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Abstract

For positive integers ∆ and D we define n∆,D to be the largest num-
ber of vertices in an outerplanar graph of given maximum degree ∆ and

diameter D. We prove that n∆,D = ∆
D

2 + O
(

∆
D

2
−1

)

if D is even, and

n∆,D = 3∆
D−1

2 + O
(

∆
D−1

2
−1

)

if D is odd. We then extend our result to

maximal outerplanar graphs by showing that the maximum number of ver-
tices in a maximal outerplanar graph of maximum degree ∆ and diameter
D asymptotically equals n∆,D.
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1. Introduction

The degree-diameter problem is one of the best studied problems in graph theory.
The problem is to find or bound the largest possible number of vertices in a graph
of given maximum degree and diameter. It has been studied for various families
of graphs as for example bipartite graphs [8, 16], vertex-transitive graphs [2],
Cayley graphs [1], Abelian Cayley graphs [15] and claw-free graphs [5].

In this paper we study the degree-diameter problem for a subclass of planar
graphs, for outerplanar graphs. First we present known results on the degree-
diameter problem for planar graphs. Let p∆,D be the largest number of vertices
in a planar graph of given maximum degree and diameter.

The degree-diameter problem for maximal planar graphs was considered by
Seyffarth [13], who proved that for ∆ ≥ 8 the number of vertices in a maximal
planar graph of diameter two is at most

⌊

3
2∆
⌋

+ 1 vertices and that there exist
maximal planar graphs of diameter two having exactly

⌊

3
2∆
⌋

+1. Hell and Seyf-
farth [9] extended this result to all planar graphs and showed that p∆,2 =

⌊

3
2∆
⌋

+1
if ∆ ≥ 8. Yang, Lin and Dai [17] determined p∆,2 for the remaining values of ∆,
i.e., for ∆ ≤ 7.

Fellows, Hell and Seyffarth [7] proved that for diameter three we have the
bounds

⌊

9
2∆
⌋

− 3 ≤ p∆,3 ≤ 8∆ + 12 and for general diameter, p∆,D ≤ (6D +

3)
(

2∆⌊D

2
⌋ + 1

)

if ∆ ≥ 4. Tishchenko [14] improved the bound and showed

that p∆,D =3∆
2

(∆−1)
D
2 −1

∆−2 + 1 if D is even and ∆ ≥ 6(6D + 1). Nevo, Pineda-
Villavicencio and Wood [11] generalised Tishchenko’s result to all the diameters

and all the surfaces. From [11] we have p∆,D =O
(

∆⌊D

2
⌋
)

for D ≥ 2. The degree-

diameter problem for maximal planar bipartite graphs was studied by Dalfó,
Huemer and Salas [3].

In this paper we focus on outerplanar graphs, an important subclass of pla-
nar graphs. There are only few results on distances in outerplanar graphs. A
classical result by Proskurowski [12] states that the centre of a maximal outerpla-
nar graph is isomorphic to one of seven graphs, and Farley and Proskurowski [6]
gave linear algorithms to compute the diameter and the centre of an outerplanar
graph. Recently, eccentric sequences of maximal outerplanar graphs have been
characterized (see [4]).

For positive integers ∆ and D we denote by n∆,D the largest number of
vertices in an outerplanar graph of given maximum degree ∆ and diameter

D. In Section 2, we prove that n∆,D =∆
D

2 + O
(

∆
D

2
−1
)

if D is even, and

n∆,D =3∆
D−1

2 + O
(

∆
D−1

2
−1
)

if D is odd. One of our main tools is a sepa-

rator theorem for outerplanar graphs, which shows that every outerplanar graph
has two vertices whose removal renders the graph disconnected such that no com-
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ponent contains more than approximately two thirds of all vertices. In Section
3 we consider maximal outerplanar graphs and show that n∆,D gives asymptot-
ically also the maximum number of vertices in a maximal outerplanar graph of
maximum degree ∆ and diameter D. The main tool is a lemma that shows that
every tree is a spanning tree of a maximum outerplanar graph whose maximum
degree is only slightly higher.

