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Abstract

A spanning subgraph F of a graph G is called a P≥3-factor of G if every
component of F is a path of order at least 3. A graph G is called a P≥3-
factor covered graph if G has a P≥3-factor including e for any e ∈ E(G). In
this paper, we obtain three sufficient conditions for graphs to be P≥3-factor
covered graphs. Furthermore, it is shown that the results are sharp.
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1. Introduction

The graphs considered in this paper are finite, undirected and simple. We denote
by G = (V (G), E(G)) a graph, where V (G) and E(G) denote its vertex set and
edge set respectively. For x ∈ V (G), the degree of x in G is denoted by dG(x).
For S ⊆ V (G), we use G−S to denote the subgraph obtained from G by deleting
vertices in S together with edges incident to vertices in S. A set S ⊆ V (G) is said
to be independent if no two vertices in S are adjacent to each other. The number
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of isolated vertices of a graph G is denoted by i(G). We use ω(G) to denote the
number of components of a graph G. Other basic graph-theoretic terminologies
can be found in [4].

A factor of a graph is a spanning subgraph of the graph. Especially, a (g, f)-
factor of a graph G is defined as a spanning subgraph F such that g(x) ≤ dF (x) ≤
f(x) for each x ∈ V (G), where g(x) and f(x) are two nonnegative integer-valued
functions defined on V (G) with g(x) ≤ f(x) for any x ∈ V (G). If g(x) = f(x) = k

for any x ∈ V (G), then a (g, f)-factor of G is called a k-factor. A 1-factor is also
called a perfect matching. Since all of these notions concern the degree of vertices,
they are often defined as degree factors. Degree factors in graphs attract a great
deal of attentions [2, 7, 11, 13, 15, 16, 17].

On the other hand, when we focus on components of a factor, we lead to the
notion of component factors. For a set H of connected graphs, an H-factor of a
graph G is a spanning subgraph F of G if every component of F is isomorphic
to an element of H. Especially, if each component of F is a path, then F is said
to be a path-factor. Apparently, a 1-factor is a P2-factor. A P≥k-factor means a
path-factor in which every component path has at least k vertices, where k ≥ 2.
A graph G is defined as a P≥k-factor covered graph if G admits a P≥k-factor
including e for any e ∈ E(G).

Egawa, Fujita and Ota [6] studied the existence of K1,3-factors in graphs.
Kano, Lu and Yu [10] presented a sufficient condition for graphs to have {K1,2,

K1,3,K5}-factors. Kano and Saito [12] obtained a result on the existence of a
{K1,l : m ≤ l ≤ 2m}-factor and conjectured that a graph G satisfying i(G−S) ≤
|S|
m

for each S ⊆ V (G) actually contains a ({K1,l : m ≤ l ≤ 2m− 1} ∪ {K2m+1})-
factor, where m ≥ 2 is an integer. Zhang, Yan and Kano [18] proved that the
conjecture above is true. Akiyama, Avis and Era [1] showed a necessary and
sufficient condition for a graph to have a P≥2-factor. Bazgan, Benhamdine, Li
and Woźniak [3] posed a toughness condition for the existence of a P≥3-factor in
a graph. Kaneko [8] obtained a criterion for a graph to have a P≥3-factor. A
simpler proof was posed by Kano, Katona and Király [9]. Zhang and Zhou [19]
gave a characterization for P≥3-factor covered graphs.

A graph R is said to be factor-critical if R−x includes a 1-factor (P2-factor)
for any x ∈ V (R). A graph H is said to be a sun if H = K1, H = K2 or H is the
corona of a factor-critical graph R with at least three vertices, i.e., H is obtained
from R by adding a new vertex w = w(v) together with a new edge vw for any
v ∈ V (R). A sun with at least six vertices is said to be a big sun. We use sun(G)
to denote the number of sun components of G.

Kaneko [8] presented a criterion for a graph to have a P≥3-factor.

Theorem 1 (Kaneko [8]). A graph G contains a P≥3-factor if and only if

sun(G− S) ≤ 2|S| for any subset S of V (G).
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Zhang and Zhou [19] extended Theorem 1 to P≥3-factor covered graphs and
obtained a characterization for P≥3-factor covered graphs.

Theorem 2 (Zhang and Zhou [19]). Let G be a connected graph. Then G is a

P≥3-factor covered graph if and only if sun(G− S) ≤ 2|S| − ε(S) for any subset

S of V (G), where ε(S) is defined by

ε(S) =















2, if S 6= ∅ and S is not an independent set,

1, if S 6= ∅, S is an independent set and there exists a

non-sun component of G− S,

0, otherwise.

