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Abstract

There exists a significant body of work on determining the acquisition
number at(G) of various graphs when the vertices of those graphs are each
initially assigned a unit weight. We determine properties of the acquisition
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number of the path, star, complete, complete bipartite, cycle, and wheel
graphs for variations on this initial weighting scheme, with the majority of
our work focusing on the expected acquisition number of randomly weighted
graphs. In particular, we bound the expected acquisition number E(at(Pn))
of the n-path when n distinguishable “units” of integral weight, or chips, are
randomly distributed across its vertices between 0.242n and 0.375n. With
computer support, we improve it by showing that E(at(Pn)) lies between
0.29523n and 0.29576n. We then use subadditivity to show that the limiting
ratio limE(at(Pn))/n exists, and simulations reveal more exactly what the
limiting value equals. The Hoeffding-Azuma inequality is used to prove that
the acquisition number is tightly concentrated around its expected value.
Additionally, in a different context, we offer a non-optimal acquisition pro-
tocol algorithm for the randomly weighted path and exactly compute the
expected size of the resultant residual set.

Keywords: total acquisition number, Poissonization, dePoissonization,
Maxwell-Boltzman and Bose-Einstein allocation.

2010 Mathematics Subject Classification: 05C75.

1. Introduction

In this paper, we consider vertex-weighted graphs and denote the weight of vertex
v as w(v). Let G be a graph with an initial weight of 1 on each vertex. For
adjacent v, u ∈ V (G), weight can be transferred from v to u via an acquisition

move if the initial weight on u is at least as great as the weight on v. When there
are no more acquisition moves possible, the set of vertices with non-zero weight
forms an independent set referred to as the residual set. The minimal cardinality
of this set, at(G), is the total acquisition number of G. A sequence of acquisition
moves that results in a residual set is referred to as an acquisition protocol and
is optimal if the residual set has cardinality at(G). This concept of acquisition
number was first introduced by [3] and has subsequently been investigated in
[4, 6].

When acquisition moves are allowed to transfer any integral amount of weight
from a vertex, the minimum cardinality of the residual set is called the unit

acquisition number, denoted au(G); see [6]. If acquisition moves are allowed to
transfer any non-zero amount of weight from a vertex, the minimum cardinality
of the residual set is called the fractional acquisition number, denoted af (G);
see [5]. Because we consider only total acquisition number, any instances of the
term “acquisition number” in this paper should be understood to mean “total
acquisition number”.

Although we offer a few minor results for graphs with the canonical weighting
scheme (where each vertex has initial weight 1), we primarily consider variants
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on that weighting scheme where the initial weights of vertices are allowed to as-
sume any integral value. Any n-vertex graph with vertex labels {1, 2, . . . , n} can
be associated with an integer sequence A = (a1, a2, . . . , an) where ai denotes the
initial weight given to vertex i. For such weight sequences and particular classes
of graphs, we consider in Section 2 the size amax(G) of the largest possible resid-
ual set, whether at(G) changes or remains the same as the unit weight case, and
the existence of legal residual sets with sizes equal to every integral value in the
interval [at(G), amax(G)]. Our primary focus is, however, on the total acquisition
number of graphs with randomly weighted vertices. Although there exists work
on random graphs whose vertices each begin with unit weight due to [1], we are
not aware of any existing work on graphs with randomly-weighted vertices. In
Section 2, we make some preliminary remarks. In Section 3, we obtain bounds on
the total expected acquisition number of the randomly weighted path, where ver-
tex weighting is assigned according to both the Poisson and Maxwell-Boltzman
distributions (in the latter case, the chips are thus considered to be distinguish-
able, and obviously the Bose-Einstein distribution might yield completely differ-
ent results!). We also show that the limiting ratio limE(at(Pn))/n exists, and
that the acquisition number is tightly concentrated around its expected value.
Additionally, in a different context, we offer a non-optimal acquisition protocol
algorithm for the randomly weighted path and exactly compute the expected size
of the resultant “residual” set.

2. Basic Results

In this section, we provide some basic results. The proofs of these results are not
very difficult, but the underlying logic is important for Section 3.

2.1. at(G) = 1

In this subsection, we consider graphs in which the vertices can have any non-
negative integer weight. One question we could ask is what is the smallest max-
imum vertex weight necessary to drive at(G) down to 1? Denote such a value
as smv(G). We specifically consider the complete graph Kn on n vertices; the
n-cycle and n-path Cn, Pn; and the star, wheel, and complete bipartite graphs
denoted respectively by K1,n,Wn, and Kn,m.