The notation we use is as follows. If G is a graph then we denote its vertex
and edge set by V (G) and E(G), respectively. The distance between two vertices
u and v of G is the minimum number of edges on a path from u to v, we denote
it by dG(u, v). If G is connected, i.e., if there is a path between any two vertices
of G, then the diameter D(G) is the largest of the distances between all pairs of
vertices of G. If v is a vertex of G and i ∈ N, then N≤i(v) (Ni(v)) denotes the
set of all vertices of distance at most i (of distance exactly i) from v. Similarly
we define N<i(v) and N>i(v). The degree of a vertex v, denoted by degG(v), is
the number of vertices to which v is jointed by an edge. The maximum degree
∆(G) is the largest of the vertex degrees of G. If the graph is understood we
sometimes drop the subscript or argument G. A component of a graph G is a
maximal connected subgraph, and a part of G is a disjoint union of some, but not
all components of G. For positive integers m,n, the complete graph on n vertices
and the complete bipartite graph whose partite sets have m and n vertices are
denoted by Kn and Km,n, respectively.

A graph is planar if it can be embedded in the plane such that no two edges
cross. A planar graph is outerplanar if it can be embedded such that all vertices
are on the boundary of the outer face, and an outerplanar graph is maximal
outerplanar if adding any edge results in a graph that is not outerplanar. If G is
an outerplanar graph, then by adding suitable edges we obtain a (not necessarily
unique) maximal outerplanar supergraph G′ of G on the same vertex set; we call
such a supergraph an extension of G. If G is a maximal outerplanar graph, then
G has a unique Hamilton cycle whose edges form the boundary of the outer face
of G. We call this cycle the outer cycle of G. An edge of a maximal outerplanar
graph G that is not on its outer cycle is called a chord of G. The outerdistance
od(u, v) between two vertices u and v of a maximal outerplanar graph is their
distance on the outer cycle.

2. Outerplanar Graphs

In this section we asymptotically determine n∆,D, the maximum number of ver-
tices in an outerplanar graph of maximum degree ∆ and diameter D. First we
prove two lemmas which will be used in the proof of our main result, Theorem
3. The first one, Lemma 1, is a separator theorem for outerplanar graphs. It is a
strengthening of a well-known separator theorem for planar graphs by Lipton and
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Tarjan [10] which states that a planar graph of order n always has a cutset of not
more than 2

√
2n vertices whose removal disconnects the graph such that none of

its remaining components has more than 2
3n vertices. In Lemma 1 we show that

an outerplanar graph has a cutset with the same property, but of cardinality two.
The second lemma gives a bound on the number of vertices of an outerplanar
graph whose distance from two vertices is at most a given value.

Let G be an outerplanar graph, G′ an extension of G. Then every chord uv

of G′ yields a cutset {u, v} of G′, whose removal leaves two components G′
1 and

G′
2 of G′−{u, v}. The subgraphs G1 and G2 of G−{u, v} induced by V (G′

1) and
V (G′

2), respectively, are disjoint, nonempty unions of components of G− {u, v}.
We refer to them as the two parts of G− {u, v} with respect to G′.

Lemma 1. Let G be an outerplanar graph with n vertices, n ≥ 4, and G′ an
extension of G. Then there exists a chord uv of G′ such that each of the two
parts of G− {u, v} with respect to G′ has at least n

3 − 1 vertices.

Proof. Let G be an outerplanar graph with n vertices, n ≥ 4 and G′ an extension
of G. Let v0v1 · · · vn−1 be the outer cycle of G′. It suffices to show that there
exists a chord vivj of G′ with

(1) od(vi, vj) ≥
n

3
,

since then G′−{vi, vj} has exactly two components, each corresponding to a part
of G − {vi, vj}, the smallest of which has od(vi, vj) vertices, where od(vi, vj) ≥
n
3 − 1.

