(a) ∩ Z1| ≥ 2.

Possibility 2. There is a vertex x ∈ Z1 such that |N(x) ∩A| ≤ ∆(G)− 1.

In Possibility 1, it is obvious that |Z1| ≥
|A|+1
∆(G) , and in Possibility 2,

|Z1| ≥
|A| − (∆(G)− 1)

∆(G)
+ 1 =

|A|+ 1

∆(G)
.

Now

n =
∣

∣

∣V
f
0

∣

∣

∣+
∣

∣

∣V
f
2

∣

∣

∣ ≥
(2∆(G) + 1)

∣

∣

∣
V f
2

∣

∣

∣
+ 1

∆(G)
+
∣

∣

∣V
f
2

∣

∣

∣ =
(3∆(G) + 1)

∣

∣

∣
V f
2

∣

∣

∣
+ 1

∆(G)

and thus γR(G) ≤ 2n∆(G)−2
3∆(G)+1 = 2n

3

(

∆(G)−1/n
∆(G)+1/3

)

.

We next improve Theorem 11 for graphs G with δ(G) ≥ 4.

Theorem 14. If G ∈ RUV R is graph of order n with ∆(G) > 3δ(G) − 6 and

δ(G) ≥ 4, then

γR(G) ≤
2n

3

(

∆(G)− 1/n

∆(G) + (δ(G)− 2)/3

)

.

Proof. LetG ∈ RUV R be a graph of order n with δ(G) ≥ 4. Let f=
(

V f
0 , V f

1 , V f
2

)

be a γR(G)-function satisfying Proposition 3. Let A, B, Z0 and Z1 be defined as

in the proof of Theorem 10. By Theorem 11, γR(G) ≤ 2n∆(G)
3∆(G)+δ(G)−2 . We show

that γR(G) < 2n∆(G)
3∆(G)+δ(G)−2 . Suppose that γR(G) = 2n∆(G)

3∆(G)+δ(G)−2 . Then each of

the inequalities in the proof of Theorem 11 will be equality. From (5) and (6) we

find that B = ∅, and from (1) we obtain |Z1| =
(δ(G)−2)|A|

∆(G) . Consequently, each



On the Roman Domination Stable Graphs 869

vertex of Z1 is adjacent to precisely ∆(G) vertices of A, and each vertex of A
is of degree δ(G) and has precisely δ(G) − 2 neighbors in Z1 and two neighbors
in Z0.

Observe that γR(G) = 2|A|, |Z0| = 2|A|, and |Z1| =
(δ(G)−2)|A|

∆(G) . Let H be

the graph obtained from G by removal of the vertices of N [x] for all x ∈ Z1.
Clearly, V (H) = Z0 and |V (H)| = 2|A| = γR(G). Since δ(H) ≥ 3, by Theorem

5, γR(H) ≤ 2|V (H)|
3 = 4|A|

3 . Let g be a γR(H)-function. Then g1 defined on V (G)
by g1(x) = g(x) if x ∈ V (H), g1(x) = 2 if x ∈ Z1, and g1(x) = 0 if x is adjacent
to some vertex of Z1, is an RDF for G. Thus

γR(G) ≤
4|A|

3
+ 2|Z1| =

(4∆(G) + 6δ(G)− 12)|A|

3∆(G)
< 2|A|,

since ∆(G) > 3δ(G)− 6. This is a contradiction. Thus γR(G) < 2n∆(G)
3∆(G)+δ(G)−2 .

We conclude that B 6= ∅ or |Z1| >
(δ(G)−2)|A|

∆(G) . Assume that B 6= ∅. Then

n =
∣

∣

∣V
f
0

∣

∣

∣+
∣

∣

∣V
f
2

∣

∣

∣ ≥
(2∆(G) + δ(G)− 2)

∣

∣

∣
V f
2

∣

∣

∣
+ (∆(G)− (δ(G)− 2))|B|

∆(G)
+
∣

∣

∣V
f
2

∣

∣

∣

≥
(2∆(G) + δ(G)− 2)

∣

∣

∣V
f
2

∣

∣

∣+ (∆(G)− (δ(G)− 2))

∆(G)
+
∣

∣

∣
V f
2

∣

∣

∣

=
(3∆(G) + δ(G)− 2)

∣

∣

∣V
f
2

∣

∣

∣+ (∆(G)− (δ(G)− 2))

∆(G)

and thus γR(G) ≤ 2n∆(G)−2(∆(G)−(δ(G)−2))
3∆(G)+δ(G)−2 ≤ 2n∆(G)−2

3∆(G)+δ(G)−2 . Thus assume that

B = ∅. Then |Z1| >
(δ(G)−2)|A|

∆(G) . We have the following possibilities:

Possibility 1. There is a vertex a ∈ A such that |N(a) ∩ Z1| ≥ (δ(G)− 2).

Possibility 2. There is a vertex x ∈ Z1 such that |N(x) ∩A| ≤ ∆(G)− 1.

In Possibility 1, it is obvious that |Z1| ≥
(δ(G)−2)|A|+1

∆(G) , and in Possibility 2,

|Z1| ≥
(δ(G)− 2)|A| − (∆(G)− 1)

∆(G)
+ 1 =

(δ(G)− 2)|A|+ 1

∆(G)
.

Now

n =
∣

∣

∣
V f
0

∣

∣

∣
+
∣

∣

∣
V f
2

∣

∣

∣
≥

(2∆(G) + (δ(G)− 2))
∣

∣

∣V
f
2

∣

∣

∣+ 1

∆(G)
+

∣

∣

∣
V f
2

∣

∣

∣

=
(3∆(G) + (δ(G)− 2))

∣

∣

∣
V f
2

∣

∣

∣
+ 1

∆(G)
.

Thus γR(G) ≤ 2n∆(G)−2
3∆(G)+δ(G)−2 = 2n

3

(

∆(G)−1/n
∆(G)+(δ(G)−2)/3

)

.
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Since any planar graph has a vertex of degree at most five, we obtain the
following.

Corollary 15. If G ∈ RUV R is planar graph of order n with δ(G) ≥ 4 and

∆(G) ≥ 10, then γR(G) ≤ 2n
3

(

∆(G)−1/n
∆(G)+(δ(G)−2)/3

)

.

5. Concluding Remarks

Samodivkin [10] gave a constructive characterization for all trees in RUV R. He
constructed a family T of trees and proved that for a tree T , T ∈ RUV R if and
only if T ∈ T . Assume that G ∈ RUV R is a graph with δ(G) = 1 and γR(G) = 2n

3 .
If ∆(G) > 2 then by the argument given in the proof of Theorem 7, we obtain
a forest F ∈ RUV R with γR(F ) = 2n

3 . Thus each component of F belongs to T .
We propose the following problem.

Problem 16. Characterize all graphs G ∈ RUV R with γR(G) = 2n
3 and δ(G) = 1.

It can be seen that for any graph G, H = G ◦ K2 ∈ RUV R, and note that
γR(H) = 2|V (H)|

3 and δ(H) = 1. We also remark that we do not know the
sharpness of bounds of Theorems 13 and 14, and thus we propose the problem of
showing the sharpness of them or improving them.
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