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Abstract

Let k ≥ 1 be an integer. A signed total Roman k-dominating function on
a graph G is a function f : V (G) −→ {−1, 1, 2} such that

∑

u∈N(v) f(u) ≥ k

for every v ∈ V (G), where N(v) is the neighborhood of v, and every vertex
u ∈ V (G) for which f(u) = −1 is adjacent to at least one vertex w for which
f(w) = 2. A set {f1, f2, . . . , fd} of distinct signed total Roman k-dominating

functions on G with the property that
∑d

i=1 fi(v) ≤ k for each v ∈ V (G), is
called a signed total Roman k-dominating family (of functions) on G. The
maximum number of functions in a signed total Roman k-dominating family
on G is the signed total Roman k-domatic number of G, denoted by dk

stR
(G).

In this paper we initiate the study of signed total Roman k-domatic numbers
in graphs, and we present sharp bounds for dk

stR
(G). In particular, we derive

some Nordhaus-Gaddum type inequalities. In addition, we determine the
signed total Roman k-domatic number of some graphs.

Keywords: signed total Roman k-dominating function, signed total Roman
k-domination number, signed total Roman k-domatic number.
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1. Terminology and Introduction

For notation and graph theory terminology, we in general follow Haynes, Hedet-
niemi and Slater [2]. Specifically, let G be a simple graph with vertex set V =
V (G) and edge set E = E(G). The order |V | of G is denoted by n = n(G).
For every vertex v ∈ V , the open neighborhood NG(v) = N(v) is the set {u ∈
V (G) | uv ∈ E(G)}. The degree of a vertex v ∈ V is dG(v) = d(v) = |N(v)|.
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The minimum and maximum degree of a graph G are denoted by δ = δ(G) and
∆ = ∆(G), respectively. A graph G is regular or r-regular if δ(G) = ∆(G) = r.
The complement of a graph G is denoted by G. We write Kn for the complete

graph of order n, Kp,p for the complete bipartite graph of order 2p, and Cn for the
cycle of length n.

In this paper we continue the study of Roman dominating functions in graphs
and digraphs. If k ≥ 1 is an integer, then the signed total Roman k-dominating

function (STRkDF) on a graph G is defined in [6] as a function f : V (G) −→
{−1, 1, 2} such that

∑

u∈N(v) f(u) ≥ k for each v ∈ V (G), and such that every
vertex u ∈ V (G) for which f(u) = −1 is adjacent to at least one vertex w for
which f(w) = 2. The weight of an STRkDF f is the value ω(f) =

∑

v∈V f(v).
The signed total Roman k-domination number of a graph G, denoted by γkstR(G),
equals the minimum weight of an STRkDF on G. A γkstR(G)-function is a signed
total Roman k-dominating function of G with weight γkstR(G). The signed total
Roman k-domination number exists when δ(G) ≥ k

2 . However, for investigations
of the signed total Roman k-dominating number it is reasonable to claim that
δ(G) ≥ k. Thus we assume throughout this paper that δ(G) ≥ k. If k = 1, then
we write γ1stR(G) = γstR(G). This case was introduced and studied in [5].

Wang [8] defined the signed total k-dominating function on a graph G as
a function f : V (G) −→ {−1, 1} such that

∑

u∈N(v) f(u) ≥ k for every vertex
v ∈ V (G). Thus a signed total Roman k-dominating function combines the
properties of both a Roman dominating function and a signed total k-dominating
function.

A concept dual in a certain sense to the domination number is the domatic
number, introduced by Cockayne and Hedetniemi [1]. They have defined the
domatic number d(G) of a graph G by means of sets. A partition of V (G), all
of whose classes are dominating sets in G, is called a domatic partition. The
maximum number of classes of a domatic partition of G is the domatic number
d(G) of G. But Rall has defined a variant of the domatic number of G, namely the
fractional domatic number of G, using functions on V (G). (This was mentioned
by Slater and Trees in [4].) Analogous to the fractional domatic number we may
define the signed total Roman k-domatic number.