In this paper, we proceed to investigate P≥3-factor covered graphs and obtain
some sufficient conditions for the existence of P≥3-factor covered graphs. Our
main results will be shown in Sections 2, 3 and 4, respectively.

2. Toughness and P≥3-Factor Covered Graphs

The toughness t(G) of a graph G was first defined by Chvátal in [5] as follows.

t(G) = min

{

|S|

ω(G− S)
: S ⊆ V (G), ω(G− S) ≥ 2

}

,

if G is not complete; otherwise, t(G) = +∞. Bazgan, Benhamdine, Li and
Woźniak [3] showed a toughness condition for the existence of a P≥3-factor in a
graph.

Theorem 3 (Bazgan, Benhamdine, Li and Woźniak [3]). Let G be a graph with

at least three vertices. If t(G) ≥ 1, then G includes a P≥3-factor.

The following theorem is a generalization and improvement of Theorem 3.

Theorem 4. Let G be a connected graph with at least three vertices. If t(G) > 2
3 ,

then G is a P≥3-factor covered graph.

Remark 5. The result in Theorem 4 is sharp. To see this, we construct a
graph G = K2 ∨ (H1 ∪ H2 ∪ H3), where Hi is a sun for 1 ≤ i ≤ 3. Set
S = V (K2). It is easy to see that sun(G − S) = ω(G − S) = 3 and t(G) =

min
{

|X|
ω(G−X) : X ⊆ V (G), ω(G−X) ≥ 2

}

= |S|
ω(G−S) = 2

3 . Note that ε(S) = 2.

Hence, we obtain

sun(G− S) = 3 > 2 = 2|S| − ε(S).

In terms of Theorem 2, G is not a P≥3-factor covered graph.
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Proof of Theorem 4. If G is a complete graph, obviously G is a P≥3-factor
covered graph as |V (G)| ≥ 3. In the following, we assume that G is not a complete
graph. Suppose that G satisfies the conditions of in Theorem 4, but it is not a
P≥3-factor covered graph. Then by Theorem 2, there exists a subset S of V (G)
such that

(1) sun(G− S) > 2|S| − ε(S).

We shall consider three cases by the value of |S| and derive a contradiction in
each case.

Case 1. |S| = 0. In this case, we have ε(S) = 0. In terms of (1), we obtain

sun(G) > 0.

According to the integrity of sun(G), we have

(2) sun(G) ≥ 1.

On the other hand, since G is connected, we obtain

sun(G) ≤ ω(G) = 1.

Combining this with (2), we have

(3) sun(G) = ω(G) = 1.

According to (3), |V (G)| ≥ 3 and the definition of sun, it is easy to see
that G is a big sun. We denote by R the factor-critical subgraph of G. For any
u ∈ V (R), we write X = {u}. Clearly, ω(G−X) ≥ 2. In terms of the definition
of t(G), we obtain

t(G) ≤
|X|

ω(G−X)
≤

1

2
,

which contradicts t(G) > 2
3 .

Case 2. |S| = 1. In this case, we obtain ε(S) ≤ 1. According to (1), we have

sun(G− S) > 2|S| − ε(S) ≥ 2− 1 = 1.

In terms of the integrity of sun(G− S), we obtain

sun(G− S) ≥ 2.

Note that ω(G− S) ≥ sun(G− S). Combining this with t(G) > 2
3 , we have

2

3
< t(G) ≤

|S|

ω(G− S)
≤

|S|

sun(G− S)
≤

1

2
,

which is a contradiction.
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Case 3. |S| ≥ 2. Note that ε(S) ≤ 2. It follows from (1) that

sun(G− S) ≥ 2|S| − ε(S) + 1 ≥ 2|S| − 1,

which implies

(4) |S| ≤
sun(G− S) + 1

2

and

(5) sun(G− S) ≥ 3.

In terms of (4), (5), ω(G − S) ≥ sun(G − S) and the definition of t(G), we
obtain

t(G) ≤
|S|

ω(G− S)
≤

|S|

sun(G− S)
≤

sun(G− S) + 1

2sun(G− S)
=

1

2
+

1

2sun(G− S)

≤
1

2
+

1

6
=

2

3
,

which contradicts t(G) > 2
3 . Theorem 4 is proved.

