ON THE ROMAN DOMINATION STABLE GRAPHS

Majid Hajian and Nader Jafari Rad
Department of Mathematics
Shahrood University of Technology
Shahrood, Iran
e-mail: n.jafarirad@gmail.com

Abstract

A Roman dominating function (or just RDF) on a graph $G=(V, E)$ is a function $f: V \longrightarrow\{0,1,2\}$ satisfying the condition that every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of an RDF f is the value $f(V(G))=\sum_{u \in V(G)} f(u)$. The Roman domination number of a graph G, denoted by $\gamma_{R}(G)$, is the minimum weight of a Roman dominating function on G. A graph G is Roman domination stable if the Roman domination number of G remains unchanged under removal of any vertex. In this paper we present upper bounds for the Roman domination number in the class of Roman domination stable graphs, improving bounds posed in [V. Samodivkin, Roman domination in graphs: the class $\mathcal{R}_{U V R}$, Discrete Math. Algorithms Appl. 8 (2016) 1650049].

Keywords: Roman domination number, bound.
2010 Mathematics Subject Classification: 05C69.

1. Introduction

For notation and graph theory terminology in general we follow [5]. Let $G=$ (V, E) be a simple graph of order n. We denote the open neighborhood of a vertex v of G by $N_{G}(v)$, or just $N(v)$, and its closed neighborhood by $N_{G}[v]=N[v]$. For a vertex set $S \subseteq V(G), N(S)=\bigcup_{v \in S} N(v)$ and $N[S]=\bigcup_{v \in S} N[v]$. The degree $\operatorname{deg}(x)$ (or $\operatorname{deg}_{G}(x)$ to refer to G) of a vertex x is the number of neighbors of x in G. The maximum degree and minimum degree among the vertices of G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. A set S of vertices in G is a dominating set, if $N[S]=V(G)$. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. A dominating set S in G is an
efficient dominating set, if $|N[v] \cap S|=1$ for every vertex $v \in V(G)$. If S is a subset of $V(G)$, then we denote by $G[S]$ the subgraph of G induced by S. A graph G is claw-free if it has no induced subgraph isomorphic to $K_{1,3}$. A subset S of vertices of G is a 2-packing if $N[u] \cap N[v]=\emptyset$ for every pair u, v of vertices of S. The 2 -corona $G \circ K_{2}$ of a graph G is a graph obtained from G by attaching a path of order two to every vertex of G.

For a graph G, let $f: V(G) \rightarrow\{0,1,2\}$ be a function, and let $\left(V_{0}, V_{1}, V_{2}\right)$ be the ordered partition of $V(G)$ induced by f, where $V_{i}=\{v \in V(G): f(v)=i\}$ for $i=0,1,2$. There is a $1-1$ correspondence between the functions $f: V(G) \rightarrow$ $\{0,1,2\}$ and the ordered partitions $\left(V_{0}, V_{1}, V_{2}\right)$ of $V(G)$. So we will write $f=$ $\left(V_{0}, V_{1}, V_{2}\right)$ (or $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right.$) to refer to f). A function $f: V(G) \rightarrow\{0,1,2\}$ is a Roman dominating function (or just RDF) if every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of an RDF f is $w(f)=f(V(G))=\sum_{u \in V(G)} f(u)$. The Roman domination number of a graph G, denoted by $\gamma_{R}(G)$, is the minimum weight of an RDF on G. A function $f=\left(V_{0}, V_{1}, V_{2}\right)$ is called a γ_{R}-function (or $\gamma_{R}(G)$-function when we want to refer f to G), if it is an RDF and $f(V(G))=\gamma_{R}(G)$. A graph G is a Roman graph if $\gamma_{R}(G)=2 \gamma(G)$. If $f=\left(V_{0}, V_{1}, V_{2}\right)$ is an RDF in G then for any vertex $v \in V_{2}$, we define $p n\left(v, V_{2}^{f}\right)=\left\{u \in V_{0}: N(u) \cap V_{2}^{f}=\{v\}\right\}$. For references in Roman domination see for example $[1,2,3,9]$.

The affection of vertex removal on Roman domination number in a graph has been studied in [4]. Jafari Rad and Volkmann [6] introduced the concept of Roman domination stable graphs. A graph G is Roman domination stable if $\gamma_{R}(G-v)=\gamma_{R}(G)$ for all $v \in V(G)$. Let $\mathcal{R}_{U V R}$ be the class of all Roman domination stable graphs. Samodivkin [10] studied properties of Roman domination stable graphs.

Theorem 1 (Samodivkin [10]). Let $G \in \mathcal{R}_{U V R}$ be a connected graph of order n. Then $\gamma_{R}(G) \leq \frac{2 n}{3}$. If the equality holds, then for any $\gamma_{R}(G)$-function f, V_{2}^{f} is an efficient dominating set of G and each vertex of V_{2}^{f} has degree 2. If G has an efficient dominating set D and each vertex of D has degree 2 , then $\gamma_{R}(G)=\frac{2 n}{3}$.

Problem 2 (Samodivkin [10]). Find an attainable constant upper bound for $\frac{\gamma_{R}(G)}{|V(G)|}$ on all connected graphs $G \in \mathcal{R}_{U V R}$ with $\delta(G) \geq 3$.

In this paper we present upper bounds for the Roman domination number in the class of Roman domination stable graphs. First we characterize Roman domination stable graphs G with $\delta(G)=2$ that achieve the upper bound of Theorem 1 as the cycles of order divisible by 3 . Next, we consider the Roman domination stable graphs G with $\delta(G) \geq 3$. In particular, we improve Theorem 1 for claw-free Roman domination stable graphs. Finally, we present several upper bounds for the Roman domination number in Roman domination stable graphs,
which are expressed in terms of the order, the maximum and the minimum degree of a graph.

2. Known Results

The following proposition of Samodivkin plays an important role in this paper.
Proposition 3 (Samodivkin [10]). Let a graph G be in $\mathcal{R}_{U V R}$. Then G is a Roman graph. For any $\gamma_{R}(G)$-function $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right), V_{1}^{f}=\emptyset, V_{2}^{f}$ is a $\gamma(G)$-set, and $\left|p n\left(v, V_{2}^{f}\right)\right| \geq 2$ for any $v \in V_{2}^{f}$. If D is a $\gamma(G)$-set, then $h=$ $(V(G)-D, \emptyset, D)$ is a $\gamma_{R}(G)$-function.