A set {f1, f2, . . . , fd} of distinct signed total Roman k-dominating functions
on G with the property that

∑d
i=1 fi(v) ≤ k for each v ∈ V (G), is called a signed

total Roman k-dominating family (of functions) on G. The maximum number of
functions in a signed total Roman k-dominating family (STRkD family) on G is
the signed total Roman k-domatic number of G, denoted by dkstR(G). If k = 1,
then we write d1stR(G) = dstR(G). This case was introduced and investigated in
[7]. The signed total Roman k-domatic number is well-defined and dkstR(G) ≥ 1
for all graphs G with δ(G) ≥ k, since the set consisting of any STRkDF forms an
STRkD family on G.
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Our purpose in this paper is to initiate the study of signed total Roman k-
domatic numbers in graphs. We first derive basic properties and bounds for the
signed total Roman k-domatic number of a graph. In particular, we derive the
Nordhaus-Gaddum type result

dkstR(G) + dkstR(G) ≤ n− 1,

and we discuss the equality in this inequality. In addition, we determine the
signed total Roman k-domatic number of some classes of graphs.

We make use of the following results in this paper.

Proposition 1 ([6]). If G is a graph of order n with δ(G) ≥ k, then γkstR(G) ≤ n.

Proposition 2 ([6]). If G is a graph of order n with δ(G) ≥ k+2, then γkstR(G) ≤
n− 1.

Proposition 3 ([6]). If n ≥ k + 2, then γkstR(Kn) = k + 2.

Proposition 4 ([6]). If G is a δ-regular graph of order n with δ ≥ k, then

γkstR(G) ≥
⌈

kn

δ

⌉

.

Proposition 5 ([6]). If k ≥ 1 and p ≥ k are integers, then γkstR(Kp,p) = 2k, with
exception of the case that k = 1 and p = 3, in which case γ1stR(K3,3) = 4.

2. Bounds on the Signed Total Roman k-Domatic Number

In this section we present basic properties of dkstR(G) and sharp bounds on the
signed total Roman k-domatic number of a graph.

Theorem 6. For every graph G with δ(G) ≥ k,

dkstR(G) ≤ δ(G).

Moreover, if dkstR(G) = δ(G), then for each STRkD family {f1, f2, . . . , fd} on G
with d = dkstR(G) and each vertex v of minimum degree,

∑

x∈N(v) fi(x) = k for

each function fi and
∑d

i=1 fi(x) = k for all x ∈ N(v).

Proof. Let {f1, f2, . . . , fd} be an STRkD family on G such that d = dkstR(G). If
v is a vertex of minimum degree δ(G), then we deduce that

kd ≤
d

∑

i=1

∑

x∈N(v)

fi(x) =
∑

x∈N(v)

d
∑

i=1

fi(x) ≤
∑

x∈N(v)

k = kδ(G)

and thus dkstR(G) ≤ δ(G).
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If dkstR(G) = δ(G), then the two inequalities occurring in the proof become
equalities. Hence for the STRkD family {f1, f2, . . . , fd} on G and for each vertex
v of minimum degree,

∑

x∈N(v) fi(x) = k for each function fi and
∑d

i=1 fi(x) = k
for all x ∈ N(v).

Theorem 7. If G is a graph of order n, then

γkstR(G) · dkstR(G) ≤ kn.

Moreover, if γkstR(G) · dkstR(G) = kn, then for each STRkD family {f1, f2, . . . , fd}
on G with d = dkstR(G), each function fi is a γkstR(G)-function and

∑d
i=1 fi(v) = k

for all v ∈ V (G).

Proof. Let {f1, f2, . . . , fd} be an STRkD family on G such that d = dkstR(G) and
let v ∈ V (G). Then

d · γkstR(G) =
d

∑

i=1

γkstR(G) ≤
d

∑

i=1

∑

v∈V (G)

fi(v) =
∑

v∈V (G)

d
∑

i=1

fi(v) ≤
∑

v∈V (G)

k = kn.

If γkstR(G) · dkstR(G) = kn, then the two inequalities occurring in the proof
become equalities. Hence for the STRkD family {f1, f2, . . . , fd} on G and for
each i,

∑

v∈V (G) fi(v) = γkstR(G). Thus each function fi is a γkstR(G)-function,

and
∑d

i=1 fi(v) = k for all v ∈ V (G).

