THE SIGNED TOTAL ROMAN k-DOMATIC NUMBER OF A GRAPH

Lutz Volkmann

Lehrstuhl II für Mathematik RWTH Aachen Univertsity 52056 Aachen, Germany

e-mail: volkm@math2.rwth-aachen.de

Abstract

Let $k \geq 1$ be an integer. A signed total Roman k-dominating function on a graph G is a function $f:V(G)\longrightarrow \{-1,1,2\}$ such that $\sum_{u\in N(v)}f(u)\geq k$ for every $v\in V(G)$, where N(v) is the neighborhood of v, and every vertex $u\in V(G)$ for which f(u)=-1 is adjacent to at least one vertex w for which f(w)=2. A set $\{f_1,f_2,\ldots,f_d\}$ of distinct signed total Roman k-dominating functions on G with the property that $\sum_{i=1}^d f_i(v)\leq k$ for each $v\in V(G)$, is called a signed total Roman k-dominating family (of functions) on G. The maximum number of functions in a signed total Roman k-dominating family on G is the signed total Roman k-domatic number of G, denoted by $d_{stR}^k(G)$. In this paper we initiate the study of signed total Roman k-domatic numbers in graphs, and we present sharp bounds for $d_{stR}^k(G)$. In particular, we derive some Nordhaus-Gaddum type inequalities. In addition, we determine the signed total Roman k-domatic number of some graphs.

Keywords: signed total Roman k-dominating function, signed total Roman k-domination number, signed total Roman k-domatic number.

2010 Mathematics Subject Classification: 05C69.

1. Terminology and Introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi and Slater [2]. Specifically, let G be a simple graph with vertex set V = V(G) and edge set E = E(G). The order |V| of G is denoted by n = n(G). For every vertex $v \in V$, the open neighborhood $N_G(v) = N(v)$ is the set $\{u \in V(G) \mid uv \in E(G)\}$. The degree of a vertex $v \in V$ is $d_G(v) = d(v) = |N(v)|$.

The minimum and maximum degree of a graph G are denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$, respectively. A graph G is regular or r-regular if $\delta(G) = \Delta(G) = r$. The complement of a graph G is denoted by \overline{G} . We write K_n for the complete graph of order n, $K_{p,p}$ for the complete bipartite graph of order 2p, and C_n for the cycle of length n.

In this paper we continue the study of Roman dominating functions in graphs and digraphs. If $k \geq 1$ is an integer, then the signed total Roman k-dominating function (STRkDF) on a graph G is defined in [6] as a function $f: V(G) \longrightarrow \{-1,1,2\}$ such that $\sum_{u \in N(v)} f(u) \geq k$ for each $v \in V(G)$, and such that every vertex $u \in V(G)$ for which f(u) = -1 is adjacent to at least one vertex w for which f(w) = 2. The weight of an STRkDF f is the value $\omega(f) = \sum_{v \in V} f(v)$. The signed total Roman k-domination number of a graph G, denoted by $\gamma_{stR}^k(G)$, equals the minimum weight of an STRkDF on G. A $\gamma_{stR}^k(G)$ -function is a signed total Roman k-dominating function of G with weight $\gamma_{stR}^k(G)$. The signed total Roman K-domination number exists when $\delta(G) \geq \frac{k}{2}$. However, for investigations of the signed total Roman K-dominating number it is reasonable to claim that $\delta(G) \geq k$. Thus we assume throughout this paper that $\delta(G) \geq k$. If k = 1, then we write $\gamma_{stR}^1(G) = \gamma_{stR}(G)$. This case was introduced and studied in [5].

Wang [8] defined the signed total k-dominating function on a graph G as a function $f:V(G)\longrightarrow \{-1,1\}$ such that $\sum_{u\in N(v)}f(u)\geq k$ for every vertex $v\in V(G)$. Thus a signed total Roman k-dominating function combines the properties of both a Roman dominating function and a signed total k-dominating function.

A concept dual in a certain sense to the domination number is the domatic number, introduced by Cockayne and Hedetniemi [1]. They have defined the domatic number d(G) of a graph G by means of sets. A partition of V(G), all of whose classes are dominating sets in G, is called a domatic partition. The maximum number of classes of a domatic partition of G is the domatic number d(G) of G. But Rall has defined a variant of the domatic number of G, namely the fractional domatic number of G, using functions on V(G). (This was mentioned by Slater and Trees in [4].) Analogous to the fractional domatic number we may define the signed total Roman k-domatic number.