It is clear that the smv(Kn) = smv(Wn) = smv(K1,n) = 1, because we can
have a special vertex (the center vertex for Wn and K1,n; any vertex for Kn)
absorb the weight of its neighbors first and thus make it the largest weighted
vertex in V (G).

For Kn,m, its smv value is 1 as well. Let A,B be the two vertex sets of Kn,m,
where |A| ≥ |B|. Let the initial weight of all vertices be 1. Let two vertices vA, vB
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be two arbitrary vertices from A and B. At the first step, vA can acquire all the
weight from vertices in B\{vB} and vB can acquire all the weight from vertices
in A\{vA}. Because |A| ≥ |B|, w(vB) ≥ w(vA) and vB can acquire the weight
from vA. Thus, the smv value for complete bipartite graphs is also 1. We next
consider paths and cycles, for which the situation is more nuanced.

Lemma 2.1. Let Pn = v1v2 · · · vn be a path on n ≥ 2 vertices, where v1 and

vn are the endpoints of the path. Let each vertex have weight at least one. In

order for vn to be the only vertex in the residual set, its initial weight must be

at least 2n−2 and (in the extremal case) the path must correspond to the unique

configuration 1 − 1 − 2 − · · · − 2n−2.

Proof. First note that in order for vn to be the only vertex in the residual set,
the aquisition protocol must first move the weight from v1 to v2, then from v2 to
v3, and so on. Therefore each vi must start with weight at least the sum of the
weights of v1, v2, . . . , vi−1. Now since v1 has weight at least 1, v2 must start with
weight at least 1, v3 must start with weight at least 1 + 1 = 2, and the general
statement follows by induction.

The problem of finding the smallest maximum vertex weight necessary to
drive at(G) down to 1 for a path on n vertices is equivalent to finding the smallest
initial weight for the middle vertex to absorb all the weight in that path. By
Lemma 2.1, a weight of 2m is needed to take all the weight on an (m + 2)-
path to a leaf vertex; applying this fact to the two middle vertices, we see that
a weight of 2m suffices to move all the weight on P2m+4 to these vertices and
then to one of them. Solving n = 2m + 4 for m, we get m = n/2 − 2 for
even n. If n is odd, we get m = ⌈n/2⌉ − 2 by the same reasoning. It follows
immediately that smv(Cn) = 2⌈n/2⌉−2 as well. The smv value for a m × n grid
graph is thus at most 2⌈n/2⌉+⌈m/2⌉−4; here we use the strategy of moving all the
weight in each row to the center vertex, and then all the weight in the middle
column to the center of the grid. For the lower bound, let us note that, regardless
where the absorbing vertex v is, at least one of the four corners is at distance
⌈(m − 1)/2⌉ + ⌈(n − 1)/2⌉ from v. Hence, at the time when the weight from
this corner is pushed to the final destination, the weight at v must be at least
2⌈(m−1)/2⌉+⌈(n−1)/2⌉−1. However, perhaps some of this weight comes from the
other three neighbours of v. As a result, we only get that the initial weight at
v is at least 2⌈(m−1)/2⌉+⌈(n−1)/2⌉−4, which is matching the upper bound for m,n
both even, and is always by a multiplicative factor of at least 1/4 away from it.

2.2. Size of a residual set

Let G = (V,E) be an arbitrary graph. Note that the size of the maximum inde-
pendent set is a natural upper bound of the size of an residual set. By choosing
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the weight of vertices in G strategically, how many different sizes of residual sets
can we get for a given graph? In this subsection, we focus on Kn, Cn, Pn,Wn,
and Kn,m.

It is clear that the size of the residual set of Kn must be 1 for any assignment
of weights, because the maximum independent set of Kn has size 1. Now, consider
Cn. Because the size of the maximum independent set is

⌊

n
2

⌋

, the residual set can
be no larger than

⌊

n
2

⌋

. Indeed, by assigning the vertices in a largest independent
set of Cn the first

⌊

n
2

⌋

largest weights, we can obtain a residual set with
⌊

n
2

⌋

vertices. For example, ⌊n/2⌋ 2’s and ⌈n/2⌉ 1’s can do the job. Now, to obtain a
residual set of size i, where 1 ≤ i ≤

⌊

n
2

⌋

, we need to choose i vertices which form
an independent set that are “equally spaced to the extent possible”, and strate-
gically assign the values of the i largest weights to these vertices so as to enable
those vertices to acquire the weights of the other vertices. This can be achieved
because of the reasoning in Section 2.1 by using weights of 1, 1, 2, . . . , 2⌊n/i⌋−2 on
each of the i paths that the cycle can be thought of as being comprised of. Next
we see that the size of the residual set of Wn can be any integer from 1 to

⌊

n
2

⌋

as
well. We can place the smallest weight on the center vertex to reduce the problem
to the problem of Cn after the first move. With the same argument, paths can
have residual set with size from 1 to

⌈

n
2

⌉

, where the upper bound is the size of
the largest independent set of Pn.