Example 8. If k ≥ 3 is an integer, then dkstR(Kk,k) = k. In addition, d1stR(K1,1) =
d2srR(K2,2) = 1.

Proof. Clearly, d1stR(K1,1) = d2srR(K2,2) = 1. Let now k ≥ 3. According to The-
orem 6, we have dkstR(Kk,k) ≤ k. Let A = {a1, a2, . . . , ak} and B = {b1, b2, . . . , bk}
be a bipartition of Kk,k. Now we distinguish three cases.

Case 1. Let k = 3t for an integer t ≥ 1. Define f1(ai) = f1(bi) = −1 for
1 ≤ i ≤ t and f1(ai) = f1(bi) = 2 for t+ 1 ≤ i ≤ 3t. For 2 ≤ j ≤ k and 1 ≤ i ≤ k
define fj(ai) = fj(bi) = f1(ai+j−1), where the indices are taken modulo k. It
is easy to see that fi is a signed total Roman k-dominating function of Kk,k for
1 ≤ i ≤ k and {f1, f2, . . . , fk} is a signed total Roman k-dominating family on
Kk,k. Hence dkstR(Kk,k) ≥ k and thus dkstR(Kk,k) = k in this case.

Case 2. Let k = 3t+ 1 for an integer t ≥ 1. Define f1(ai) = f1(bi) = −1 for
1 ≤ i ≤ t, f1(ai) = f1(bi) = 2 for t+1 ≤ i ≤ 3t and f1(a3t+1) = f1(b3t+1) = 1. For
2 ≤ j ≤ k and 1 ≤ i ≤ k define fj(ai) = fj(bi) = f1(ai+j−1), where the indices are
taken modulo k. It is easy to see that fi is a signed total Roman k-dominating
function of Kk,k for 1 ≤ i ≤ k and {f1, f2, . . . , fk} is a signed total Roman
k-dominating family on Kk,k. Hence dkstR(Kk,k) ≥ k and thus dkstR(Kk,k) = k.
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Case 3. Let k = 3t+ 2 for an integer t ≥ 1. Define f1(ai) = f1(bi) = −1 for
1 ≤ i ≤ t, f1(ai) = f1(bi) = 2 for t + 1 ≤ i ≤ 3t and f1(a3t+1) = f1(a3t+2) =
f1(b3t+1) = f1(b3t+2) = 1. For 2 ≤ j ≤ k and 1 ≤ i ≤ k define fj(ai) =
fj(bi) = f1(ai+j−1), where the indices are taken modulo k. It is easy to see
that fi is a signed total Roman k-dominating function of Kk,k for 1 ≤ i ≤ k
and {f1, f2, . . . , fk} is a signed total Roman k-dominating family on Kk,k. Hence
dkstR(Kk,k) ≥ k and thus dkstR(Kk,k) = k.

Example 9. If k, p are integers such that p ≥ k + 1 ≥ 2, then dkstR(Kp,p) = p,
with exception of the case k = 1 and p = 3, in which case d1stR(K3,3) = 1.

Proof. Theorem 6 implies that dkstR(Kp,p) ≤ p. Now let A = {a1, a2, . . . , ap}
and B = {b1, b2, . . . , bp} be a bipartition of Kp,p. We distinguish two cases.

Case 1. Assume that p − k is odd. Define f1(ai) = f1(bi) = 1 for 1 ≤ i ≤
p+k−3

2 , f1(ai) = f1(bi) = −1 for p+k−1
2 ≤ i ≤ p− 1 and f1(ap) = f1(bp) = 2. For

2 ≤ j ≤ p and 1 ≤ i ≤ p define fj(ai) = fj(bi) = f1(ai+j−1), where the indices are
taken modulo p. It is easy to see that fi is a signed total Roman k-dominating
function of Kp,p for 1 ≤ i ≤ p and {f1, f2, . . . , fp} is a signed total Roman k-
dominating family on Kp,p. Hence dkstR(Kp,p) ≥ p and thus dkstR(Kp,p) = p in
this case.