3. Isolated Toughness and P≥3-Factor Covered Graphs

Yang, Ma and Liu [14] introduced a new parameter, isolated toughness of a graph
G, denoted by I(G), which is defined as

I(G) = min

{

|S|

i(G− S)
: S ⊆ V (G), i(G− S) ≥ 2

}

,

if G is not complete; otherwise, I(G) = +∞. In the following, we investigate
the relationship between isolated toughness and P≥3-factor covered graphs, and
obtain an isolated toughness condition for the existence of P≥3-factor covered
graphs. Our main result is the following theorem.

Theorem 6. Let G be a connected graph with at least three vertices. If I(G) > 5
3 ,

then G is a P≥3-factor covered graph.

Remark 7. Let us show that I(G) > 5
3 in Theorem 6 cannot be replaced by

I(G) ≥ 5
3 . We show this by constructing a graph G = K2 ∨ (3K2). It is easy to

see that I(G) = 5
3 . Set S = V (K2), and so |S| = 2. Then by the definition of

ε(S), we obtain ε(S) = 2. Hence, we obtain

sun(G− S) = 3 > 2 = 2|S| − ε(S).

In terms of Theorem 2, G is not a P≥3-factor covered graph.
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Proof of Theorem 6. If G is complete, obviously G is a P≥3-factor covered
graph as |V (G)| ≥ 3. In the following, we assume that G is not complete.
Suppose that G satisfies the hypothesis of Theorem 6, but it is not a P≥3-factor
covered graph. Then by Theorem 2, there exists a subset S of V (G) satisfying

(6) sun(G− S) ≥ 2|S| − ε(S) + 1.

We shall consider three cases by the value of |S| and derive a contradiction in
each case.

Case 1. |S| = 0. According to the definition of ε(S), we have ε(S) = 0.
Combining this with (6), we obtain

(7) sun(G) ≥ 1.

Note that since sun(G) ≤ ω(G) and G is connected, we have

(8) sun(G) ≤ ω(G) = 1.

It follows from (7) and (8) that

(9) sun(G) = ω(G) = 1.

By (9), |V (G)| ≥ 3 and the definition of sun, it is easy to see that G is a big
sun. We use R to denote the factor-critical subgraph of G and set U = V (R).
Apparently, i(G − U) = |U | ≥ 3. Then by I(G) > 5

3 and the definition of I(G),
we have

5

3
< I(G) ≤

|U |

i(G− U)
= 1,

which is a contradiction.

Case 2. |S| = 1. Clearly, ε(S) ≤ 1. In terms of (6), we obtain

(10) sun(G− S) ≥ 2|S| − ε(S) + 1 ≥ 2.

Assume that there exist a isolated vertices, b K2’s and c big sun components
H1, H2, . . . , Hc, where |V (Hi)| ≥ 6, in G− S. Thus, it follows from (10) that

(11) sun(G− S) = a+ b+ c ≥ 2.

We choose one vertex from everyK2 component of G−S, and useX to denote
the set of such vertices. For every Hi, we denote the factor-critical subgraph of
Hi by Ri. We choose one vertex yi ∈ V (Ri) for 1 ≤ i ≤ c, and write Y = {y1,
y2, . . . , yc}. Apparently, we obtain

i(G− (S ∪X ∪ Y )) = a+ b+ c ≥ 2.
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In terms of (6), (11), the definition of I(G), ε(S) ≤ 1 and I(G) > 5
3 , we have

5

3
< I(G) ≤

|S ∪X ∪ Y |

i(G− (S ∪X ∪ Y ))
=

|S|+ b+ c

a+ b+ c
=

|S|+ sun(G− S)− a

sun(G− S)

≤
|S|+ sun(G− S)

sun(G− S)
≤

sun(G−S)+ε(S)−1
2 + sun(G− S)

sun(G− S)
≤

3

2
,

which is a contradiction.

Case 3. |S| ≥ 2. Note that ε(S) ≤ 2. Combining this with (6), we obtain

(12) sun(G− S) ≥ 2|S| − ε(S) + 1 ≥ 2|S| − 1 ≥ 3.

Assume that there exist a isolated vertices, b K2’s and c big sun components
H1, H2, . . . , Hc, where |V (Hi)| ≥ 6, inG−S. Thus, we have sun(G−S) = a+b+c.
We choose one vertex from each K2 component of G − S, and denote the set of
such vertices by X. We use Ri to denote the factor-critical subgraph of Hi for
each Hi, and set Yi = V (Ri). Obviously, |X| = b and i(Hi − Yi) = |Yi| =

|V (Hi)|
2 .