Indeed, let vivj be a chord of G′ for which od(vi, vj) is maximum. Without
loss of generality we may assume that i = 0 and od(v0, vj) = j. We prove that
j ≥ n

3 . Suppose to the contrary that j < n
3 . Since except for the outer face, every

face of a maximal outerplanar graph is a triangle, there exists a vertex vk, where
j+1 ≤ k ≤ n−1, which is adjacent to both v0 and vj in G′. It is easy to see that
k 6= j+1, since otherwise v0vj+1 is a chord with od(v0, vj+1) = j+1 > od(v0, vj),
a contradiction to the choice of vivj . Similarly k 6= n − 1. Hence vjvk and vkv0
are chords of G′.

If now j+1 ≤ k ≤ 2n
3 , then v0vk is a chord of G′ with od(v0, vk) = min{k, n−

k} > j, a contradiction to the maximality of od(vi, vj). On the other hand, if 2n
3 <

k ≤ n−1, then k− j > n
3 and od(vj , vk) = min{k− j, n−k+ j} > min{n

3 , k} > j,
again a contradiction to the maximality of od(vi, vj). Hence j ≥ n

3 , and so (1)
follows, completing the proof of Lemma 1.

In the following lemma we make use of the well-known fact that a graph is
outerplanar if and only if it contains no minor isomorphic to K2,3 or K4.

Lemma 2. Let G be an outerplanar graph of maximum degree ∆ and let u, v be
two vertices of G. Let k ∈ N with k ≥ 2.
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(i) Then
|N≤k(u) ∩N≤k(v)| ≤ 4∆k−1 +O

(

∆k−2
)

.

(ii) If furthermore uv is a chord of some extension G′ of G, then for the two
parts G1 and G2 of G− {u, v} with respect to G′ we have

|(Nk(u) ∩Nk(v)) ∩ V (Gi)| ≤ ∆k−1 +O
(

∆k−2
)

for i = 1, 2.

Proof. Let X be the set of all vertices x with d(u, x) = d(v, x) ≤ k. Then

(2) N≤k(u) ∩N≤k(v) ⊆ N≤k−1(u) ∪N≤k−1(v) ∪X.

For 1 ≤ i ≤ k− 1 the number of vertices at distance i from u (from v) is at most
∆(∆− 1)i−1. Hence

(3) |N≤k−1(u)| ≤ 1 +
k−1
∑

i=1

∆(∆− 1)i−1, |N≤k−1(v)| ≤ 1 +
k−1
∑

i=1

∆(∆− 1)i−1.

In order to bound |X| define the set X∗ to be the set of all vertices x ∈ X which
have no neighbour y with d(u, y) = d(v, y) = d(u, x)− 1. Then for every x ∈ X,
there exists a vertex x∗ ∈ X∗ with d(x, x∗) ≤ k− 1. To see this consider shortest
paths from x to u and v, respectively, which have a maximum number of vertices
in common. Then the last vertex belonging to both paths is in X∗, distinct from
u and v, and thus at distance at most k − 1 from x. Therefore

(4) |X| ≤ |X∗|
(

1 +
k−1
∑

i=1

∆(∆− 1)i−1

)

.

We claim that

(5) |X∗| ≤ 2.

Suppose to the contrary that X∗ contains three vertices, x, y and z say. Let
P (u, x), P (u, y) and P (u, z) be shortest paths from u to x, y and z, and let
P (v, x), P (v, y) and P (v, z) be shortest paths from v to x, y and z, respectively.
Then the sets U0 := [V (P (u, x)) ∪ V (P (u, y)) ∪ V (P (u, z))]− {x, y, z} and V0 :=
[V (P (v, x)) ∪ V (P (v, y)) ∪ V (P (v, z))] − {x, y, z} are disjoint since U0 contains
only vertices that are closer to u than to v, and V0 contains only vertices that
are closer to v than to u. Both sets induce connected graphs. Hence contracting
U0 to a single vertex u0 and V0 to a single vertex v0 yields a graph in which
vertices u0, v0, x, y, z induce a graph containing K2,3. Hence G has a K2,3-minor,
contradiction to the fact that G is outerplanar. This proves (5).
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Combining (2), (3), (4) and (5), we obtain

|N≤k(u) ∩N≤k(v)| ≤ |N≤k−1(u)|+ |N≤k−1(v)|+ |X|

≤ 4 + 4
k−1
∑

i=1

∆(∆− 1)i−1 = 4∆k−1 +O
(

∆k−2
)