A set $\{f_1, f_2, \ldots, f_d\}$ of distinct signed total Roman k-dominating functions on G with the property that $\sum_{i=1}^d f_i(v) \leq k$ for each $v \in V(G)$, is called a signed total Roman k-dominating family (of functions) on G. The maximum number of functions in a signed total Roman k-dominating family (STRkD family) on G is the signed total Roman k-domatic number of G, denoted by $d^k_{stR}(G)$. If k=1, then we write $d^1_{stR}(G) = d_{stR}(G)$. This case was introduced and investigated in [7]. The signed total Roman k-domatic number is well-defined and $d^k_{stR}(G) \geq 1$ for all graphs G with $\delta(G) \geq k$, since the set consisting of any STRkDF forms an STRkD family on G.

Our purpose in this paper is to initiate the study of signed total Roman k-domatic numbers in graphs. We first derive basic properties and bounds for the signed total Roman k-domatic number of a graph. In particular, we derive the Nordhaus-Gaddum type result

$$d_{stR}^k(G) + d_{stR}^k(\overline{G}) \le n - 1,$$

and we discuss the equality in this inequality. In addition, we determine the signed total Roman k-domatic number of some classes of graphs.

We make use of the following results in this paper.

Proposition 1 ([6]). If G is a graph of order n with $\delta(G) \geq k$, then $\gamma_{stR}^k(G) \leq n$.

Proposition 2 ([6]). If G is a graph of order n with $\delta(G) \geq k+2$, then $\gamma_{stR}^k(G) \leq n-1$.

Proposition 3 ([6]). If $n \ge k+2$, then $\gamma_{stR}^k(K_n) = k+2$.

Proposition 4 ([6]). If G is a δ -regular graph of order n with $\delta \geq k$, then

$$\gamma_{stR}^k(G) \ge \left\lceil \frac{kn}{\delta} \right\rceil.$$

Proposition 5 ([6]). If $k \ge 1$ and $p \ge k$ are integers, then $\gamma_{stR}^k(K_{p,p}) = 2k$, with exception of the case that k = 1 and p = 3, in which case $\gamma_{stR}^k(K_{3,3}) = 4$.

2. Bounds on the Signed Total Roman k-Domatic Number

In this section we present basic properties of $d_{stR}^k(G)$ and sharp bounds on the signed total Roman k-domatic number of a graph.

Theorem 6. For every graph G with $\delta(G) \geq k$,

$$d_{stR}^k(G) \le \delta(G).$$

Moreover, if $d^k_{stR}(G) = \delta(G)$, then for each STRkD family $\{f_1, f_2, \dots, f_d\}$ on G with $d = d^k_{stR}(G)$ and each vertex v of minimum degree, $\sum_{x \in N(v)} f_i(x) = k$ for each function f_i and $\sum_{i=1}^d f_i(x) = k$ for all $x \in N(v)$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be an STRkD family on G such that $d = d_{stR}^k(G)$. If v is a vertex of minimum degree $\delta(G)$, then we deduce that

$$kd \le \sum_{i=1}^{d} \sum_{x \in N(v)} f_i(x) = \sum_{x \in N(v)} \sum_{i=1}^{d} f_i(x) \le \sum_{x \in N(v)} k = k\delta(G)$$

and thus $d^k_{stR}(G) \le \delta(G)$.

If $d_{stR}^k(G) = \delta(G)$, then the two inequalities occurring in the proof become equalities. Hence for the STRkD family $\{f_1, f_2, \dots, f_d\}$ on G and for each vertex v of minimum degree, $\sum_{x \in N(v)} f_i(x) = k$ for each function f_i and $\sum_{i=1}^d f_i(x) = k$ for all $x \in N(v)$.

Theorem 7. If G is a graph of order n, then

$$\gamma_{stR}^k(G) \cdot d_{stR}^k(G) \le kn.$$

Moreover, if $\gamma_{stR}^k(G) \cdot d_{stR}^k(G) = kn$, then for each STRkD family $\{f_1, f_2, \dots, f_d\}$ on G with $d = d_{stR}^k(G)$, each function f_i is a $\gamma_{stR}^k(G)$ -function and $\sum_{i=1}^d f_i(v) = k$ for all $v \in V(G)$.