Let G_{1} be a graph obtained from a cycle $C_{8}: v_{1} v_{2} \cdots v_{8} v_{1}$ by joining v_{1} to v_{5}, and G_{2} be a graph obtained from G_{1} by joining v_{4} to v_{8}. The following upper bounds for the Roman domination number of a graph are given in [1, 7].

Theorem 4 (Chambers et al. [1]). If G is a connected graph of order n with $\delta(G) \geq 2$ and $G \notin\left\{C_{4}, C_{5}, C_{8}, G_{1}, G_{2}\right\}$, then $\gamma_{R}(G) \leq \frac{8 n}{11}$.

Theorem 5 (Liu et al. [8]). If G is a connected graph of order n with $\delta(G) \geq 3$, then $\gamma_{R}(G) \leq \frac{2 n}{3}$.

Theorem 6 (Hansberg et al. [4]). Let v be a vertex of a graph G. Then $\gamma_{R}(G-v)$ $<\gamma_{R}(G)$ if and only if there is a $\gamma_{R}(G)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ with $v \in V_{1}$.

3. Minimum Degree at Least Two

We characterize graphs with minimum degree at least two that achieve equality for the bound of Theorem 1 .

Theorem 7. Let $G \in \mathcal{R}_{U V R}$ be a connected graph of order n with $\delta(G) \geq 2$. Then $\gamma_{R}(G)=\frac{2 n}{3}$ if and only if G is a cycle of order $3 k$ for some integer k.

Proof. Let $G \in \mathcal{R}_{U V R}$ be a connected graph of order n with $\delta(G) \geq 2$ and $\gamma_{R}(G)=\frac{2 n}{3}$. Let $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be a $\gamma_{R}(G)$-function. By Theorem $1, V_{2}^{f}$ is an efficient dominating set of G and each vertex of V_{2}^{f} has degree 2. By Proposition $3, V_{1}^{f}=\emptyset$. We show that $\Delta(G)=2$. Suppose that $\Delta(G) \geq 3$. Since each vertex of V_{2}^{f} has degree $2, V_{0}^{f}$ has some vertex of degree at least three.

Assume that there are two adjacent vertices $u_{1}, v_{1} \in V_{0}^{f}$ with $\operatorname{deg}_{G}\left(u_{1}\right) \geq 3$ and $\operatorname{deg}_{G}\left(v_{1}\right) \geq 3$. We remove the edge $u_{1} v_{1}$ to obtain a graph G_{1}. Clearly,
$\delta\left(G_{1}\right) \geq 2, \gamma_{R}\left(G_{1}\right)=\frac{2 n}{3}$. Suppose that $G_{1} \notin \mathcal{R}_{U V R}$. Clearly, there is no $\gamma_{R}\left(G_{1}\right)-$ function h with $V_{1}^{h} \neq \emptyset$, since any $\gamma_{R}\left(G_{1}\right)$-function is a $\gamma_{R}(G)$-function. Thus by Theorem 6, there is a vertex $v \in V(G)$ such that $\gamma_{R}\left(G_{1}-v\right)>\gamma_{R}\left(G_{1}\right)$. Clearly $v \notin V_{0}^{f}$. Thus $v \in V_{2}^{f}$. By Theorem $1, \operatorname{deg}_{G}(v)=2$. Let $N_{G}(v)=\left\{w_{1}, w_{2}\right\}$. Then h defined on $V\left(G_{1}-v\right)$ by $h(u)=f(u)$ if $u \notin\left\{w_{1}, w_{2}\right\}$, and $h\left(w_{1}\right)=h\left(w_{2}\right)=1$, is an RDF for G_{1}, implying that $\gamma_{R}\left(G_{1}-v\right) \leq \gamma_{R}\left(G_{1}\right)$, a contradiction. Thus $G_{1} \in \mathcal{R}_{U V R}$. If there are two adjacent vertices $u_{2}, v_{2} \in V_{0}^{f}$ with $\operatorname{deg}_{G_{1}}\left(u_{2}\right) \geq 3$ and $\operatorname{deg}_{G_{1}}\left(v_{2}\right) \geq 3$, then we remove the edge $u_{2} v_{2}$ to obtain a graph G_{2} with $\delta\left(G_{2}\right) \geq 2, \gamma_{R}\left(G_{2}\right)=\frac{2 n}{3}$, and $G_{2} \in \mathcal{R}_{U V R}$. Proceeding this process, if necessary, we obtain a graph $H=G_{k}$ (for some $k \geq 0$) such that $\delta(H) \geq 2, \gamma_{R}(H)=\frac{2 n}{3}$, $H \in \mathcal{R}_{U V R}$, and there is no pair of adjacent vertices $u, v \in V_{0}^{f}$ with $\operatorname{deg}_{H}(u) \geq 3$ and $\operatorname{deg}_{H}(v) \geq 3$. Clearly, f is a $\gamma_{R}(H)$-function. Since $\delta(H) \geq 2, H$ contains a cycle C. Since there is no pair of adjacent vertices $u, v \in V_{0}^{f}$ with $\operatorname{deg}_{H}(u) \geq 3$ and $\operatorname{deg}_{H}(v) \geq 3$, we find that $V(C) \cap V_{2}^{f} \neq \emptyset$. By Theorem $1, V_{2}^{f} \cap V(C)$ is a 2 packing set for C. Thus for each $v \in V_{0}^{f} \cap V(C),\left|N_{H}(v) \cap V(C) \cap V_{0}^{f}\right| \geq 1$. By a special P_{k}-path we mean a path of order k in C whose vertices belong to V_{0}^{f} (i.e., a path $v_{1} v_{2} \cdots v_{k}$ with $v_{i} \in V(C) \cap V_{0}^{f}$ for $i=1,2, \ldots, k$, such that $v_{i} v_{i+1} \in E(C)$ for $i=1,2, \ldots, k-1$). A maximal special P_{k}-path is a special P_{k}-path that cannot be extended to a special P_{k+1}-path. Clearly, C has no maximal P_{1}-path. Assume that C has a maximal special P_{k}-path with $k \geq 4$. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be four consecutive vertices of this maximal special P_{k}-path. Then $\operatorname{deg}_{H}\left(v_{2}\right) \geq 3$ and $\operatorname{deg}_{H}\left(v_{3}\right) \geq 3$, a contradiction. Thus C has no maximal special P_{k}-path with $k \geq 4$. We consider the following cases.