Case 2. Assume that p− k is even. If k = 1 and p = 3, then Theorem 7 and
Proposition 5 imply that d1stR(K3,3) ≤ 3/2 and thus d1stR(K3,3) = 1.

Let now p + k ≥ 6. Define f1(ai) = f1(bi) = 1 for 1 ≤ i ≤ p+k−6
2 , f1(ai) =

f1(bi) = −1 for p+k−4
2 ≤ i ≤ p−2 and f1(ap−1) = f1(ap) = f1(bp−1) = f1(bp) = 2.

For 2 ≤ j ≤ p and 1 ≤ i ≤ p define fj(ai) = fj(bi) = f1(ai+j−1), where the indices
are taken modulo p. It is easy to see that fi is a signed total Roman k-dominating
function of Kp,p for 1 ≤ i ≤ p and {f1, f2, . . . , fp} is a signed total Roman k-
dominating family on Kp,p. Hence dkstR(Kp,p) ≥ p and thus dkstR(Kp,p) = p.

Examples 8 and 9 demonstrate that Theorem 6 is sharp. If k ≥ 3, then
Example 8 and Proposition 5 show that Theorem 7 is sharp too.

Corollary 10. If Kn is the complete graph of order n such that n ≥ k + 2, then

dkstR(Kn) ≤
k

k + 2
n.

Proof. It follows from Theorem 7 and Proposition 3 that

(k + 2)dkstR(Kn) = γkstR(Kn) · dkstR(Kn) ≤ kn.

This yields the desired bound immediately.

Example 11. If n ≥ 6 is an even integer, then d2stR(Kn) =
n
2 .
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Proof. Corollary 10 implies d2stR(Kn) ≤ n
2 . Let n = 2p for an integer p ≥ 3, and

let V (Kn) = {x1, x2, . . . , xn} be the vertex set of Kn. For the opposite inequality
we distinguish two cases.

Case 1. Assume that p = 2t + 1 for an integer t ≥ 1 and thus n = 4t + 2.
Define the function f1 by f1(xi) = −1 for 1 ≤ i ≤ 2t, f1(xi) = 1 for 2t+1 ≤ i ≤ 4t
and f1(x4t+1) = f1(x4t+2) = 2. For 2 ≤ j ≤ 2t + 1 and 1 ≤ i ≤ 4t + 2 define
fj(xi) = f1(xi+2j−2), where the indices are taken modulo n. It is easy to see that
fi is a signed total Roman 2-dominating function of Kn for 1 ≤ i ≤ 2t + 1 and
{f1, f2, . . . , f2t+1} is a signed total Roman 2-dominating family on Kn. Hence
d2stR(Kn) ≥ 2t+ 1 = n

2 and thus d2stR(Kn) =
n
2 in this case.

Case 2. Assume that p = 2t for an integer t ≥ 2 and thus n = 4t. Define the
functions f1 by f1(xi) = −1 for 1 ≤ i ≤ 2t, f1(xi) = 1 for 2t + 1 ≤ i ≤ 4t − 4
and f1(xi) = 2 for 4t − 3 ≤ i ≤ 4t. For 2 ≤ j ≤ 2t and 1 ≤ i ≤ 4t define
fj(xi) = f1(xi+2j−2), where the indices are taken modulo n. It is easy to see
that fi is a signed total Roman 2-dominating function of Kn for 1 ≤ i ≤ 2t
and {f1, f2, . . . , f2t} is a signed total Roman 2-dominating family on Kn. Hence
d2stR(Kn) ≥ 2t = n

2 and thus d2stR(Kn) =
n
2 .

Example 12. If n ≥ 5, then dn−2
stR (Kn) = n− 2.

Proof. Corollary 10 implies dn−2
stR (Kn) ≤ n−2. Let V (Kn) = {x1, x2, . . . , xn} be

the vertex set of Kn. Define the function f1 by f1(x1) = −1, f1(x2) = f2(x3) = 2
and f1(xi) = 1 for 4 ≤ i ≤ n. For 2 ≤ j ≤ n−2 and 1 ≤ i ≤ n−2 define fj(xi) =
f1(xi+j−1), where the indices are taken modulo n−2 and fj(xn−1) = fj(xn) = 1.
It is easy to see that fi is a signed total Roman (n−2)-dominating function of Kn

for 1 ≤ i ≤ n−2 and {f1, f2, . . . , fn−2} is a signed total Roman (n−2)-dominating
family on Kn. Hence dn−2

stR (Kn) ≥ n− 2 and thus dn−2
stR (Kn) = n− 2.