Proof. Let $\{f_1, f_2, \dots, f_d\}$ be an STRkD family on G such that $d = d_{stR}^k(G)$ and let $v \in V(G)$. Then

$$d \cdot \gamma^k_{stR}(G) = \sum_{i=1}^d \gamma^k_{stR}(G) \leq \sum_{i=1}^d \sum_{v \in V(G)} f_i(v) = \sum_{v \in V(G)} \sum_{i=1}^d f_i(v) \leq \sum_{v \in V(G)} k = kn.$$

If $\gamma^k_{stR}(G) \cdot d^k_{stR}(G) = kn$, then the two inequalities occurring in the proof become equalities. Hence for the STRkD family $\{f_1, f_2, \dots, f_d\}$ on G and for each i, $\sum_{v \in V(G)} f_i(v) = \gamma^k_{stR}(G)$. Thus each function f_i is a $\gamma^k_{stR}(G)$ -function, and $\sum_{i=1}^d f_i(v) = k$ for all $v \in V(G)$.

Example 8. If $k \geq 3$ is an integer, then $d_{stR}^k(K_{k,k}) = k$. In addition, $d_{stR}^1(K_{1,1}) = d_{srR}^2(K_{2,2}) = 1$.

Proof. Clearly, $d_{stR}^1(K_{1,1}) = d_{srR}^2(K_{2,2}) = 1$. Let now $k \geq 3$. According to Theorem 6, we have $d_{stR}^k(K_{k,k}) \leq k$. Let $A = \{a_1, a_2, \ldots, a_k\}$ and $B = \{b_1, b_2, \ldots, b_k\}$ be a bipartition of $K_{k,k}$. Now we distinguish three cases.

Case 1. Let k=3t for an integer $t\geq 1$. Define $f_1(a_i)=f_1(b_i)=-1$ for $1\leq i\leq t$ and $f_1(a_i)=f_1(b_i)=2$ for $t+1\leq i\leq 3t$. For $1\leq i\leq t$ and $1\leq i\leq t$ define $f_1(a_i)=f_1(b_i)=f_1(a_{i+j-1})$, where the indices are taken modulo k. It is easy to see that f_i is a signed total Roman k-dominating function of $K_{k,k}$ for $1\leq i\leq t$ and $\{f_1,f_2,\ldots,f_k\}$ is a signed total Roman k-dominating family on $K_{k,k}$. Hence $d_{stR}^k(K_{k,k})\geq k$ and thus $d_{stR}^k(K_{k,k})=k$ in this case.

Case 2. Let k=3t+1 for an integer $t\geq 1$. Define $f_1(a_i)=f_1(b_i)=-1$ for $1\leq i\leq t,$ $f_1(a_i)=f_1(b_i)=2$ for $t+1\leq i\leq 3t$ and $f_1(a_{3t+1})=f_1(b_{3t+1})=1$. For $2\leq j\leq k$ and $1\leq i\leq k$ define $f_j(a_i)=f_j(b_i)=f_1(a_{i+j-1})$, where the indices are taken modulo k. It is easy to see that f_i is a signed total Roman k-dominating function of $K_{k,k}$ for $1\leq i\leq k$ and $\{f_1,f_2,\ldots,f_k\}$ is a signed total Roman k-dominating family on $K_{k,k}$. Hence $d^k_{stR}(K_{k,k})\geq k$ and thus $d^k_{stR}(K_{k,k})=k$.

Case 3. Let k=3t+2 for an integer $t\geq 1$. Define $f_1(a_i)=f_1(b_i)=-1$ for $1\leq i\leq t,\ f_1(a_i)=f_1(b_i)=2$ for $t+1\leq i\leq 3t$ and $f_1(a_{3t+1})=f_1(a_{3t+2})=f_1(b_{3t+1})=f_1(b_{3t+2})=1$. For $2\leq j\leq k$ and $1\leq i\leq k$ define $f_j(a_i)=f_j(b_i)=f_1(a_{i+j-1}),$ where the indices are taken modulo k. It is easy to see that f_i is a signed total Roman k-dominating function of $K_{k,k}$ for $1\leq i\leq k$ and $\{f_1,f_2,\ldots,f_k\}$ is a signed total Roman k-dominating family on $K_{k,k}$. Hence $d_{stR}^k(K_{k,k})\geq k$ and thus $d_{stR}^k(K_{k,k})=k$.

Example 9. If k, p are integers such that $p \ge k + 1 \ge 2$, then $d_{stR}^k(K_{p,p}) = p$, with exception of the case k = 1 and p = 3, in which case $d_{stR}^1(K_{3,3}) = 1$.

Proof. Theorem 6 implies that $d^k_{stR}(K_{p,p}) \leq p$. Now let $A = \{a_1, a_2, \ldots, a_p\}$ and $B = \{b_1, b_2, \ldots, b_p\}$ be a bipartition of $K_{p,p}$. We distinguish two cases.