Case 1. C has no maximal special P_{3}-path. Since V_{2}^{f} is an efficient dominating set of G, and thus an efficient dominating set of H, we conclude that $V_{2}^{f} \cap V(C)$ is an efficient dominating set of C. Thus $|V(C)|=3 t$, for some integer $t \geq 1$. Without loss of generality, assume that $V(C)=\left\{v_{0}, v_{1}, \ldots, v_{3 t-1}\right\}$, where v_{i} is adjacent to v_{i+1} for $i=0,1,2, \ldots, 3 t-2$, and v_{0} is adjacent to $v_{3 t-1}$. We may assume that $V_{2}^{f} \cap C=\left\{v_{3 i}: i=0,1, \ldots, t-1\right\}$. Since $\Delta(G) \geq 3$ and G is connected, there is a vertex $v_{s} \in V(C)$ with $\operatorname{deg}_{G}\left(v_{s}\right) \geq 3$. Clearly, $s \equiv 1$ or 2 $(\bmod 3)$. Assume that $s \equiv 1(\bmod 3)$. Let g be defined on $V(H)$ by $g(u)=f(u)$ if $u \in V(H)-V(C)$, and $g\left(v_{i}\right)=f\left(v_{i-1}\right)(\bmod 3 t)$ for $i=0,1,2, \ldots, 3 t-1$. Then g is a $\gamma_{R}(G)$-function, contradicting Theorem 1. If $j \equiv 2(\bmod 3)$, then h defined on $V(H)$ by $g(u)=f(u)$ if $u \in V(H)-V(C)$, and $g\left(v_{i}\right)=f\left(v_{i-2}\right)(\bmod 3 t)$ for $i=0,1,2, \ldots, 3 t-1$ is a $\gamma_{R}(G)$-function, contradicting Theorem 1.

Case 2. C has some maximal special P_{3}-path. Let $j \geq 1$ be the number of special P_{3}-paths in C, and $x_{i} y_{i} z_{i}(i=1,2, \ldots, j)$ be the maximal special P_{3} paths in C, where there is no maximal special P_{3}-path on C between z_{i} and $x_{i+1}, i=1,2, \ldots, j(\bmod j)$. Observe that $\left(N\left(x_{i}\right) \cap V(C)\right)-\left\{y_{i}\right\} \subseteq V_{2}^{f}$, and
$\left(N\left(z_{i}\right) \cap V(C)\right)-\left\{y_{i}\right\} \subseteq V_{2}^{f}$, for $i=1,2, \ldots, j$. Let $\left(N\left(z_{i}\right) \cap V(C)\right)-\left\{y_{i}\right\}=\left\{z_{i}^{\prime}\right\}$ and $\left(N\left(x_{i}\right) \cap V(C)\right)-\left\{y_{i}\right\}=\left\{x_{i}^{\prime}\right\}$, for $i=1,2, \ldots, j$. On the other hand, any vertex on $V(C) \cap V_{0}^{f}$ lying between z_{i} and x_{i+1}, if any, belongs to some maximal special P_{2}-path. Note that it is possible that there are no vertices on $V(C) \cap V_{0}^{f}$ lying between z_{i} and x_{i+1} when z_{i} and x_{i+1} have a common neighbor in V_{2}^{f}. Since $V_{2}^{f} \cap V(C)$ is independent, for each i, the path on C starting at z_{i}^{\prime} and ending at x_{i+1}^{\prime} has $3 k_{i}+1$ vertices for some integer $k_{i} \geq 0$. Let $v_{0}^{i} v_{1}^{i} \cdots v_{3 k_{i}}^{i}$ be the path on C starting at z_{i}^{\prime} and ending at x_{i+1}^{\prime}, where $z_{i}^{\prime}=v_{0}^{i}$ and $x_{i+1}^{\prime}=v_{3 k_{i}}^{i}$. Thus C is the cycle $x_{1} y_{1} z_{1} v_{0}^{1} v_{1}^{1} \cdots v_{3 k_{1}}^{1} x_{2} y_{2} z_{2} \cdots x_{j} y_{j} z_{j} v_{0}^{j} v_{1}^{j} \cdots v_{3 k_{j}}^{j} x_{1}$. For $i=1,2, \ldots, j$, $\left\{v_{3 t}^{i}: 0 \leq t \leq k_{i}\right\} \subseteq V_{2}^{f}$ and $\left\{v_{3 t+1}^{i}, v_{3 t+2}^{i}: 0 \leq t \leq k_{i}-1\right\} \subseteq V_{0}^{f}$. For $i=1,2$, \ldots, j, let $N\left(y_{i}\right) \cap V_{2}^{f}=\left\{y_{i}^{\prime}\right\}$. Clearly, for $i=1,2, \ldots, j, y_{i}^{\prime} \notin C$, and $\operatorname{deg}_{G}\left(y_{i}^{\prime}\right)=2$ by Theorem 1. Let $N\left(y_{i}^{\prime}\right)-\left\{y_{i}\right\}=\left\{y_{i}^{\prime \prime}\right\}$ for $i=1,2, \ldots, j$. If $y_{i}^{\prime \prime} \in V(C)$ then $y_{i}^{\prime \prime} \in\left\{y_{1}, \ldots, y_{j}\right\}-\left\{y_{i}\right\}$, since V_{2}^{f} is an efficient dominating set for G. Let $D=\left\{y_{i}^{\prime \prime}: i=1,2, \ldots, j\right\} \cap V(C)$. Let g be defined on $V(G)$ by $g(u)=f(u)$ if $u \notin V(C) \cup\left\{y_{i}^{\prime}, y_{i}^{\prime \prime}: i=1,2, \ldots, j\right\}, g(u)=2$ if $u \in \bigcup_{i=1}^{j}\left\{y_{i}, v_{3 t+1}^{i}: 0 \leq t \leq k_{i}-1\right\}$, $g(u)=0$ if $u \in \bigcup_{i=1}^{j}\left\{x_{i}, z_{i}, y_{i}^{\prime}, v_{3 t}^{i}, v_{3 t+2}^{i}: 0 \leq t \leq k_{i}-1\right\}$, and $g(u)=1$ if $u \in$ $\bigcup_{i=1}^{j}\left\{v_{3 k_{i}}, y_{i}^{\prime \prime}\right\}-D$. It is straightforward to see that if $D \neq \emptyset$ then g is an RDF for G of weight less than $\gamma_{R}(G)$, and if $D=\emptyset$ then g is a $\gamma_{R}(G)$-function with $V_{1}^{f} \neq \emptyset$, a contradiction.