These are further examples showing the sharpness of Theorem 7 and Corol-
lary 10. For some regular graphs we will improve the upper bound given in
Theorem 6.

Theorem 13. Let G be a δ-regular graph of order n with δ ≥ max{2, k} such

that n = pδ + r with integers p ≥ 1 and 1 ≤ r ≤ δ − 1 and kr = tδ + s with

integers t ≥ 0 and 1 ≤ s ≤ δ − 1. Then dkstR(G) ≤ δ − 1.

Proof. Let {f1, f2, . . . , fd} be an STRkD family on G such that d = dkstR(G). It
follows that

d
∑

i=1

ω(fi) =
d

∑

i=1

∑

v∈V (G)

fi(v) =
∑

v∈V (G)

d
∑

i=1

fi(v) ≤
∑

v∈V (G)

k = kn.
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Proposition 4 implies

ω(fi) ≥ γkstR(G) ≥
⌈

kn

δ

⌉

=

⌈

kpδ + kr

δ

⌉

= kp+

⌈

kr

δ

⌉

= kp+

⌈

tδ + s

δ

⌉

= kp+ t+ 1,

for each i ∈ {1, 2, . . . , d}. If we suppose to the contrary that d = δ, then the
above inequality chains lead to the contradiction

kn ≥
d

∑

i=1

ω(fi) ≥ d(kp+ t+ 1) = δ(kp+ t+ 1) = kpδ + δt+ δ

= kpδ + kr − s+ δ > kpδ + kr = k(pδ + r) = kn.

Thus d ≤ δ − 1, and the proof is complete.

Examples 8 and 9 demonstrate that Theorem 13 is not valid in general.

Theorem 14. If G is a graph of order n with δ(G) ≥ k, then

γkstR(G) + dkstR(G) ≤ n+ k.

Proof. If dksR(G) ≤ k, then Proposition 1 implies γkstR(G) + dkstR(G) ≤ n + k
immediately. Let now dkstR(G) ≥ k. It follows from Theorem 7 that

γkstR(G) + dkstR(G) ≤ kn

dkstR(G)
+ dkstR(G).

According to Theorem 6, we have k ≤ dkstR(G) ≤ n. Using these bounds, and
the fact that the function g(x) = x+ (kn)/x is decreasing for k ≤ x ≤

√
kn and

increasing for
√
kn ≤ x ≤ n, we obtain

γkstR(G) + dkstR(G) ≤ kn

dkstR(G)
+ dkstR(G) ≤ max{n+ k, k + n} = n+ k,

and the desired bound is proved.

Proposition 5 and Example 8 demonstrate that Theorem 14 is sharp for
k ≥ 3. For δ(G) ≥ k + 2, we will improve the bound in Theorem 14 slightly.

Theorem 15. If G is a graph of order n with δ(G) ≥ k + 2, then

γkstR(G) + dkstR(G) ≤ n+ k − 1.
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Proof. If dksR(G) ≤ k, then Proposition 2 implies γkstR(G)+dkstR(G) ≤ n+k− 1.
Let now dkstR(G) ≥ k + 1. It follows from Theorem 7 that

γkstR(G) + dkstR(G) ≤ kn

dkstR(G)
+ dkstR(G).

According to Theorem 6, we have k + 1 ≤ dkstR(G) ≤ n− 1. Using these bounds,
and the fact that the function g(x) = x+(kn)/x is decreasing for k+1 ≤ x ≤

√
kn

and increasing for
√
kn ≤ x ≤ n− 1, we obtain

γkstR(G) + dkstR(G) ≤ kn

dkstR(G)
+ dkstR(G)

≤ max

{

kn

k + 1
+ k + 1,

kn

n− 1
+ n− 1

}

< n+ k,

and this leads to the desired bound.