Case 1. Assume that p-k is odd. Define $f_1(a_i)=f_1(b_i)=1$ for $1\leq i\leq \frac{p+k-3}{2},\ f_1(a_i)=f_1(b_i)=-1$ for $\frac{p+k-1}{2}\leq i\leq p-1$ and $f_1(a_p)=f_1(b_p)=2$. For $2\leq j\leq p$ and $1\leq i\leq p$ define $f_j(a_i)=f_j(b_i)=f_1(a_{i+j-1}),$ where the indices are taken modulo p. It is easy to see that f_i is a signed total Roman k-dominating function of $K_{p,p}$ for $1\leq i\leq p$ and $\{f_1,f_2,\ldots,f_p\}$ is a signed total Roman k-dominating family on $K_{p,p}$. Hence $d^k_{stR}(K_{p,p})\geq p$ and thus $d^k_{stR}(K_{p,p})=p$ in this case.

Case 2. Assume that p-k is even. If k=1 and p=3, then Theorem 7 and Proposition 5 imply that $d_{stR}^1(K_{3,3}) \leq 3/2$ and thus $d_{stR}^1(K_{3,3}) = 1$.

Let now $p+k\geq 6$. Define $f_1(a_i)=f_1(b_i)=1$ for $1\leq i\leq \frac{p+k-6}{2},\ f_1(a_i)=f_1(b_i)=-1$ for $\frac{p+k-4}{2}\leq i\leq p-2$ and $f_1(a_{p-1})=f_1(a_p)=f_1(b_{p-1})=f_1(b_p)=2$. For $2\leq j\leq p$ and $1\leq i\leq p$ define $f_j(a_i)=f_j(b_i)=f_1(a_{i+j-1}),$ where the indices are taken modulo p. It is easy to see that f_i is a signed total Roman k-dominating function of $K_{p,p}$ for $1\leq i\leq p$ and $\{f_1,f_2,\ldots,f_p\}$ is a signed total Roman k-dominating family on $K_{p,p}$. Hence $d_{stR}^k(K_{p,p})\geq p$ and thus $d_{stR}^k(K_{p,p})=p$.

Examples 8 and 9 demonstrate that Theorem 6 is sharp. If $k \geq 3$, then Example 8 and Proposition 5 show that Theorem 7 is sharp too.

Corollary 10. If K_n is the complete graph of order n such that $n \geq k + 2$, then

$$d_{stR}^k(K_n) \le \frac{k}{k+2}n.$$

Proof. It follows from Theorem 7 and Proposition 3 that

$$(k+2)d_{stR}^k(K_n) = \gamma_{stR}^k(K_n) \cdot d_{stR}^k(K_n) \le kn.$$

This yields the desired bound immediately.

Example 11. If $n \ge 6$ is an even integer, then $d_{stR}^2(K_n) = \frac{n}{2}$.

Proof. Corollary 10 implies $d_{stR}^2(K_n) \leq \frac{n}{2}$. Let n = 2p for an integer $p \geq 3$, and let $V(K_n) = \{x_1, x_2, \dots, x_n\}$ be the vertex set of K_n . For the opposite inequality we distinguish two cases.

Case 1. Assume that p=2t+1 for an integer $t\geq 1$ and thus n=4t+2. Define the function f_1 by $f_1(x_i)=-1$ for $1\leq i\leq 2t$, $f_1(x_i)=1$ for $2t+1\leq i\leq 4t$ and $f_1(x_{4t+1})=f_1(x_{4t+2})=2$. For $2\leq j\leq 2t+1$ and $1\leq i\leq 4t+2$ define $f_j(x_i)=f_1(x_{i+2j-2})$, where the indices are taken modulo n. It is easy to see that f_i is a signed total Roman 2-dominating function of K_n for $1\leq i\leq 2t+1$ and $\{f_1,f_2,\ldots,f_{2t+1}\}$ is a signed total Roman 2-dominating family on K_n . Hence $d_{stR}^2(K_n)\geq 2t+1=\frac{n}{2}$ and thus $d_{stR}^2(K_n)=\frac{n}{2}$ in this case.