We conclude that $\Delta(G)=2$, and thus G is a cycle. Consequently, G is a cycle of order $3 k$ for some integer k. The converse is obvious.

Proposition 2 demonstrates that a graph $G \in \mathcal{R}_{U V R}$ with $\Delta(G)>2$ should have the Roman domination number less than $\frac{2 n}{3}$.

Corollary 8. If $G \in \mathcal{R}_{U V R}$ is a connected graph of order n with $2 \leq \delta(G)<$ $\Delta(G)$, then $\gamma_{R}(G) \leq \frac{2 n-2}{3}$. This bound is sharp.

Proof. Let $G \in \mathcal{R}_{U V R}$ be a connected graph of order n with $\delta(G) \geq 2$. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{R}(G)$-function. Clearly, each vertex of V_{2} has at least two private neighbors in V_{0}. If each vertex of V_{2} has degree two, then by Theorem $1, \gamma_{R}(G)=\frac{2 n}{3}$, a contradiction. Thus there is a vertex $x \in V_{2}$ with $\operatorname{deg}(x) \geq 3$. Then

$$
n \geq \operatorname{deg}(x)+2\left(\left|V_{2}\right|-1\right)+\left|V_{2}\right|=3\left|V_{2}\right|+\operatorname{deg}(x)-2=\frac{3 \gamma_{R}(G)}{2}+\operatorname{deg}(x)-2
$$

implying that $\gamma_{R}(G) \leq \frac{2 n-2 \operatorname{deg}(x)+4}{3} \leq \frac{2 n-2}{3}$. To see the sharpness consider the graph $K_{4}-e$, where $e \in E\left(K_{4}\right)$.

4. Minimum Degree at Least Three

We begin with the following lemma.
Lemma 9. Let $G \in \mathcal{R}_{U V R}$ and $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be a $\gamma_{R}(G)$-function. If $v \in V_{2}^{f}$ is a vertex such that $\left|p n\left(v, V_{2}^{f}\right)\right|=2$, then $\operatorname{deg}_{G\left[V_{2}^{f}\right]}(v)=0$.

Proof. Let $v \in V_{2}^{f}$ be a vertex such that $\left|p n\left(v, V_{2}^{f}\right)\right|=2$. Suppose that v is adjacent to a vertex $x \in V_{2}^{f}$. Let $p n\left(v, V_{2}^{f}\right)=\left\{v_{1}, v_{2}\right\}$. Then $\left(V_{0}^{f} \cup\{v\},\left\{v_{1}, v_{2}\right\}\right.$, $\left.V_{2}^{f}-\{v\}\right)$ is a $\gamma_{R}(G)$-function, contradicting Proposition 3.

In the following we present a sharp upper bound for the Roman domination number of a claw-free graph $G \in \mathcal{R}_{U V R}$.

Theorem 10. If $G \in \mathcal{R}_{U V R}$ is a claw-free graph of order n with $\delta(G) \geq 3$, then $\gamma_{R}(G) \leq \frac{4 n-2}{7}$. This bound is sharp.
Proof. Let $G \in \mathcal{R}_{U V R}$ be a claw-free graph of order n with $\delta(G) \geq 3$. Clearly, any $\gamma_{R}(G)$-function satisfies Proposition 3.
Claim 1. There is a $\gamma_{R}(G)$-function $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ such that one of the following holds:
(1) $\left|p n\left(v, V_{2}^{f}\right)\right| \geq 3$ for some $v \in V_{2}^{f}$.
(2) $|N(x) \cap N(y)| \geq 2$ for some vertices $x, y \in V_{2}^{f}$.

Proof. Suppose that for every $\gamma_{R}(G)$-function $g=\left(V_{0}^{g}, V_{1}^{g}, V_{2}^{g}\right),\left|p n\left(v, V_{2}^{g}\right)\right|=2$ for all $v \in V_{2}^{g}$, and $|N(x) \cap N(y)| \leq 1$ for any pair of vertices $x, y \in V_{2}^{g}$. Let $f=$ $\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be a $\gamma_{R}(G)$-function. Clearly, $\left|V_{2}^{f}\right| \geq 2$. By Proposition $3, V_{1}^{f}=\emptyset$. By our assumption, $\left|p n\left(v, V_{2}^{f}\right)\right|=2$ for all $v \in V_{2}^{f}$, and $|N(x) \cap N(y)| \leq 1$ for any pair of vertices $x, y \in V_{2}^{f}$. Let $u \in V_{2}^{f}, p n\left(u, V_{2}^{f}\right)=\left\{u_{1}, u_{2}\right\}$. Let $v \in N(u)-$ $\left\{u_{1}, u_{2}\right\}$. By Lemma $9, v \in V_{0}^{f}$. Let $w \in N(v) \cap\left(V_{2}^{f}-\{u\}\right)$. Let $p n\left(w, V_{2}^{f}\right)=$ $\left\{w_{1}, w_{2}\right\}$. Since G is claw-free, $\left\{v w_{1}, v w_{2}, w_{1} w_{2}\right\} \cap E(G) \neq \emptyset$ and $\left\{v u_{1}, v u_{2}\right.$, $\left.u_{1} u_{2}\right\} \cap E(G) \neq \emptyset$. Assume that $u_{1} u_{2} \in E(G)$. Then $g=\left(V_{0}^{f} \cup\{u\}, \emptyset,\left(V_{2}^{f}-\{u\}\right)\right.$ $\left.\cup\left\{u_{1}\right\}\right)$ is a $\gamma_{R}(G)$-function with $\left|p n\left(w, V_{2}^{g}\right)\right|=3$, a contradiction. Thus $u_{1} u_{2} \notin$ $E(G)$ and similarly $w_{1} w_{2} \notin E(G)$. Without loss of generality assume that $v w_{1}, v u_{1} \in E(G)$. Observe that $N(u) \cap N(w)=\{v\}$. Now $\left(\left(V_{0}^{f}-\left\{u_{2}, w_{2}, v\right\}\right) \cup\right.$ $\left.\{u, w\},\left\{u_{2}, w_{2}\right\},\left(V_{2}^{f}-\{u, w\}\right) \cup\{v\}\right)$ is a $\gamma_{R}(G)$ function contradicting Proposition 3. This completes the proof of Claim 1.