The size of the residual set of Km,n for m ≥ n can be any integer from 1 to m.
By placing the m largest numbers of the sequence on the vertices of the larger side
of the bipartite graph, we ensure that no vertex on the smaller side can acquire
any additional chips, thus resulting in a residual set including all vertices of the
larger side. After choosing appropriate weights of vertices, we can ensure that
exactly one vertex on the larger side is acquired by assigning the smallest number
to one vertex on the larger side, then assigning the next n smallest numbers to
the vertices of the smaller side. Then, as long as the sum of the smallest number
and the mth largest number is smaller than the (m − 1)th largest number, we
have a residual set of size m− 1. We can use a similar strategy to get any other
number between 1 and m− 2.

2.3. Subadditivity

Now, we consider Pn with unit weights. Without making use of the fact that
at(Pn) =

⌈

n
4

⌉

, we can show that:

Lemma 2.2. The sequence {at (Pn)}∞n=1 is subadditive.

Proof. Consider the graph Pn+m, with m,n ∈ Z. If Pn+m is subdivided into
Pn and Pm and distinct acquisition protocols are run on each, then the sum of
the resulting “induced” residual sets is at(Pm) + at(Pn). Because at(Pn+m) is
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definitionally the size of the minimal residual set, the fact that it is possible to
obtain a set of size at(Pn) + at(Pm) gives the bound

at(Pn+m) ≤ at(Pn) + at(Pm),

as desired.

Corollary 1. For {at(Pi)}∞i=1, the limit lim
n→∞

at(Pn)
n exists and is equal to inf at(Pn)

n .

Proof. This result follows directly from Lemma 2.2 and Fekete’s Lemma.

Although it is intuitively obvious that this limit equals 1/4, the power of
subadditivity will become clear in the next section, where we use random weights.

3. Total Acquisition on Randomly Weighted Graphs

3.1. Poisson Distribution

In this section, we consider the total acquisition number of Pn when each vertex
begins with weight Poi(1), i.e., the vertices have random weights determined
by a sequence of independent Poisson variables with unit mean. We denote this
specific configuration as PPoi

n . (It may be noted, however, that other distributions
could have been used by us, and similar methods of proof could have been used.)
In general, the upper case letter A will be used for the acquisition number when
it is viewed as a random variable. We can begin by proving that the limit

lim
n→∞

E(At(P
Poi
n ))

n

exists, and provide upper and lower bounds for E(At(P
Poi
n )). We start with a

few remarks.

Remarks. First, let us note that checking whether a given weighting of Pn =
(v1, v2, . . . , vn) can be used to move the total weight onto one vertex can be
done as follows. Starting from v1, we push its weight to the right as much as
possible, ending at vk for some k ≤ n. Then, independently (and using the initial
weighting), we start from vn and push its weight to the left as much as possible,
ending at vℓ for some ℓ ≥ 1. It is straightforward to see that if k ≥ ℓ − 1, then
our task is possible; otherwise, it is not.

Next, finding at(Pn) (for a given weighting) can be easily done as follows.
Suppose that weights on the subpath (v1, v2, . . . , vk) can be moved to one vertex.
If weights on the subpath (v1, v2, . . . , vk, vk+1) can also be moved to one vertex,
then this is at least as good strategy as moving only weighs from (v1, v2, . . . , vk)
and then applying the best strategy for the remaining path (consider simple
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coupling between the two strategies). As a result, finding at(Pn) for any weighting
can be done with an easy greedy algorithm (and with the support of a computer).

Finally, we get from the above remarks that E(At(P
Poi
n )) is an increasing

function of n.

Lemma 3.1. The sequence {E
(

At

(

PPoi
n

))

}∞n=1 is subadditive.

Proof. Same as the proof of Lemma 2.2 for each sample realization. We then
take expectations to get the result.