Case 2. Assume that p=2t for an integer $t\geq 2$ and thus n=4t. Define the functions f_1 by $f_1(x_i)=-1$ for $1\leq i\leq 2t$, $f_1(x_i)=1$ for $2t+1\leq i\leq 4t-4$ and $f_1(x_i)=2$ for $4t-3\leq i\leq 4t$. For $2\leq j\leq 2t$ and $1\leq i\leq 4t$ define $f_j(x_i)=f_1(x_{i+2j-2})$, where the indices are taken modulo n. It is easy to see that f_i is a signed total Roman 2-dominating function of K_n for $1\leq i\leq 2t$ and $\{f_1,f_2,\ldots,f_{2t}\}$ is a signed total Roman 2-dominating family on K_n . Hence $d^2_{stR}(K_n)\geq 2t=\frac{n}{2}$ and thus $d^2_{stR}(K_n)=\frac{n}{2}$.

Example 12. If $n \ge 5$, then $d_{stR}^{n-2}(K_n) = n - 2$.

Proof. Corollary 10 implies $d_{stR}^{n-2}(K_n) \leq n-2$. Let $V(K_n) = \{x_1, x_2, \ldots, x_n\}$ be the vertex set of K_n . Define the function f_1 by $f_1(x_1) = -1$, $f_1(x_2) = f_2(x_3) = 2$ and $f_1(x_i) = 1$ for $1 \leq i \leq n$. For $1 \leq i \leq n-2$ and $1 \leq i \leq n-2$ define $1 \leq i \leq n-2$ and $1 \leq i \leq n-2$ define $1 \leq i \leq n-2$ define $1 \leq i \leq n-2$ and $1 \leq i \leq n-2$ define $1 \leq i \leq n-2$ and $1 \leq i \leq n-2$ define $1 \leq i \leq n-2$ and $1 \leq i \leq n-2$ define $1 \leq i \leq n-2$ and $1 \leq i \leq n-2$ define $1 \leq i \leq n-2$ and $1 \leq i \leq n-2$ define $1 \leq i \leq n-2$ define $1 \leq i \leq n-2$ and $1 \leq i \leq n-2$ define $1 \leq i \leq n-2$ define

These are further examples showing the sharpness of Theorem 7 and Corollary 10. For some regular graphs we will improve the upper bound given in Theorem 6.

Theorem 13. Let G be a δ -regular graph of order n with $\delta \geq \max\{2, k\}$ such that $n = p\delta + r$ with integers $p \geq 1$ and $1 \leq r \leq \delta - 1$ and $kr = t\delta + s$ with integers $t \geq 0$ and $1 \leq s \leq \delta - 1$. Then $d_{stR}^k(G) \leq \delta - 1$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be an STRkD family on G such that $d = d_{stR}^k(G)$. It follows that

$$\sum_{i=1}^{d} \omega(f_i) = \sum_{i=1}^{d} \sum_{v \in V(G)} f_i(v) = \sum_{v \in V(G)} \sum_{i=1}^{d} f_i(v) \le \sum_{v \in V(G)} k = kn.$$

Proposition 4 implies

$$\omega(f_i) \ge \gamma_{stR}^k(G) \ge \left\lceil \frac{kn}{\delta} \right\rceil = \left\lceil \frac{kp\delta + kr}{\delta} \right\rceil = kp + \left\lceil \frac{kr}{\delta} \right\rceil$$
$$= kp + \left\lceil \frac{t\delta + s}{\delta} \right\rceil = kp + t + 1,$$

for each $i \in \{1, 2, ..., d\}$. If we suppose to the contrary that $d = \delta$, then the above inequality chains lead to the contradiction

$$kn \ge \sum_{i=1}^{d} \omega(f_i) \ge d(kp+t+1) = \delta(kp+t+1) = kp\delta + \delta t + \delta$$
$$= kp\delta + kr - s + \delta > kp\delta + kr = k(p\delta + r) = kn.$$

Thus $d \leq \delta - 1$, and the proof is complete.

Examples 8 and 9 demonstrate that Theorem 13 is not valid in general.

Theorem 14. If G is a graph of order n with $\delta(G) \geq k$, then

$$\gamma_{stR}^k(G) + d_{stR}^k(G) \le n + k.$$

Proof. If $d_{sR}^k(G) \leq k$, then Proposition 1 implies $\gamma_{stR}^k(G) + d_{stR}^k(G) \leq n+k$ immediately. Let now $d_{stR}^k(G) \geq k$. It follows from Theorem 7 that

$$\gamma_{stR}^k(G) + d_{stR}^k(G) \le \frac{kn}{d_{stR}^k(G)} + d_{stR}^k(G).$$

According to Theorem 6, we have $k \leq d_{stR}^k(G) \leq n$. Using these bounds, and the fact that the function g(x) = x + (kn)/x is decreasing for $k \leq x \leq \sqrt{kn}$ and increasing for $\sqrt{kn} \leq x \leq n$, we obtain

$$\gamma_{stR}^k(G) + d_{stR}^k(G) \le \frac{kn}{d_{stR}^k(G)} + d_{stR}^k(G) \le \max\{n+k, k+n\} = n+k,$$

and the desired bound is proved.