Let $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be a $\gamma_{R}(G)$-function satisfying Claim 1. Let $A=$ $\left\{v \in V_{2}^{f}:\left|p n\left(v, V_{2}^{f}\right)\right|=2\right\}$ and $B=\left\{v \in V_{2}^{f}:\left|p n\left(v, V_{2}^{f}\right)\right| \geq 3\right\}$. Clearly, $V_{2}^{f}=A \cup B$. By Lemma $9, A$ is independent. Now we count $\left|V_{0}^{f}\right|$. Let $Z_{0}=$ $\left\{v \in V_{0}^{f}: v \in p n\left(x, V_{2}^{f}\right)\right.$ for some $\left.x \in V_{2}^{f}\right\}$ and $Z_{1}=V_{0}^{f}-Z_{0}$. Clearly, $\left|V_{0}^{f}\right|=$ $\left|Z_{0}\right|+\left|Z_{1}\right|$. For any vertex $x \in A,\left|p n\left(x, V_{2}^{f}\right)\right|=2$, and for any vertex $x \in B$, $\left|p n\left(x, V_{2}^{f}\right)\right| \geq 3$. Thus $\left|Z_{0}\right| \geq 2|A|+3|B|$. For any vertex $x \in A$, by Lemma 9 , $N(x) \cap Z_{1} \neq \emptyset$, since $\delta(G) \geq 3$. On the other hand, for any $y \in Z_{1},|N(y) \cap A| \leq 2$, since G is claw-free and A is independent. Assume that $\left|p n\left(v, V_{2}^{f}\right)\right| \geq 3$ for some $v \in V_{2}^{f}$. Then $\left|Z_{1}\right| \geq \frac{|A|}{2}$. Hence

$$
\left|V_{0}^{f}\right|=\left|Z_{0}\right|+\left|Z_{1}\right| \geq 2|A|+3|B|+\frac{|A|}{2} \geq 2\left|V_{2}^{f}\right|+|B|+\frac{|A|}{2}=\frac{5\left|V_{2}^{f}\right|}{2}+\frac{|B|}{2} .
$$

Now $n=\left|V_{0}^{f}\right|+\left|V_{2}^{f}\right| \geq \frac{5\left|V_{2}^{f}\right|}{2}+\frac{|B|}{2}+\left|V_{2}^{f}\right|=\frac{7\left|V_{2}^{f}\right|}{2}+\frac{|B|}{2} \geq \frac{7\left|V_{2}^{f}\right|}{2}+\frac{1}{2}$. Consequently, $\gamma_{R}(G) \leq \frac{4 n-2}{7}$. Next assume that $|N(x) \cap N(y)| \geq 2$ for some vertices $x, y \in V_{2}^{f}$. Then $\left|Z_{1}\right| \geq \frac{|A|+1}{2}$. Hence

$$
\begin{aligned}
\left|V_{0}^{f}\right| & =\left|Z_{0}\right|+\left|Z_{1}\right| \geq 2|A|+3|B|+\frac{|A|+1}{2} \\
& \geq 2\left|V_{2}^{f}\right|+|B|+\frac{|A|+1}{2}=\frac{5\left|V_{2}^{f}\right|}{2}+\frac{|B|}{2}+\frac{1}{2} .
\end{aligned}
$$

Now $n=\left|V_{0}^{f}\right|+\left|V_{2}^{f}\right| \geq \frac{5\left|V_{2}^{f}\right|}{2}+\frac{|B|}{2}+\frac{1}{2}+\left|V_{2}^{f}\right|=\frac{7\left|V_{2}^{f}\right|}{2}+\frac{|B|}{2}+\frac{1}{2} \geq \frac{7\left|V_{2}^{f}\right|}{2}+\frac{1}{2}$. Consequently, $\gamma_{R}(G) \leq \frac{4 n-2}{7}$. To see the sharpness consider the complete graph K_{4}.

We next present a sharp upper bound for the Roman domination number of a graph $G \in \mathcal{R}_{U V R}$ in terms of maximum degree.

Theorem 11. If $G \in \mathcal{R}_{U V R}$ is a graph of order n with $\delta(G) \geq 3$, then

$$
\gamma_{R}(G) \leq \frac{2 n}{3}\left(\frac{1}{1+\frac{\delta(G)-2}{3 \Delta(G)}}\right) .
$$

This bound is sharp.

Proof. Let $G \in \mathcal{R}_{U V R}$ be a graph of order n with $\delta(G) \geq 3$. Let $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be a $\gamma_{R}(G)$-function. By Proposition $3, V_{1}^{f}=\emptyset$. Let A, B, Z_{0} and Z_{1} be defined as in the proof of Theorem 10. Thus $\left|Z_{0}\right| \geq 2|A|+3|B|$. Any vertex of A has at least $\delta(G)-2$ neighbors in Z_{1}. Consequently, there are at least $(\delta(G)-2)|A|$ edges between V_{2}^{f} and Z_{1}. But any vertex of Z_{1} is adjacent to at most $\Delta(G)$ vertices of V_{2}^{f}. We conclude that $\left|Z_{1}\right| \geq \frac{(\delta(G)-2)|A|}{\Delta(G)}$. Hence

$$
\begin{align*}
\left|V_{0}^{f}\right| & =\left|Z_{0}\right|+\left|Z_{1}\right| \geq 2|A|+3|B|+\frac{(\delta(G)-2)|A|}{\Delta(G)} \tag{1}\\
& =2\left|V_{2}^{f}\right|+|B|+\frac{(\delta(G)-2)|A|}{\Delta(G)}
\end{align*}
$$