Corollary 2. The limit lim
n→∞

E(At(PPoi
n ))

n exists and is equal to inf
E(At(PPoi

n ))
n .

Proof. This result follows directly from Lemma 3.1 and Fekete’s Lemma.

Theorem 3.2. The expected acquisition number of PPoi
n is bounded as

0.242n ≤ E
(

At

(

PPoi
n

))

≤ 0.375n.

Proof. Define an island as the “clump” of vertices to the left of the first zero
weight; to the right of the last zero weight; or in between any two successive zero
weights. Islands are of non-negative size, and thus each consist of a possibly empty
set of non-zero numbers. The island size thus has a geometric distribution with
“success” probability 1/e and expected size e−1, yielding an expected number of
n/e+ c; 0 ≤ c ≤ 1, for the random number Λ of islands. (Note that the expected
number of zeros is n/e.) Theoretically, the expected total acquisition number
could be calculated using the conditional probability expression

E
(

At

(

PPoi
n

))

=
Λ
∑

j=1

E
[

at

(

P|Λj |

)]

=
(n

e
+ c
)

E
[

at
(

P|Λ1|

)]

=
(n

e
+ c
)

n
∑

j=0

E
(

At

(

PPoi
j

))

P (|Λ1| = j),

where the second equality follows from Wald’s Lemma. However, calculating
E
[

At(P
Poi
j )

]

is difficult for arbitrary j. The probability that an island is of

size j equals
(

1 − 1
e

)j (1
e

)

. Thus, there is a roughly 84% probability that an
island has size three or less, and a reasonable lower bound can be obtained by
restricting the calculation to those cases. It is clear that E

[

At(P
Poi
0 )

]

= 0 and
that E

[

At(P
Poi
1 )

]

= E
[

At(P
Poi
2 )

]

= 1. For P3, however, it is possible to have
At(P3) = 1 or At(P3) = 2. Because At(P3) = At(a− b− c) requires that w(a) >
w(b) ≥ 1 and w(c) > w(b) ≥ 1, we condition on each of w(a), w(b), and w(c)
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being non-negative, and, setting W (b) = k, we get

P [At(P3) = 2] =
∑

k≥1

e−1

1 − e−1

1

k!





∑

j≥k+1

e−1

(1 − e−1)

1

j!





2

=
1

(e− 1)3

∑

k≥1

1

k!





∑

j≥k+1

1

j!





2

=
e2

(e− 1)3

∞
∑

k=1

1

k!

(

1 − Γ(k + 1, 1)

Γ(k + 1)

)2

≈ 0.10648.

Thus E[At(P3)] can be calculated as

(1) E[At(P3)] = P [At(P3) = 1] (1) + P [At(P3) = 2] (2) ≈ 1.10648.

Using (1) and the monotonicity of E(At(P
Poi
n )), we can now calculate a lower

bound for E
(

At

(

PPoi
n

))

as

E
(

At

(

PPoi
n

))

≥
(n

e
+ c
)

(

(

1 − 1

e

)

1

e
+

(

1 − 1

e

)2 1

e
+ 1.106

(

1 − 1

e

)3
)

≥ 0.242n.

To obtain an upper bound, we use the fact that at(Pj) ≤ j+1
2 for any j.

Returning to our conditional probability expression, this allows us to construct
an upper bound for E(At(P

Poi
n )) as

E
(

At

(

PPoi
n

))

=
(n

e
+ c
)





3
∑

j=1

E(At(Pj))P (|Λ1| = j) +
∑

j≥4

E(At(Pj))P (|Λ1| = j)





≤
(n

e
+ c
)

3
∑

j=1

E(At(Pj))P (|Λ1| = j) +
(n

e
+ c
)

∑

j≥4

j + 1

2
P (|Λ1| = j)

≤ 0.178n +
n

e

1 − 1
e

2e

∞
∑

j=4

j

(

1 − 1

e

)j−1

+ 0.029n

= 0.207n +
n

e

1 − 1
e

2e

(e− 1)3(3 + e)

e2
≈ 0.375n,

which gives us the desired bounds for E
(

At

(

PPoi
n

))

.
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The above bounds can certainly be improved, but we do not do so here—
rather, we point out methods that might lead to a tightening. First we can
compute P (At(P4) = 2) or even more higher order terms so as to improve the
lower bound. For the upper bound, one may do a more careful calculation by

using the fact that At(Pj) ≤
⌈

j
2

⌉

, and separating the argument for j ≥ 4 into the

even and odd cases. However, these methods are likely to yield only incremental
improvements, and so we next report on the results of simulations which yield
theoretical bounds that are vastly better than the ones above, and also suggest
the value of the limiting constant.