Put Y =
⋃c

i=1 Yi. Then by (12) we obtain

i(G− (S ∪X ∪ Y )) = a+ b+
c

∑

i=1

|Yi| = a+ b+
c

∑

i=1

|V (Hi)|

2

≥ a+ b+ c = sun(G− S) ≥ 3.

Combining this with I(G) > 5
3 and the definition of I(G), we have

5

3
< I(G) ≤

|S ∪X ∪ Y |

i(G− (S ∪X ∪ Y ))
=

|S|+ b+
∑c

i=1
|V (Hi)|

2

a+ b+
∑c

i=1
|V (Hi)|

2

that is,

(13) 3|S| > 5a+ 2b+ 2
c

∑

i=1

|V (Hi)|

2
.

Note that |V (Hi)| ≥ 6 and sun(G − S) = a + b + c. According to (12) and
(13), we have

3|S| > 5a+ 2b+ 2
c

∑

i=1

|V (Hi)|

2
≥ 5a+ 2b+ 6c

≥ 2(a+ b+ c) = 2sun(G− S) ≥ 2(2|S| − 1),

which implies
|S| < 2,

which contradicts |S| ≥ 2. This completes the proof of Theorem 6.
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4. Regular Graphs and P≥3-Factor Covered Graphs

Kaneko [8] showed a condition for a regular graph to have a P≥3-factor.

Theorem 8 (Kaneko [8]). Every regular graph G with degree r ≥ 2 admits a

P≥3-factor.

In this section, we mainly study the relationship between regular graphs and
P≥3-factor covered graphs, and obtain a sufficient condition for a regular graph
to be a P≥3-factor covered graph. Our main result is shown in the following, and
it is an improvement of Theorem 8.

Theorem 9. Every regular graph G with degree r ≥ 2 is a P≥3-factor covered

graph.

Proof. Without loss of generality, we may assume that G is connected. Other-
wise, we consider each connected component of G.

Suppose that G is not a P≥3-factor covered graph. Then by Theorem 2, there
exists a subset S of V (G) satisfying

(14) sun(G− S) ≥ 2|S| − ε(S) + 1.

Claim 1. S 6= ∅.

Proof. If S = ∅, then ε(S) = 0. By (14), we have

sun(G) ≥ 1.

On the other hand, G is connected, and so sun(G) ≤ ω(G) ≤ 1. Thus, we obtain

sun(G) = 1.

Obviously, G itself is a sun. Note that r ≥ 2. Hence, G 6= K1 and G 6= K2. Thus,
G is a big sun, which contradicts that G is a regular graph with degree r ≥ 2.
This completes the proof of Claim 1. �

Claim 2. sun(G− S) ≥ 2.

Proof. According to Claim 1, we have |S| ≥ 1.
If |S| = 1, then ε(S) ≤ 1. It follows from (14) that

sun(G− S) ≥ 2|S| − ε(S) + 1 ≥ 2|S| = 2.

In the following, we consider |S| ≥ 2. In this case, ε(S) ≤ 2. Then by (14), we
obtain

sun(G− S) ≥ 2|S| − ε(S) + 1 ≥ 2|S| − 1 ≥ 3 > 2.

This completes the proof of Claim 2. �
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In the following, we assume that there exist a isolated vertices, b K2’s and
c big sun components H1, H2, . . . , Hc, where |V (Hi)| ≥ 6, in G− S. In terms of
Claim 2, we have

(15) sun(G− S) = a+ b+ c ≥ 2.

For any x ∈ V (bK2), the degree of x in bK2 is 1. For each Hi, Hi has at least
three vertices of degree exactly one. Note that G is a regular graph with degree
r ≥ 2. Thus, we obtain

ar + 2b(r − 1) + 3c(r − 1) ≤ r|S|.

Combining this with (14), (15) and ε(S) ≤ 2, we have

ar + 2b(r − 1) + 3c(r − 1) ≤ r|S| ≤
r

2
(sun(G− S) + ε(S)− 1)

≤
r

2
(sun(G− S) + 1) =

r

2
(a+ b+ c+ 1),

that is,

(16) ar + 3br + 5cr − r ≤ 4b+ 6c.

It follows from (15), (16) and r ≥ 2 that

2a+ 6b+ 10c− 2 = 2(a+ 3b+ 5c− 1) ≤ r(a+ 3b+ 5c− 1)

= ar + 3br + 5cr − r ≤ 4b+ 6c,

which implies

a+ b+ 2c ≤ 1.

Note that c ≥ 0. Hence, we obtain

a+ b+ c ≤ 1,

which contradicts (15). The proof of Theorem 9 is complete.
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