Proposition 5 and Example 8 demonstrate that Theorem 14 is sharp for $k \geq 3$. For $\delta(G) \geq k + 2$, we will improve the bound in Theorem 14 slightly.

Theorem 15. If G is a graph of order n with $\delta(G) \geq k + 2$, then

$$\gamma^k_{stR}(G) + d^k_{stR}(G) \le n + k - 1.$$

Proof. If $d_{sR}^k(G) \leq k$, then Proposition 2 implies $\gamma_{stR}^k(G) + d_{stR}^k(G) \leq n + k - 1$. Let now $d_{stR}^k(G) \geq k + 1$. It follows from Theorem 7 that

$$\gamma_{stR}^k(G) + d_{stR}^k(G) \le \frac{kn}{d_{otR}^k(G)} + d_{stR}^k(G).$$

According to Theorem 6, we have $k+1 \leq d_{stR}^k(G) \leq n-1$. Using these bounds, and the fact that the function g(x) = x + (kn)/x is decreasing for $k+1 \leq x \leq \sqrt{kn}$ and increasing for $\sqrt{kn} \leq x \leq n-1$, we obtain

$$\begin{split} \gamma^k_{stR}(G) + d^k_{stR}(G) &\leq \frac{kn}{d^k_{stR}(G)} + d^k_{stR}(G) \\ &\leq \max\left\{\frac{kn}{k+1} + k + 1, \frac{kn}{n-1} + n - 1\right\} < n + k, \end{split}$$

and this leads to the desired bound.

The special case k = 1 of Theorems 6, 7, 13 and 14 can be found in [7].

3. Nordhaus-Gaddum Type Results

Results of Nordhaus-Gaddum type study the extreme values of the sum or product of a parameter on a graph and its complement. In their current classical paper [3], Nordhaus and Gaddum discussed this problem for the chromatic number. We present such inequalities for the signed total Roman k-domatic number.

Theorem 16. If G is a graph of order n such that $\delta(G), \delta(\overline{G}) \geq k$, then

$$d_{stR}^k(G) + d_{stR}^k(\overline{G}) \le n - 1.$$

Furthermore, if $d_{stR}^k(G) + d_{stR}^k(\overline{G}) = n - 1$, then G is regular.

Proof. It follows from Theorem 6 that

$$d^k_{stR}(G) + d^k_{stR}(\overline{G}) \le \delta(G) + \delta(\overline{G}) = \delta(G) + (n - \Delta(G) - 1) \le n - 1.$$

If G is not regular, then $\Delta(G) - \delta(G) \geq 1$, and hence the above inequality chain implies the better bound $d^k_{stR}(G) + d^k_{stR}(\overline{G}) \leq n-2$.

In the special case k = 1, we have proved the following theorem in [7].

Theorem 17. If G is a graph of order n such that $\delta(G), \delta(\overline{G}) \geq 1$, then

$$d_{stR}(G) + d_{stR}(\overline{G}) \le n - 1,$$

with equality if and only if $G = C_4$.

As a supplement to Theorem 17, we prove the next result.

Theorem 18. Let $k \geq 2$ be an integer. Then there is only a finite number of graphs G with $\delta(G), \delta(\overline{G}) \geq k$ such that

$$d_{stR}^k(G) + d_{stR}^k(\overline{G}) = n(G) - 1.$$

Proof. Let n(G) = n, $\delta(G) = \delta$ and $\delta(\overline{G}) = \overline{\delta}$. The strategy of our proof is as follows. For a fixed integer $k \geq 2$, we show that $d_{stR}^k(G) + d_{stR}^k(\overline{G}) \leq n-2$ or $n \leq 2k^3 + 5k^2 - 5k + 1$. Together with Theorem 16 this implies the desired result.

If G is not regular, then it follows from Theorem 16 that $d_{stR}^k(G) + d_{\underline{stR}}^k(\overline{G}) \leq n-2$. Assume now that G is δ -regular. Then \overline{G} is $\overline{\delta}$ -regular such that $\delta + \overline{\delta} + 1 = n$. Assume, without loss of generality, that $\overline{\delta} \leq \delta$. We distinguish three cases.