3.2. Simulations

As we already remarked in Subsection 3.1, with the support of a computer, it
is easy to find at(Pj) for a given initial weighting. By considering all possible
kj configurations of weights at most k = k(j), we can easily estimate E(At(Pj))
from below and above. We considered all paths on at most 21 vertices to obtain
the following bounds (for more details, see [7]).

j k = k(j) lower bound upper bound

3 8 1.106474556295647 1.106485236542439
4 8 1.458146467559788 1.458160707876175
5 8 1.858398253506155 1.858424954075593
6 8 2.117547080007199 2.117579120662054
7 8 2.376630970622960 2.376680811599442
8 8 2.678679193248656 2.678736154318619
9 7 2.990263585826933 2.990993168117246
10 7 3.279939200172999 3.280749841020560
11 7 3.567927403519968 3.568997441689286
12 6 3.857599662110278 3.867074161371549
13 6 4.153795998702126 4.165769950472480
14 6 4.446442617528823 4.459336912818369
15 5 4.680594361425691 4.792653655209101
16 4 4.589627977247097 5.299393961081964
17 4 4.829797279410342 5.675769081053113
18 4 5.066501771940262 5.959683875778665
19 3 3.298233451614096 7.696367715681969
20 3 3.357920459863793 7.924328251247145
21 3 3.411118548530028 8.613707642327828

Based on that we get the following.

Corollary 3. The expected acquisition number of PPoi
n is bounded as

0.29523n ≤ E
(

At

(

PPoi
n

))

≤ 0.29576n.
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Moreover, we performed a number of experiments on paths of length n =
100, 000, 000, 000. Simulations suggest that E

(

At

(

PPoi
n

))

≈ 0.295531n (again,
for more details, see [7]).

3.3. dePoissonized model

Although considering a Poisson model for weight distribution makes it signifi-
cantly easier to bound E

(

At

(

PPoi
n

))

, there is typically more interest in models
where a fixed amount of weight is distributed on Pn. In particular, we will let
At(P

n
n ) and At(P

x
n ) be the total acquisition number when n or x tokens are ran-

domly placed on Pn. At(P
n
n ) will be referred to as the dePoissonized model.

In order to translate our result for the Poissonized model to this dePoissonized
model, we begin by establishing two lemmas.

Lemma 3.3. For Pn, assigning an initial weight of Poi(1) chips to each vertex

is equivalent to considering the model in which we generate the total number of

chips according to a Poi(n) distribution, and then distribute them independently

and uniformly on the n vertices.

Proof. One half of the proof follows from the fact that the sum of independent
Poi(1) variables has a Poi(n) distribution. Next, consider a random distribution
of Poi(n) chips on Pn as in the statement of the lemma. The probability that two
particular vertices, u, v, receive x, y chips respectively (the same argument holds
for any number of vertices) is given by

P [w(u) = x,w(v) = y]

=
∞
∑

r=0

P

[

n
∑

i=1

w(vi) = r

]

P

[

w(u) = x,w(v) = y

∣

∣

∣

∣

∣

n
∑

i=1

w(vi) = r

]

=
∞
∑

r=x+y

e−nn
r

r!

(

r

x, y

)(

1

n

)x+y (

1 − 2

n

)r−x−y

=
e−n

x!y!

∞
∑

r=x+y

(n− 2)r−x−y

(r − x− y)!
=

e−2

x!y!

which we recognize as the product of the probability that w(u) = x; w(v) = y
if the initial weights on the vertices are determined by an independent Poi(1)
process, as desired.

The following lemma is critical and valid only for special graphs such as Pn.

Lemma 3.4. Changing the initial weight on a single vertex can change at(Pn)
by at most 1.

Proof. The proof is an easy consequence of the remarks at the beginning of
Section 3.1. Indeed, after applying the greedy algorithm mentioned there, we
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decompose Pn into at(Pn) subpaths; each subpath has the total acquisition of 1
(with the initial weighting induced on corresponding vertices). Now, changing
the initial weight on a single vertex can increase the total acquisition of the
corresponding path by 1. Hence, globally, at(Pn) can increase by at most 1. This
finishes the proof as it also implies that it cannot decrease by more than 1 (if it
decreases by more than that, then after switching back to the original weighting,
the parameter increases by more than one).