Now

$$
\begin{align*}
n & =\left|V_{0}^{f}\right|+\left|V_{2}^{f}\right| \geq 2\left|V_{2}^{f}\right|+|B|+\frac{(\delta(G)-2)|A|}{\Delta(G)}+\left|V_{2}^{f}\right| \tag{3}\\
& =\frac{3 \Delta(G)\left|V_{2}^{f}\right|+\Delta(G)|B|+(\delta(G)-2)|A|}{\Delta(G)} \tag{4}\\
& =\frac{(3 \Delta(G)+\delta(G)-2)\left|V_{2}^{f}\right|+(\Delta(G)-(\delta(G)-2))|B|}{\Delta(G)} \tag{5}\\
& \geq \frac{(3 \Delta(G)+\delta(G)-2)\left|V_{2}^{f}\right|}{\Delta(G)} \tag{6}
\end{align*}
$$

and thus $\gamma_{R}(G) \leq \frac{2 n \Delta(G)}{3 \Delta(G)+\delta(G)-2}=\frac{2 n}{3}\left(\frac{1}{1+(\delta(G)-2) / 3 \Delta(G)}\right)$. To see the sharpness consider the graph G shown in Figure 1. Note that $\gamma_{R}(G)=6$, and $G \in \mathcal{R}_{U V R}$.

Figure 1. The graph $G \in \mathcal{R}_{U V R}$ with $\gamma_{R}(G)=6$ and $n=10$.
Corollary 12. If $G \in \mathcal{R}_{U V R}$ is a cubic graph of order n, then $\gamma_{R}(G) \leq \frac{3 n}{5}$, and this bound is sharp.

We next improve Theorem 11 for C_{5}-free graphs G with $\delta(G)=3$ and $\Delta(G)$ ≥ 4.

Theorem 13. If $G \in \mathcal{R}_{U V R}$ is a C_{5}-free graph of order n with $\delta(G)=3$ and $\Delta(G) \geq 4$, then

$$
\gamma_{R}(G) \leq \frac{2 n}{3}\left(\frac{\Delta(G)-1 / n}{\Delta(G)+1 / 3}\right)
$$

Proof. Let $G \in \mathcal{R}_{U V R}$ be a C_{5}-free of order n with $\delta(G)=3$ and $\Delta(G) \geq 4$. Let $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be a $\gamma_{R}(G)$-function satisfying Proposition 3. Let A, B, Z_{0} and Z_{1} be defined as in the proof of Theorem 10. By Theorem 11, $\gamma_{R}(G) \leq \frac{2 n \Delta(G)}{3 \Delta(G)+1}$. We show that $\gamma_{R}(G)<\frac{2 n \Delta(G)}{3 \Delta(G)+1}$. Suppose that $\gamma_{R}(G)=\frac{2 n \Delta(G)}{3 \Delta(G)+1}$. Then each of the inequalities in the proof of Theorem 11 will be equality. From (5) and (6) we find that $B=\emptyset$, and from (1) we obtain $\left|Z_{1}\right|=\frac{|A|}{\Delta(G)}$. Consequently, each vertex of Z_{1} is adjacent to precisely $\Delta(G)$ vertices of A, and each vertex of A has precisely one neighbor in Z_{1} and two neighbors in Z_{0}. Observe that $\gamma_{R}(G)=2|A|$ and $\left|Z_{1}\right|=\frac{|A|}{\Delta(G)}$ and $\left|Z_{0}\right|=2|A|$. Let H be the graph obtained from G by removal of the vertices of $N[x]$ for all $x \in Z_{1}$. Clearly, $V(H)=Z_{0}$. If H has no component isomorphic to C_{4} or C_{8}, then by Theorem $4, \gamma_{R}(H) \leq \frac{8|V(H)|}{11}=\frac{16|A|}{11}$. Let g be a $\gamma_{R}(H)$-function. Then g_{1} defined on $V(G)$ by $g_{1}(x)=g(x)$ if $x \in V(H)$, $g_{1}(x)=2$ if $x \in Z_{1}$, and $g_{1}(x)=0$ if $x \in A$, is an RDF for G. Thus

$$
\gamma_{R}(G) \leq \frac{16|A|}{11}+\frac{2|A|}{\Delta(G)}=\frac{16 \Delta(G)|A|+22|A|}{11 \Delta(G)}<2|A|
$$

since $\Delta(G) \geq 4$. This is a contradiction. Thus assume that H has some component isomorphic to C_{4} or C_{8}. Let H has r_{1} components isomorphic to C_{4} and r_{2} components isomorphic to C_{8}. For any component C of H with $C \notin\left\{C_{4}, C_{8}\right\}$, by Theorem $4, \gamma_{R}(C) \leq \frac{8|V(C)|}{11}$. Let $H^{\prime \prime}$ be the union of C_{4}-components and $C_{8^{-}}$ components of H, and $H^{\prime}=H-H^{\prime \prime}$. (Thus H^{\prime} is obtained from H by removing each C_{4}-component and also each C_{8}-component of H.) Thus $\gamma_{R}\left(H^{\prime}\right) \leq \frac{8\left|V\left(H^{\prime}\right)\right|}{11}$. Let g be a $\gamma_{R}\left(H^{\prime}\right)$-function, and g_{1} be a $\gamma_{R}\left(H^{\prime \prime}\right)$-function with $V_{1}^{g_{1}} \neq \emptyset$. Now define h on $V(G)$ by $h(x)=g(x)$ if $x \in V\left(H^{\prime}\right), h(x)=g_{1}(x)$ if $x \in V\left(H^{\prime \prime}\right)$, $h(x)=2$ if $x \in Z_{1}$, and $h(x)=0$ if $x \in A$. Then h is an RDF for G. Then by Theorem 4,

$$
\begin{aligned}
\gamma_{R}(G) & \leq \frac{8\left|V\left(H^{\prime}\right)\right|}{11}+3 r_{1}+6 r_{2}+2\left|Z_{1}\right| \\
& =\frac{8\left(2|A|-4 r_{1}-8 r_{2}\right)}{11}+3 r_{1}+6 r_{2}+2 \frac{|A|}{\Delta(G)} \\
& =\frac{16 \Delta(G)|A|+r_{1} \Delta(G)+2 r_{2} \Delta(G)+22|A|}{11 \Delta(G)}
\end{aligned}
$$

But $4 r_{1}+8 r_{2} \leq 2|A|$, and thus $\Delta(G)\left(r_{1}+2 r_{2}\right) \leq \frac{\Delta(G)|A|}{2}$. Thus $\gamma_{R}(G) \leq$
$\frac{(33 \Delta(G)+44)|A|}{22 \Delta(G)} \leq 2|A|$, since $\Delta(G) \geq 4$. This produces a contradiction, since $G \in$ $\mathcal{R}_{U V R}$. We deduce that $\gamma_{R}(G)<\frac{2 n \Delta(G)}{3 \Delta(G)+1}$.