The special case k = 1 of Theorems 6, 7, 13 and 14 can be found in [7].

3. Nordhaus-Gaddum Type Results

Results of Nordhaus-Gaddum type study the extreme values of the sum or prod-
uct of a parameter on a graph and its complement. In their current classical paper
[3], Nordhaus and Gaddum discussed this problem for the chromatic number. We
present such inequalities for the signed total Roman k-domatic number.

Theorem 16. If G is a graph of order n such that δ(G), δ(G) ≥ k, then

dkstR(G) + dkstR(G) ≤ n− 1.

Furthermore, if dkstR(G) + dkstR(G) = n− 1, then G is regular.

Proof. It follows from Theorem 6 that

dkstR(G) + dkstR(G) ≤ δ(G) + δ(G) = δ(G) + (n−∆(G)− 1) ≤ n− 1.

If G is not regular, then ∆(G) − δ(G) ≥ 1, and hence the above inequality
chain implies the better bound dkstR(G) + dkstR(G) ≤ n− 2.

In the special case k = 1, we have proved the following theorem in [7].

Theorem 17. If G is a graph of order n such that δ(G), δ(G) ≥ 1, then

dstR(G) + dstR(G) ≤ n− 1,

with equality if and only if G = C4.
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As a supplement to Theorem 17, we prove the next result.

Theorem 18. Let k ≥ 2 be an integer. Then there is only a finite number of

graphs G with δ(G), δ(G) ≥ k such that

dkstR(G) + dkstR(G) = n(G)− 1.

Proof. Let n(G) = n, δ(G) = δ and δ(G) = δ. The strategy of our proof is as
follows. For a fixed integer k ≥ 2, we show that dkstR(G) + dkstR(G) ≤ n − 2 or
n ≤ 2k3+5k2−5k+1. Together with Theorem 16 this implies the desired result.

If G is not regular, then it follows from Theorem 16 that dkstR(G)+dkstR(G) ≤
n−2. Assume now that G is δ-regular. Then G is δ-regular such that δ+δ+1 = n.
Assume, without loss of generality, that δ ≤ δ. We distinguish three cases.

Case 1. Assume that δ = δ. Then n = 2δ + 1 and k = tδ + s with integers
t ≥ 0 and 1 ≤ s ≤ δ−1. If δ = k, then n = 2k+1 ≤ 2k3+5k2−5k+1. If δ ≥ k+1,
then t = 0 and s = k ≤ δ − 1, and Theorem 13 implies that dkstR(G) ≤ δ − 1.
Applying now Theorem 6, we conclude that

dkstR(G) + dkstR(G) ≤ δ − 1 + δ ≤ n− 2.

Case 2. Assume that δ = δ − 1. Then n = 2δ + 2. If δ = 2, then n = 6 ≤
3k ≤ 2k3 + 5k2 − 5k + 1. If δ ≥ 3, then let 2k = tδ + s with integers t ≥ 0 and
0 ≤ s ≤ δ− 1. Since δ ≥ k, we observe that 0 ≤ t ≤ 2. If t = 2, then 2k = 2δ and
therefore n = δ + δ + 1 = 2k + 2 ≤ 2k3 + 5k2 − 5k + 1. If t = 1, then 2k = δ + s.
If s = 0, then δ = 2k and thus n = δ + δ + 1 = 4k + 2 ≤ 2k3 + 5k2 − 5k + 1.
If s 6= 0, then accoring to Theorem 13, dkstR(G) ≤ δ − 1 and Theorem 6 leads to
dkstR(G) + dkstR(G) ≤ n− 2. If t = 0, then 2k = s ≤ δ − 1, and again Theorems 6
and 13 yield dkstR(G) + dkstR(G) ≤ n− 2.