,

and part (i) of the lemma follows.
We prove part (ii) only for i = 1, the proof for i = 2 is identical. It suffices to

show that |X∗ ∩ V (G1)| ≤ 1 since every vertex in (Nk(u) ∩Nk(v)) ∩ V (G1) is at
distance at most k− 1 from some vertex in X∗∩V (G1). Suppose to the contrary
that X∗ ∩ V (G1) contains two vertices, x and y say. Let H be the outerplanar
graph obtained from G by adding all edges of the subgraph of G′ induced by
V (G2) ∪ {u, v} that are not in G. Then there exists a vertex z ∈ V (G2) that is
adjacent to u and to v in H. As in (i), we now conclude that H has a K2,3-minor,
a contradiction to H being outerplanar. Hence |X∗ ∩ V (G1)| ≤ 1 and part (ii)
follows.

We now present our main result, an asymptotically sharp upper bound on
the number of vertices in outerplanar graphs of given diameter and maximum
degree.

Theorem 3. Let G be an outerplanar graph of maximum degree ∆ and let k ∈ N.

(i) If D(G) = 2k, then |V (G)| ≤ ∆k +O(∆k−1).

(ii) If D(G) = 2k + 1, then |V (G)| ≤ 3∆k +O(∆k−1).

Proof. Let G′ be an extension of G. By Lemma 1, G′ contains a chord uv, such
that G− {u, v} consists of two disjoint parts G1 and G2 with respect to G′, and
each part has at least n

3 − 1 vertices. We partition the vertex set of G as follows:

A = N<k(u) ∪N<k(v),

Xi = Nk(u) ∩Nk(v) ∩ V (Gi) i = 1, 2,

Ui = Nk(u) ∩N>k(v) ∩ V (Gi) i = 1, 2,

Vi = N>k(u) ∩Nk(v) ∩ V (Gi) i = 1, 2,

Z = N>k(u) ∩N>k(v).

Since the number of vertices at distance i from u (from v) is at most ∆(∆−1)i−1 =
∆i +O(∆i−1), we have

|A| = O
(

∆k−1
)

,(6)

|U1 ∪ U2| ≤ ∆k +O
(

∆k−1
)

,(7)

|V1 ∪ V2| ≤ ∆k +O
(

∆k−1
)

.(8)
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From part (i) of Lemma 2 we obtain

(9) |X1 ∪X2| = O
(

∆k−1
)

.

Let the diameter of G be even, namely D(G) = 2k. We distinguish the
following cases.

Case 1. Z 6= ∅. Let x ∈ Z. Without loss of generality we assume that
x ∈ V (G1). Then every vertex y ∈ V (G2) satisfies d(y, u) ≤ k − 1 or d(y, v) ≤
k − 1 since otherwise we would obtain d(x, y) = min{d(x, u) + d(u, y), d(x, v) +
d(v, y)} > 2k. This implies that V (G2) ⊂ A and thus |V (G2)| = O(∆k−1) by (6).
Since it follows from Lemma 1 that |V (G2)| ≥ 1

3(|V (G1)|+ |V (G2)|+ 2)− 1 and
thus |V (G1)| ≤ 2|V (G2)|+1, we have |V (G)| = |V (G1)|+|V (G2)|+2 = O(∆k−1).

Case 2. Z = ∅.
Case 2A. At most one of the sets U1, U2, V1, V2 is nonempty. Without loss

of generality we can assume that U1 is the set which is nonempty. Then U2 = ∅
and V2 = ∅, which means that V (G2) ⊂ A ∪X2. Therefore |V (G2)| = O(∆k−1)
by (6) and (9), and as in Case 1 we conclude that |V (G)| = O(∆k−1).