Even though the main intent of the use of Lemma 3.4 is dePoissonization, it
also quickly gives a very sharp concentration of At(P

Poi
n ) around E

(

At

(

PPoi
n

))

.

Theorem 3.5. For At

(

PPoi
n

)

determined by a series of random unit Poisson

trials, X1, . . . , Xn and any φ(n) → ∞,

Pr
[

∣

∣At

(

PPoi
n

)

− E
(

At

(

PPoi
n

))∣

∣ >
√

2nφ(n)
]

→ 0

as n → ∞ and At

(

PPoi
n

)

is therefore tightly concentrated in an interval of width

O
(

√

nφ(n)
)

around E
(

At

(

PPoi
n

))

= Θ(n).

Proof. From Lemma 3.4, we know that for every i and any two sequences of
possible outcomes x1, . . . , xn and x1, . . . , xi−1, x

′
i, xi+1, . . . , xn,

∣

∣

∣

(

At

(

PPoi
n

)

∣

∣

∣
X1 = x1, . . . , Xn = xn

)

−
(

At

(

PPoi
n

)

∣

∣

∣
Xj = xj (j 6= i), Xi = x′i

)∣

∣

∣
≤ 1.

It follows from the Hoeffding-Azuma inequality that

Pr
[

∣

∣At

(

PPoi
n

)

− E
(

At

(

PPoi
n

))∣

∣ >
√

2nφ(n)
]

≤ 2e−φ(n) → 0,

as desired.

We will let E(At(P
n
n )) and E(At(P

x
n )) respectively denote the expected total

acquisition number when n and x tokens are randomly placed on Pn.

Lemma 3.6. For all x ∈ [n− φ(n)
√
n, n + φ(n)

√
n], where φ(n) → ∞ is arbi-

trary,

E(At(P
n
n )) − φ(n)

√
n ≤ E(At(P

x
n )) ≤ E(At(P

n
n )) + φ(n)

√
n.

Proof. This follows immediately from Lemma 3.4, and, moreover, holds for the
random variable At(P

n
n ) as well, before expectations are taken.

Together, these lemmas can be used to show that, when n is sufficiently large,
the bounds from Theorem 3.2 also apply to the dePoissonized model.
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Theorem 3.7. For the dePoissonized chip distribution process on Pn,

lim
n→∞

E(At(P
n
n ))

n
= lim

n→∞

E
(

At

(

PPoi
n

))

n
.

That is, the limit both exists and is identical to the limit for the Poissonized

model.

Proof. By Chebychev’s inequality, with probability at most 1−1/φ2(n) we have
|x− n| ≤ √

nφ(n) if x ∼ Poi(n), so that by Lemma 3.6

|At(P
n
n ) −At(P

x
n )| ≤

√
nφ(n).

On the other hand, if |x− n| > √
nφ(n), then trivially

|At(P
n
n ) −At(P

x
n )| ≤ n.

Combining the above two facts, we see that for any fixed φ(n) = o(
√
n) such that

φ(n) → ∞ as n → ∞, and with Bn = [n− φ(n)
√
n, n + φ(n)

√
n]

E
(

At

(

PPoi
n

))

n
=
∑

x≥0

e−nnx

x!

E(At(P
x
n ))

n

=
∑

x∈Bn

e−nnx

x!

E(At(P
x
n ))

n
+
∑

x 6∈Bn

e−nnx

x!

E(At(P
x
n ))

n
(2)

≤ E(At(P
n
n ))

n
+

φ(n)√
n

+
1

φ2(n)

(

E(At(P
n
n ))

n
+ 1

)

= (1 + o(1))
E(At(P

n
n ))

n
,(3)

as E
(

At

(

PPoi
n

))

= Ω(n). Likewise by just including the first term in (2), we get
that

(4)
E
(

At

(

PPoi
n

))

n
≥ (1 − o(1))

(

E(At(P
n
n ))

n
− φ(n)√

n

)

= (1 − o(1))
E(At(P

n
n ))

n
.

Inequalities (3) and (4) prove the result.