Case 3. Assume that δ ≤ δ − 2. Then n = δ + δ + 1 = δ + r with 1 ≤ r =
δ+1 ≤ δ−1. Let now kr = k(δ+1) = tδ+s with integers t ≥ 0 and 0 ≤ s ≤ δ−1.
If s 6= 0, then we deduce from Theorem 13 that dkstR(G) ≤ δ − 1, and Theorem 6
yields to dkstR(G) + dkstR(G) ≤ n− 2. If s = 0, then the condition δ ≤ δ− 2 shows
that

k(δ + 1) = tδ with 1 ≤ t ≤ k − 1(1)

and thus

δ =
k(δ + 1)

t
.(2)

Let now
n = pδ + r with integers p ≥ 1 and 0 ≤ r ≤ δ − 1(3)

and when r 6= 0

kr = aδ + b with integers a ≥ 0 and 0 ≤ b ≤ δ − 1.(4)
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If b, r 6= 0, then we conclude from Theorem 13 that dkstR(G) ≤ δ−1, and Theorem
6 implies that dkstR(G) + dkstR(G) ≤ n − 2. Now let r 6= 0 and b = 0. Then (3)
and (4) yield to

kr = aδ with 1 ≤ a ≤ k − 1

and thus

δ =
kr

a
.(5)

Using (2) and (3), we obtain

k(δ + 1)

t
+ δ + 1 = δ + δ + 1 = n = pδ +

aδ

k

and thus

pδ = δ

(

k

t
+ 1− a

k

)

+
k

t
+ 1 ≤ δ

(

k

t
+ 2− a

k

)

+ 1 ≤ δ

(

k + 2− a

k

)

+ 1

and so p ≤ k + 2. Combining (2) and (5), we obtain

δ =
k

t

(

kr

a
+ 1

)

and so

n = δ + δ + 1 =
k

t

(

kr

a
+ 1

)

+
kr

a
+ 1.(6)

According to (3) and (5), we have

n = pδ + r =
pkr

a
+ r.(7)

Combining (6) and (7), we find that

r

(

pk

a
+ 1

)

=
kr

a

(

k

t
+ 1

)

+
k

t
+ 1

and therefore

1 +
k

t
= r

(

pk

a
+ 1− k

a
− k2

at

)

.(8)

This equality shows that
pk

a
+ 1− k

a
− k2

at
> 0

and hence
pk

a
+ 1− k

a
− k2

at
≥ 1

at
.
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Using this and (8), we obtain

1 +
k

t
≥ r

at

and thus
r ≤ a(t+ k) ≤ (k − 1)(2k − 1) .(9)

In view of (5), it follows that

δ =
kr

a
≤ ka(t+ k)

a
= k(t+ k) ≤ k(2k − 1) .

Applying p ≤ k + 2, (3), (9) and the last inequality, we arrive at the desired
bound

n = pδ + r ≤ (k + 2)k(2k − 1) + (k − 1)(2k − 1) = 2k3 + 5k2 − 5k + 1.

It remains the case that r = 0 and thus n = pδ with an integer p ≥ 2. Since
n = δ + δ + 1, we deduce that

δ = (p− 1)δ − 1.

Using this identity and (1), we obtain

k(δ + 1) = tδ = t(p− 1)δ − t(10)

and thus
k + t = δ(t(p− 1)− k) .

It follows that t(p− 1)− k ≥ 1 and so k + t = δ(t(p− 1)− k) ≥ δ and therefore
δ ≤ k + t ≤ 2k − 1. Furthermore, (10) leads to

k(δ + 1) = t((p− 1)δ − 1) ≥ (p− 1)δ − 1

and consequently,

p− 1 ≤ kδ + k + 1

δ
= k +

k + 1

δ
≤ k +

k + 1

2
≤ 2k.

Using δ ≤ 2k − 1, we finally arrive at

n = pδ ≤ (2k + 1)(2k − 1) ≤ 2k3 + 5k2 − 5k + 1.

This completes the proof.

Conjecture 19. Let k ≥ 2 be an integer. If G is a graph of order n such that

δ(G), δ(G) ≥ k, then
dkstR(G) + dkstR(G) ≤ n− 2.
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If n ≥ 5 is an integer, then Examples 9 and 12 show that

dn−2
stR (Kn,n) + dn−2

stR (Kn,n) = 2n− 2 = n(Kn,n)− 2.

Thus Conjecture 19 would be tight for k ≥ 3.
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