Case 2B. At least two of the sets U1, U2, V1, V2 are nonempty. Note that at
most one of the sets U1 and V2 can be nonempty because if there exists u1 ∈
U1 and v2 ∈ V2, then we obtain the contradiction d(u1, v2) = min{d(u1, u) +
d(u, v2), d(u1, v) + d(v, v2)} > 2k. By the same argument at most one of the sets
V1 and U2 can be nonempty. Therefore it is enough to consider the following two
subcases:

Case 2B1. U1 6= ∅, V1 6= ∅, U2 = ∅, V2 = ∅. In this case V (G2) ⊂ A∪X2 and
as in Case 2A we conclude that |V (G)| = O(∆k−1).

Case 2B2. U1 6= ∅, U2 6= ∅, V1 = ∅, V2 = ∅. Then V (G) = A∪X1∪X2∪U1∪U2

and by (6), (7) and (9) we get

|V (G)| = |A|+ |X1 ∪X2|+ |U1 ∪ U2| ≤ ∆k +O
(

∆k−1
)

.

(ii) Let the diameter of G be odd, namely D(G) = 2k + 1. Note that ei-
ther Z ⊆ V (G1) or Z ⊆ V (G2); otherwise if there are x1, x2 ∈ Z with x1 ∈
V (G1) and x2 ∈ V (G2), we obtain the contradiction d(x1, x2) = min{d(x1, u) +
d(u, x2), d(x1, v) + d(v, x2)} ≥ 2(k + 1). Without loss of generality we assume
that Z ⊂ V (G1). We distinguish two cases.

Case 1. For all vertices x ∈ Z, we have d(x, u) = d(x, v) = k + 1. From part
(ii) of Lemma 2 it follows that |Z| ≤ ∆k + O(∆k−1). In conjunction with (6),
(7), (8), and (9) we get

|V (G)| = |A|+ |X1 ∪X2|+ |U1 ∪ U2|+ |V1 ∪ V2|+ |Z| ≤ 3∆k +O
(

∆k−1
)

,

as desired.
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Case 2. There exists x ∈ Z, such that d(x, u) = k+ 2 or d(x, v) = k+ 2. We
can assume that d(x, u) = k + 2. Then U2 is empty, since otherwise for u2 ∈ U2,
we would obtain d(x, u2) ≥ 2k+2. Therefore, we have V (G2) ⊂ A∪X2∪V2, which
implies that |V (G2)| ≤ ∆k +O(∆k−1) by (6), (9), and (8). As in Case 1, Lemma
1 implies that |V (G2)| ≤ 2|V (G1)| + 1 and thus |V (G2)| ≤ 2∆k + O(∆k−1). In
total we obtain that |V (G)| ≤ 3∆k +O(∆k−1), as desired.

The following example shows that the bounds given in Theorem 3 are best
possible.

Example 4. For given a, b, c ∈ N with a, b ≥ 2 let Ta,b,c be the tree rooted at a
vertex r of degree a, all vertices at distance less than c from r have degree b, and
all vertices at distance exactly c from r are leaves.

Given integers ∆ and k with ∆ ≥ 3 and k ≥ 1, we construct large outerplanar
graphs of maximum degree ∆ and of even diameter 2k and odd diameter 2k+1.
For even diameter define G∆,2k to be the tree T∆,∆,k. For odd diameter define
G∆,2k+1 to be the graph obtained from three disjoint copies of the tree T∆−2,∆,k

by adding three edges joining the roots of these three graphs to each other.
It is easy to see that the graphs G∆,2k and G∆,2k+1 are outerplanar, that

their maximum degree is ∆, and their diameter is 2k and 2k + 1, respectively.
Moreover, for large ∆,

|V (G∆,2k)| = ∆k +O
(

∆k−1
)

, |V (G∆,2k+1)| = 3∆k +O
(

∆k−1
)

.

From Theorem 3 and Example 4, we obtain the following result.

Corollary 5. For any D ≥ 2 and large ∆, we have

(i) n∆,D = ∆
D

2 +O
(

∆
D

2
−1
)

if D is even,

(ii) n∆,D = 3∆
D−1

2 +O
(

∆
D−1

2
−1
)

if D is odd.