3.4. Uniform distribution

So far, our discussion has focused primarily on optimal acquisition protocols. For
small examples or particularly simple graphs, it is often possible to definitively
determine the optimal acquisition protocol. In larger or more complicated cases,
however, doing so becomes laborious and complexity issues become more relevant.
In order to sidestep this issue, we shift in this section to considering the size of the
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residual set produced by an algorithmic acquisition protocol. We will consider the
process which is defined in Theorem 3.9, which offers an algorithmic acquisition
protocol for instances of the randomly weighted path where each vertex has a
unique weight. In order to motivate the use of this algorithm, however, we first
state below one of the main results of [2], namely that if a total of t ≫ n5 chips
are distributed on Pn using a uniform random process, the probability that two
or more vertices have the same initial weight goes to zero as t → ∞. (If t ≪ n5

this probability is tending to 1 as n → ∞.) This result exhibits a scenario under
which the conditions of Theorem 3.9 are satisfied.

Lemma 3.8. Let a total of t chips, where t ≫ n5, be distributed on Pn using a

uniform random process and let X = X(n) denote the number of pairs of vertices

that receive the same number of chips. Then,

lim
n→∞

Pr [X ≥ 1] = 0.

In what follows, we assume that the path is weighted such that vertex weights
are distinct. According to Lemma 3.8, this may be realized with high probability
by placing, e.g., t = tn ≫ n5 tokens randomly on Pn but we do not use this fact
explicitly or implicitly.

Theorem 3.9. Let Pn be weighted by using a random permutation of n dis-

tinct integers w1, . . . , wn. If each acquisition move consists of the vertex with the

highest weight receiving the weight of its immediate neighbors, then the expected

acquisition number Atd satisfies

lim
n→∞

E[Atd(Pn)]

n
=

e2 − 1

2e2
.

Proof. Let the chips be randomly distributed on Pn. Let wk(i), for 1 ≤ i ≤ n,
denote the weight of vertex i after the kth step of the algorithm. Initially, each
vertex is equally likely to have the largest weight. Without loss of generality,
suppose w0(j) > w0(i) for all i < j and i > j. If j has two neighbors, then at the
end of the first step w1(j) = w0(j− 1) +w0(j) +w0(j + 1). If j has one neighbor,
then w1(j) = w0(j) +w0(j−1) or w1(j) = w0(j) +w0(j + 1). After the first step,
vertex j cannot acquire the weight of any other vertices in the path because all
its neighbors have zero weight. Therefore, calculating the acquisition number of
Pn reduces to calculating the acquisition numbers of the resulting smaller path
or paths, as shown in Figure 1, since

atd(Pn) = atd(P
′

) + atd(P
′′

) + 1.

We therefore obtain the identity

E[Atd(Pn)] = 1 +
1

n

(

n−2
∑

i=0

E[Atd(Pi)] + E[Atd(Pn−2−i)]

)

= 1 +
2

n

n−2
∑

i=0

E[Atd(Pi)].
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1 2
· · ·

j-2 j-1 j j+1 j+2
· · ·

n-1 n

P

1 2
· · ·

j-2 j-1 j j+1 j+2
· · ·

n-1 n

P ’ P”

Figure 1. An illustration of Pn before (left) and after (right) the first step of the algorithm.

If vertex j has the highest weight, then calculating the acquisition number of P reduces

to calculating the acquisition numbers of P ′ and P ′′.

Let G(x) =
∑

i≥0E[Atd(Pi)]x
i be the generating function for E[Atd(Pn)]. In

order to obtain a closed form expression for G(x), we first note that

nE[Atd(Pn)] = n + 2
n−2
∑

i=0

E[Atd(Pi)],

and, multiplying through by xn and summing over n = 0, 1, . . . (a change in the
order of summation is needed for the third term) we see that

xG′(x) =
x

(1 − x)2
+ 2G(x)

x2

1 − x
.

Solving the resulting differential equation, we find

G(x) =
1 + 2Ce−2x

2 − 4x + 2x2
=

Ce−2x

(x− 1)2
+

1

2(x− 1)2
,

where C is an unknown constant. We would like to find an explicit formula for
E[Atd(Pn)]. To do so, we use known generating series representations to note
that

Ce−2x

(x− 1)2
= C

(

n
∑

i=0

(−2)i

i!
xi

)(

n
∑

i=0

(j + 1)xj

)

,

and equate the xn coefficients to obtain

E[Atd(Pn)] = C
n
∑

i=0

(n + 1 − i)
(−2)i

i!
+

n + 1

2
.

We then use the fact that Atd(P2) = 1 to determine that C = −1/2. Therefore,

E[Atd(Pn)] = −1

2

n
∑

i=0

(n + 1 − i)
(−2)i

i!
+

n + 1

2

and

lim
n→∞

E[Atd(Pn)]

n
=

e2 − 1

2e2
.