We conclude that $B \neq \emptyset$ or $\left|Z_{1}\right|>\frac{|A|}{\Delta(G)}$. Assume that $B \neq \emptyset$. Thus $|B| \geq 1$. Now

$$
\begin{aligned}
n & =\left|V_{0}^{f}\right|+\left|V_{2}^{f}\right| \geq \frac{(2 \Delta(G)+1)\left|V_{2}^{f}\right|+(\Delta(G)-1)|B|}{\Delta(G)}+\left|V_{2}^{f}\right| \\
& \geq \frac{(3 \Delta(G)+1)\left|V_{2}^{f}\right|+(\Delta(G)-1)}{\Delta(G)}
\end{aligned}
$$

and thus $\gamma_{R}(G) \leq \frac{2 n \Delta(G)-2 \Delta(G)+2}{3 \Delta(G)+1}$. Next assume that $B=\emptyset$. Then $\left|Z_{1}\right|>\frac{|A|}{\Delta(G)}$. We have the following possibilities:
Possibility 1. There is a vertex $a \in A$ such that $\left|N(a) \cap Z_{1}\right| \geq 2$.
Possibility 2. There is a vertex $x \in Z_{1}$ such that $|N(x) \cap A| \leq \Delta(G)-1$.
In Possibility 1, it is obvious that $\left|Z_{1}\right| \geq \frac{|A|+1}{\Delta(G)}$, and in Possibility 2,

$$
\left|Z_{1}\right| \geq \frac{|A|-(\Delta(G)-1)}{\Delta(G)}+1=\frac{|A|+1}{\Delta(G)} .
$$

Now

$$
n=\left|V_{0}^{f}\right|+\left|V_{2}^{f}\right| \geq \frac{(2 \Delta(G)+1)\left|V_{2}^{f}\right|+1}{\Delta(G)}+\left|V_{2}^{f}\right|=\frac{(3 \Delta(G)+1)\left|V_{2}^{f}\right|+1}{\Delta(G)}
$$

and thus $\gamma_{R}(G) \leq \frac{2 n \Delta(G)-2}{3 \Delta(G)+1}=\frac{2 n}{3}\left(\frac{\Delta(G)-1 / n}{\Delta(G)+1 / 3}\right)$.
We next improve Theorem 11 for graphs G with $\delta(G) \geq 4$.
Theorem 14. If $G \in \mathcal{R}_{U V R}$ is graph of order n with $\Delta(G)>3 \delta(G)-6$ and $\delta(G) \geq 4$, then

$$
\gamma_{R}(G) \leq \frac{2 n}{3}\left(\frac{\Delta(G)-1 / n}{\Delta(G)+(\delta(G)-2) / 3}\right) .
$$

Proof. Let $G \in \mathcal{R}_{U V R}$ be a graph of order n with $\delta(G) \geq 4$. Let $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ be a $\gamma_{R}(G)$-function satisfying Proposition 3. Let A, B, Z_{0} and Z_{1} be defined as in the proof of Theorem 10. By Theorem 11, $\gamma_{R}(G) \leq \frac{2 n \Delta(G)}{3 \Delta(G)+\delta(G)-2}$. We show that $\gamma_{R}(G)<\frac{2 n \Delta(G)}{3 \Delta(G)+\delta(G)-2}$. Suppose that $\gamma_{R}(G)=\frac{2 n \Delta(G)}{3 \Delta(G)+\delta(G)-2}$. Then each of the inequalities in the proof of Theorem 11 will be equality. From (5) and (6) we find that $B=\emptyset$, and from (1) we obtain $\left|Z_{1}\right|=\frac{(\delta(G)-2)|A|}{\Delta(G)}$. Consequently, each
vertex of Z_{1} is adjacent to precisely $\Delta(G)$ vertices of A, and each vertex of A is of degree $\delta(G)$ and has precisely $\delta(G)-2$ neighbors in Z_{1} and two neighbors in Z_{0}.

Observe that $\gamma_{R}(G)=2|A|,\left|Z_{0}\right|=2|A|$, and $\left|Z_{1}\right|=\frac{(\delta(G)-2)|A|}{\Delta(G)}$. Let H be the graph obtained from G by removal of the vertices of $N[x]$ for all $x \in Z_{1}$. Clearly, $V(H)=Z_{0}$ and $|V(H)|=2|A|=\gamma_{R}(G)$. Since $\delta(H) \geq 3$, by Theorem $5, \gamma_{R}(H) \leq \frac{2|V(H)|}{3}=\frac{4|A|}{3}$. Let g be a $\gamma_{R}(H)$-function. Then g_{1} defined on $V(G)$ by $g_{1}(x)=g(x)$ if $x \in V(H), g_{1}(x)=2$ if $x \in Z_{1}$, and $g_{1}(x)=0$ if x is adjacent to some vertex of Z_{1}, is an RDF for G. Thus

$$
\gamma_{R}(G) \leq \frac{4|A|}{3}+2\left|Z_{1}\right|=\frac{(4 \Delta(G)+6 \delta(G)-12)|A|}{3 \Delta(G)}<2|A|
$$

since $\Delta(G)>3 \delta(G)-6$. This is a contradiction. Thus $\gamma_{R}(G)<\frac{2 n \Delta(G)}{3 \Delta(G)+\delta(G)-2}$.
We conclude that $B \neq \emptyset$ or $\left|Z_{1}\right|>\frac{(\delta(G)-2)|A|}{\Delta(G)}$. Assume that $B \neq \emptyset$. Then