Case 1. Assume that $\overline{\delta} = \delta$. Then $n = 2\delta + 1$ and $k = t\delta + s$ with integers $t \geq 0$ and $1 \leq s \leq \delta - 1$. If $\delta = k$, then $n = 2k + 1 \leq 2k^3 + 5k^2 - 5k + 1$. If $\delta \geq k + 1$, then t = 0 and $s = k \leq \delta - 1$, and Theorem 13 implies that $d_{stR}^k(G) \leq \delta - 1$. Applying now Theorem 6, we conclude that

$$d_{stR}^k(G) + d_{stR}^k(\overline{G}) \le \delta - 1 + \overline{\delta} \le n - 2.$$

Case 2. Assume that $\overline{\delta} = \delta - 1$. Then $n = 2\overline{\delta} + 2$. If $\overline{\delta} = 2$, then $n = 6 \le 3k \le 2k^3 + 5k^2 - 5k + 1$. If $\overline{\delta} \ge 3$, then let $2k = t\overline{\delta} + s$ with integers $t \ge 0$ and $0 \le s \le \overline{\delta} - 1$. Since $\overline{\delta} \ge k$, we observe that $0 \le t \le 2$. If t = 2, then $2k = 2\overline{\delta}$ and therefore $n = \delta + \overline{\delta} + 1 = 2k + 2 \le 2k^3 + 5k^2 - 5k + 1$. If t = 1, then $2k = \overline{\delta} + s$. If s = 0, then $\overline{\delta} = 2k$ and thus $n = \delta + \overline{\delta} + 1 = 4k + 2 \le 2k^3 + 5k^2 - 5k + 1$. If $s \ne 0$, then according to Theorem 13, $d_{stR}^k(\overline{G}) \le \overline{\delta} - 1$ and Theorem 6 leads to $d_{stR}^k(G) + d_{stR}^k(\overline{G}) \le n - 2$. If t = 0, then $2k = s \le \overline{\delta} - 1$, and again Theorems 6 and 13 yield $d_{stR}^k(G) + d_{stR}^k(\overline{G}) \le n - 2$.

Case 3. Assume that $\overline{\delta} \leq \delta - 2$. Then $n = \delta + \overline{\delta} + 1 = \delta + r$ with $1 \leq r = \overline{\delta} + 1 \leq \delta - 1$. Let now $kr = k(\overline{\delta} + 1) = t\delta + s$ with integers $t \geq 0$ and $0 \leq s \leq \delta - 1$. If $s \neq 0$, then we deduce from Theorem 13 that $d^k_{stR}(G) \leq \delta - 1$, and Theorem 6 yields to $d^k_{stR}(G) + d^k_{stR}(\overline{G}) \leq n - 2$. If s = 0, then the condition $\overline{\delta} \leq \delta - 2$ shows that

(1)
$$k(\overline{\delta}+1) = t\delta \text{ with } 1 \le t \le k-1$$

and thus

(2)
$$\delta = \frac{k(\overline{\delta} + 1)}{t}.$$

Let now

(3)
$$n=p\overline{\delta}+r \text{ with integers } p\geq 1 \text{ and } 0\leq r\leq \overline{\delta}-1$$
 and when $r\neq 0$

(4) $kr = a\overline{\delta} + b$ with integers $a \ge 0$ and $0 \le b \le \overline{\delta} - 1$.

If $b,r \neq 0$, then we conclude from Theorem 13 that $d^k_{stR}(\overline{G}) \leq \overline{\delta} - 1$, and Theorem 6 implies that $d^k_{stR}(G) + d^k_{stR}(\overline{G}) \leq n-2$. Now let $r \neq 0$ and b = 0. Then (3) and (4) yield to

$$kr = a\overline{\delta}$$
 with $1 \le a \le k-1$

and thus

$$\overline{\delta} = \frac{kr}{a}.$$

Using (2) and (3), we obtain

$$\frac{k(\overline{\delta}+1)}{t} + \overline{\delta} + 1 = \delta + \overline{\delta} + 1 = n = p\overline{\delta} + \frac{a\overline{\delta}}{k}$$

and thus

$$p\overline{\delta} = \overline{\delta} \left(\frac{k}{t} + 1 - \frac{a}{k} \right) + \frac{k}{t} + 1 \le \overline{\delta} \left(\frac{k}{t} + 2 - \frac{a}{k} \right) + 1 \le \overline{\delta} \left(k + 2 - \frac{a}{k} \right) + 1$$

and so $p \leq k + 2$. Combining (2) and (5), we obtain

$$\delta = \frac{k}{t} \left(\frac{kr}{a} + 1 \right)$$

and so

(6)
$$n = \delta + \overline{\delta} + 1 = \frac{k}{t} \left(\frac{kr}{a} + 1 \right) + \frac{kr}{a} + 1.$$