3. Maximal Outerplanar Graphs

It is natural to ask if the bounds given in Theorem 3 can be improved for maximal
outerplanar graphs. We show below that for large enough ∆ this is not the case.
We achieve this by showing that we can add edges to any given tree to obtain
a maximal outerplanar graph with only slightly greater maximum degree than
the original tree, and then applying this result to the graphs G∆,2k and G∆,2k+1.
Towards this goal we prove the following proposition.

Proposition 6. Let T be a tree of order at least three. Then there exists a cycle
C on the same vertex set as T such that T ∪ C has an outerplanar embedding
with the following properties.
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(i) C forms the boundary of the outer face,

(ii) no internal vertex of T is incident with more than one edge in E(C)−E(T ),

(iii) every bounded face of T ∪ C has exactly one edge of E(C) − E(T ) on its
boundary.

Proof. We prove the statement by induction on n, the order of T . If T is a star,
then let u be its centre and v1, v2, . . . , vn−1 be its leaves. Define the cycle C by
E(C) = {uv1, v1v2, v2v3, . . . , vn−2vn−1, vn−1u}. Then it is easy to see that (i), (ii)
and (iii) are satisfied. This proves the statement in particular for n = 3.

Now assume that T is not a star. Let v1 be an end of a longest path in T

and let u be its unique neighbour. Then all but one neighbour of u are leaves,
denote these by v2, v3, . . . , vt. Let T ′ = T − {v1, v2, . . . , vt}. By our induction
hypothesis there exists a cycle C ′ on V (T ′) such that T ′ ∪C ′ has an outerplanar
embedding satisfying (i), (ii) and (iii). Since u is a leaf of T ′, at least one of
its two neighbours on C ′, say u′, is not a neighbour of u in T . Then replacing
the edge uu′ of C ′ with the path u, v1, v2, . . . , vt, u

′ and adding the edges uvi for
i = 2, 3, . . . , t on the inside of C ′ yields a cycle C. It is easy to check that C

satisfies (i), (ii) and (iii).

Lemma 7. Let T be a tree of order at least three. Then T is a spanning subgraph
of a maximal outerplanar graph G with the property that

degG(v) ≤
{

degT (v) + 5 if v is an internal vertex of T ,
6 if v is a leaf of T .

Proof. Let T be a tree. Let C be a cycle on V (T ) as in Proposition 6. By
property (ii) of Proposition 6, we have

(10) degT∪C(v) ≤
{

degT (v) + 1 if v is an internal vertex of T ,
3 if v is a leaf of T .

Now choose an internal vertex r and root T at r. If f is a bounded face of
T ∪ C, then we say that a vertex v on its boundary is a good vertex of f if
dT (v, r) ≤ dT (x, r) for all vertices x on the boundary of f . A vertex on the
boundary of f that is not good is said to be a bad vertex of f . Since f contains
exactly one edge not in T , it follows that the vertices on the boundary of f induce
a path in T , and among those there is a unique vertex closest to r. Hence every
bounded face of T ∪ C has exactly one good vertex. We claim that

(11) every vertex is a bad vertex of at most two bounded faces.

Indeed, let v be an arbitrary vertex of T ∪ C. If v = r, then clearly v is a good
vertex of every face that has v on its boundary. If v 6= r, then there exists exactly
one neighbour w of v in T which is closer to r, while all other neighbours of v are
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further from r. It follows that every face that contains v as a bad vertex has the
edge vw on its boundary. Since there are at most two such faces, (11) follows.

We now triangulate the bounded faces of T ∪C. Let f be a bounded face of
length greater than three, let v0 be its unique good vertex, and let v0, v1, v2, . . . , vt
be the boundary vertices of f in clockwise order. Then adding the edges of the
path v1vtv2vt−1v3vt−2 · · · v t+4

2

v t

2

if t is even, and v1vtv2vt−1v3vt−2 · · · v t−1

2

v t+3

2

if

t is odd yields a triangulation of f . Clearly, every bad vertex of f is incident
with at most two new edges, while the good vertex is not incident with any new
edge. Performing this triangulation for every face f of T ∪ C of length greater
than three yields a maximal outerplanar graph in which every vertex of T ∪C is
incident with at most four new edges by (11), so degG(v) ≤ degT∪C(v) + 4. In
conjunction with (10) it follows that ∆(G) ≤ ∆(T ) + 5, as desired.