$$
\begin{aligned}
n & =\left|V_{0}^{f}\right|+\left|V_{2}^{f}\right| \geq \frac{(2 \Delta(G)+\delta(G)-2)\left|V_{2}^{f}\right|+(\Delta(G)-(\delta(G)-2))|B|}{\Delta(G)}+\left|V_{2}^{f}\right| \\
& \geq \frac{(2 \Delta(G)+\delta(G)-2)\left|V_{2}^{f}\right|+(\Delta(G)-(\delta(G)-2))}{\Delta(G)}+\left|V_{2}^{f}\right| \\
& =\frac{(3 \Delta(G)+\delta(G)-2)\left|V_{2}^{f}\right|+(\Delta(G)-(\delta(G)-2))}{\Delta(G)}
\end{aligned}
$$

and thus $\gamma_{R}(G) \leq \frac{2 n \Delta(G)-2(\Delta(G)-(\delta(G)-2))}{3 \Delta(G)+\delta(G)-2} \leq \frac{2 n \Delta(G)-2}{3 \Delta(G)+\delta(G)-2}$. Thus assume that $B=\emptyset$. Then $\left|Z_{1}\right|>\frac{(\delta(G)-2)|A|}{\Delta(G)}$. We have the following possibilities:
Possibility 1. There is a vertex $a \in A$ such that $\left|N(a) \cap Z_{1}\right| \geq(\delta(G)-2)$.
Possibility 2. There is a vertex $x \in Z_{1}$ such that $|N(x) \cap A| \leq \Delta(G)-1$.
In Possibility 1, it is obvious that $\left|Z_{1}\right| \geq \frac{(\delta(G)-2)|A|+1}{\Delta(G)}$, and in Possibility 2,

$$
\left|Z_{1}\right| \geq \frac{(\delta(G)-2)|A|-(\Delta(G)-1)}{\Delta(G)}+1=\frac{(\delta(G)-2)|A|+1}{\Delta(G)}
$$

Now

$$
\begin{aligned}
n & =\left|V_{0}^{f}\right|+\left|V_{2}^{f}\right| \geq \frac{(2 \Delta(G)+(\delta(G)-2))\left|V_{2}^{f}\right|+1}{\Delta(G)}+\left|V_{2}^{f}\right| \\
& =\frac{(3 \Delta(G)+(\delta(G)-2))\left|V_{2}^{f}\right|+1}{\Delta(G)}
\end{aligned}
$$

Thus $\gamma_{R}(G) \leq \frac{2 n \Delta(G)-2}{3 \Delta(G)+\delta(G)-2}=\frac{2 n}{3}\left(\frac{\Delta(G)-1 / n}{\Delta(G)+(\delta(G)-2) / 3}\right)$.

Since any planar graph has a vertex of degree at most five, we obtain the following.

Corollary 15. If $G \in \mathcal{R}_{U V R}$ is planar graph of order n with $\delta(G) \geq 4$ and $\Delta(G) \geq 10$, then $\gamma_{R}(G) \leq \frac{2 n}{3}\left(\frac{\Delta(G)-1 / n}{\Delta(G)+(\delta(G)-2) / 3}\right)$.

5. Concluding Remarks

Samodivkin [10] gave a constructive characterization for all trees in $\mathcal{R}_{U V R}$. He constructed a family \mathcal{T} of trees and proved that for a tree $T, T \in \mathcal{R}_{U V R}$ if and only if $T \in \mathcal{T}$. Assume that $G \in \mathcal{R}_{U V R}$ is a graph with $\delta(G)=1$ and $\gamma_{R}(G)=\frac{2 n}{3}$. If $\Delta(G)>2$ then by the argument given in the proof of Theorem 7 , we obtain a forest $F \in \mathcal{R}_{U V R}$ with $\gamma_{R}(F)=\frac{2 n}{3}$. Thus each component of F belongs to \mathcal{T}. We propose the following problem.

Problem 16. Characterize all graphs $G \in \mathcal{R}_{U V R}$ with $\gamma_{R}(G)=\frac{2 n}{3}$ and $\delta(G)=1$.
It can be seen that for any graph $G, H=G \circ K_{2} \in \mathcal{R}_{U V R}$, and note that $\gamma_{R}(H)=\frac{2|V(H)|}{3}$ and $\delta(H)=1$. We also remark that we do not know the sharpness of bounds of Theorems 13 and 14, and thus we propose the problem of showing the sharpness of them or improving them.

Acknowledgements

We would like to thank the referees for their careful review of the paper and some helpful comments.

References

[1] E.W. Chambers, W.B. Kinnersley, N. Prince and D.B. West, Extremal Problems for Roman Domination, SIAM J. Discrete Math. 23 (2009) 1575-1586. doi:10.1137/070699688
[2] M. Chellali and N. Jafari Rad, Trees with unique Roman dominating functions of minimum weight, Discrete Math. Algorithms Appl. 6 (2014) 1450038. doi:10.1142/S1793830914500384
[3] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11-22. doi:10.1016/j.disc.2003.06.004
[4] A. Hansberg, N. Jafari Rad and L. Volkmann, Vertex and edge critical Roman domination in graphs, Util. Math. 92 (2013) 73-88.
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[6] N. Jafari Rad and L. Volkmann, Changing and unchanging the Roman domination number of a graph, Util. Math. 89 (2012) 79-95.
[7] C.-H. Liu and G.J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013) 608-619. doi:10.1007/s10878-012-9482-y
[8] C.-H. Liu and G.J. Chang, Upper bounds on Roman domination numbers of graphs, Discrete Math. 312 (2012) 1386-1391. doi:10.1016/j.disc.2011.12.021
[9] V. Samodivkin, On the Roman bondage number of graphs on surfaces, Int. J. Graph Theory Appl. 1 (2015) 67-75. doi:10.1142/S179383091650049X
[10] V. Samodivkin, Roman domination in graphs: the class $\mathcal{R}_{U V R}$, Discrete Math. Algorithms Appl. 8 (2016) 1650049. doi:10.1142/S179383091650049X
[11] P.J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci. 22 (1988) 445-455.