According to (3) and (5), we have

(7)
$$n = p\overline{\delta} + r = \frac{pkr}{a} + r.$$

Combining (6) and (7), we find that

$$r\left(\frac{pk}{a}+1\right) = \frac{kr}{a}\left(\frac{k}{t}+1\right) + \frac{k}{t} + 1$$

and therefore

(8)
$$1 + \frac{k}{t} = r \left(\frac{pk}{a} + 1 - \frac{k}{a} - \frac{k^2}{at} \right).$$

This equality shows that

$$\frac{pk}{a} + 1 - \frac{k}{a} - \frac{k^2}{at} > 0$$

and hence

$$\frac{pk}{a}+1-\frac{k}{a}-\frac{k^2}{at}\geq \frac{1}{at}\;.$$

Using this and (8), we obtain

$$1 + \frac{k}{t} \ge \frac{r}{at}$$

and thus

(9)
$$r \le a(t+k) \le (k-1)(2k-1).$$

In view of (5), it follows that

$$\overline{\delta} = \frac{kr}{a} \le \frac{ka(t+k)}{a} = k(t+k) \le k(2k-1).$$

Applying $p \leq k + 2$, (3), (9) and the last inequality, we arrive at the desired bound

$$n = p\overline{\delta} + r \le (k+2)k(2k-1) + (k-1)(2k-1) = 2k^3 + 5k^2 - 5k + 1.$$

It remains the case that r=0 and thus $n=p\overline{\delta}$ with an integer $p\geq 2$. Since $n=\delta+\overline{\delta}+1$, we deduce that

$$\delta = (p-1)\overline{\delta} - 1.$$

Using this identity and (1), we obtain

(10)
$$k(\overline{\delta} + 1) = t\delta = t(p - 1)\overline{\delta} - t$$

and thus

$$k+t=\overline{\delta}(t(p-1)-k)\,.$$

It follows that $t(p-1)-k \geq 1$ and so $k+t=\overline{\delta}(t(p-1)-k) \geq \overline{\delta}$ and therefore $\overline{\delta} \leq k+t \leq 2k-1$. Furthermore, (10) leads to

$$k(\overline{\delta}+1) = t((p-1)\overline{\delta}-1) \ge (p-1)\overline{\delta}-1$$

and consequently,

$$p-1 \leq \frac{k\overline{\delta}+k+1}{\overline{\delta}} = k + \frac{k+1}{\overline{\delta}} \leq k + \frac{k+1}{2} \leq 2k.$$

Using $\overline{\delta} \leq 2k-1$, we finally arrive at

$$n = p\overline{\delta} \le (2k+1)(2k-1) \le 2k^3 + 5k^2 - 5k + 1.$$

This completes the proof.

Conjecture 19. Let $k \geq 2$ be an integer. If G is a graph of order n such that $\delta(G), \delta(\overline{G}) \geq k$, then

$$d^k_{stR}(G) + d^k_{stR}(\overline{G}) \le n-2.$$

If $n \geq 5$ is an integer, then Examples 9 and 12 show that

$$d_{stR}^{n-2}(K_{n,n}) + d_{stR}^{n-2}(\overline{K_{n,n}}) = 2n - 2 = n(K_{n,n}) - 2.$$

Thus Conjecture 19 would be tight for $k \geq 3$.

References

- [1] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247–261. doi:10.1002/net.3230070305
- [2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
- [3] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175–177. doi:10.2307/2306658
- [4] P.J. Slater and E.L. Trees, *Multi-fractional domination*, J. Combin. Math. Combin. Comput. **40** (2002) 171–181.
- [5] L. Volkmann, Signed total Roman domination in graphs, J. Comb. Optim. 32 (2016) 855–871.
 doi:10.1007/s10878-015-9906-6
- [6] L. Volkmann, Signed total Roman k-domination in graphs, J. Combin. Math. Combin. Comput., to appear.
- [7] L. Volkmann, On the signed total Roman domination and domatic numbers of graphs, Discrete Appl. Math. 214 (2016) 179–186.
 doi:10.1016/j.dam.2016.06.006
- [8] C. Wang, The signed k-domination number in graphs, Ars Combin. 106 (2012) 205–211.

Received 14 March 2016 Revised 23 August 2016 Accepted 23 August 2016