Corollary 8. Let k ∈ N be fixed. For large ∆ there exist maximal outerplanar
graphs of maximum degree at most ∆, diameter at most 2k and 2k+1, and order
∆k +O(∆k−1) and 3∆k +O(∆k−1), respectively.

Proof. We may assume that ∆ ≥ 8. We first construct maximal outerplanar
graphs of even diameter. Let G∆−5,2k be the tree constructed in Example 1. By
Lemma 7 the tree T is contained in a maximum outerplanar graph H∆,2k on the
same vertex set with maximum degree ∆. Since H∆,2k has G∆−5,2k as a spanning
subgraph, its diameter at most 2k, and its order is bounded by

|V (H∆,2k)| = |V (G∆−5,2k)| = (∆− 5)k +O
(

∆k−1
)

= ∆k +O
(

∆k−1
)

.

We now construct maximal outerplanar graphs of odd diameter. Let T1, T2 and
T3 be three copies of the rooted tree T∆−8,∆−6,k, and let r1, r2 and r3 be their
respective roots. By Lemma 7 each tree Ti is contained in a maximum outerplanar
graph Fi in which ri has degree at most ∆− 3, and all other vertices have degree
at most ∆− 1. For i = 1, 2, 3 let si be the vertex following ri on the outer cycle
of Fi in clockwise order. Let H∆,2k+1 be obtained from F1 ∪ F2 ∪ F3 by joining
ri to ri+1 and si+1 for i = 1, 2, 3, with subscripts taken modulo 3. It is easy to
see that H∆,2k+1 is maximum outerplanar and has maximum degree at most ∆.
Since H∆,2k+1 has G∆−6,2k+1 as a spanning subgraph, its diameter is at most
2k + 1, and its order is bounded by

|V (H∆,2k+1)| = |V (G∆−6,2k+1)| = 3(∆− 6)k +O
(

∆k−1
)

= 3∆k +O
(

∆k−1
)

.

In both cases the order of the graphs H∆,2k and H∆,2k+1 asymptotically attains
the upper bound in Theorem 3.

4. Conclusion

Corollaries 5 and 8 determine asymptotically the number of vertices in an outer-
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planar or maximum outerplanar graph of given diameter as the maximum degree
gets large. It would be interesting to determine good estimates for fixed values
of ∆. This suggests the following problem.

Problem 9. For fixed ∆ with ∆ ≥ 3 find upper and lower bounds on n∆,D.

Our results in Corollary 5 determine the leading coefficient of n∆,D. Can this
result be strengthened by determining or bounding also the second coefficient?

Problem 10. Find numbers b, b′, c, c′ ∈ R, such that n∆,D ≤∆
D

2 + b∆
D

2
−1 +

O
(

∆
D

2
−2
)

, n∆,D ≥∆
D

2 +b′∆
D

2
−1+O

(

∆
D

2
−2
)

if D is even, and n∆,D ≤3∆
D−1

2 +

c∆
D−1

2
−1 +O

(

∆
D−1

2
−2
)

, n∆,D ≥3∆
D−1

2 + c′∆
D−1

2
−1 +O

(

∆
D−1

2
−2
)

if D is odd.

Does there exist numbers b, c ∈ R, such that n∆,D =∆
D

2 +b∆
D

2
−1+O

(

∆
D

2
−2
)

if D is even, and n∆,D =3∆
D−1

2 + c∆
D−1

2
−1 +O

(

∆
D−1

2
−2
)

if D is odd?

We can ask similar questions for maximal ouerplanar graphs. Find upper
and lower bounds on the largest number of vertices of a maximal outerplanar

graph for given D and large ∆ of the form ∆
D

2 + b∆
D

2
−1 + O

(

∆
D

2
−2
)

if D is

even, and 3∆
D−1

2 + c∆
D−1

2
−1 +O

(

∆
D−1

2
−2
)

if D is odd.
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