This finishes the proof of the result.
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Assuming that each vertex has unique weight, we can similarly apply this
algorithm to cycles, stars, wheels, and complete bipartite graphs. After a single
iteration of the algorithm, the cycle graph Cn reduces to Pn−3 and therefore

E[Atd(Cn)] = 1 + E[Atd(Pn−3)].

For the star graph Sn, there are two possible cases. Let vc denote the center
vertex of Sn. If vc has the highest weight, then during the first iteration it will
acquire the weight of all other vertices and the acquisition number will trivially
be 1. If vc is not the vertex with highest weight, then during the first iteration
one of the leaves will acquire the weight on vc, leaving n−1 unconnected vertices
and giving the graph the acquisition number n− 1. Thus, we have

E[Atd(Sn)] =
(n− 1)2

n
+

1

n
=

n2 − 2n

n
.

For the wheel graph Wn, there are again two cases. Again, let vc denote the
center vertex of Wn. If vc has the highest weight, then it will similarly acquire
the weight of all other vertices, producing an acquisition number of 1. If vc is
not the vertex with highest weight, then after the first iteration Wn will reduce
to Cn. It follows that we have

E[Atd(Wn)] =
1

n
+

n− 1

n
(1 + E[Atd(Pn−3)]) .

Finally, let us consider the complete bipartite graph Kn,m = (U, V,E). Let v∗

denote the vertex with highest weight. If v∗ ∈ U, then during the first iteration
of the algorithm v∗ will acquire the weight of all vertices in V , leaving n vertices
in U totally disconnected and producing an acquisition number of n. If v∗ ∈ V,
then during the first iteration v∗ will similarly acquire the weight of all vertices
in U , producing an acquisition number of m. Thus, we have

E[Atd(Kn,m)] =
n2 + m2

n + m
.

Similarly, the multipartite graph Kn1,...,nk
has

E[Atd(Kn1,...,nk
)] =

∑k
i=1 n

2
i

∑k
i=1 ni

.

4. Open Questions

Finally, we can conclude by offering some open questions that arose during our
investigation of randomly-weighted graphs.
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Question 4.1. If t chips are randomly distributed, what are the expected total
acquisition numbers of Kn,n, Kn,m, K1,m, Ln, and Gm,n?

Question 4.2 (Diameter two graph). For any graph G with diameter two, it
is known that at(G) ≤ 32 lnn ln lnn [4] and conjectured that at(G) ≤ c (where
perhaps c = 2). If we instead randomly distribute n chips on a graph with
diameter two, can at(G) be similarly bounded? What if we randomly distribute
t chips?

Question 4.3. For the canonical acquisition problem, where each vertex of G
begins with weight 1, there exists an acquisition game variant where two players,
Max and Min, make alternate acquisition moves in an attempt to, respectively,
maximize and minimize the size of the residual set. The game acquisition number,
ag(G), is defined as the size of the residual set under optimal play. Similar inves-
tigations could be done on the game acquisition number of randomly weighted
graphs.
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revisiting Erdős-Lehner, in: Information Theory, Combinatorics, and Search Theory
(in Memory of Rudolph Ahlswede), H. Aydinian, F. Cicalese and C. Deppe (Eds.),
Springer-Verlag, Lecture Notes in Comput. Sci. 7777 (2013) 463–471.
doi:10.1007/978-3-642-36899-8 22

[3] D.E. Lampert and P.J. Slater, The acquisition number of a graph, Congr. Numer.
109 (1995) 203–210.

[4] T. LeSaulnier, N. Prince, P. Wenger, D. West and P. Worah, Total acquisition in

graphs, SIAM J. Discrete Math. 27 (2013) 1800–1819.
doi:10.1137/110856186

[5] P. Wenger, Fractional acquisition in graphs, Discrete Appl. Math. 178 (2014)
142–148.
doi:10.1016/j.dam.2014.06.010

[6] D. West, N. Prince and P. Wenger, Unit acquisition in graphs, preprint.

[7] P. Pra lat, C++ program and results can be found at
http://www.math.ryerson.ca/˜pralat/.

Received 14 August 2015
Revised 15 July 2016

Accepted 15 July 2016

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.1007/978-3-642-36899-8_22
http://dx.doi.org/10.1137/110856186
http://dx.doi.org/10.1016/j.dam.2014.06.010
http://www.tcpdf.org

