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Abstract

Let G be a graph. Adopting the terminology of Broersma et al. and
Čada, respectively, we say that G is 2-heavy if every induced claw (K1,3) of
G contains two end-vertices each one has degree at least |V (G)|/2; and G
is o-heavy if every induced claw of G contains two end-vertices with degree
sum at least |V (G)| in G. In this paper, we introduce a new concept, and
say that G is S-c-heavy if for a given graph S and every induced subgraph
G′ of G isomorphic to S and every maximal clique C of G′, every non-
trivial component of G′ − C contains a vertex of degree at least |V (G)|/2
in G. Our original motivation is a theorem of Hu from 1999 that can be
stated, in terms of this concept, as every 2-connected 2-heavy and N -c-
heavy graph is hamiltonian, where N is the graph obtained from a triangle
by adding three disjoint pendant edges. In this paper, we will characterize
all connected graphs S such that every 2-connected o-heavy and S-c-heavy
graph is hamiltonian. Our work results in a different proof of a stronger
version of Hu’s theorem. Furthermore, our main result improves or extends
several previous results.
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1. Introduction

Throughout this paper, the graphs considered are undirected, finite and simple
(without loops and parallel edges). For terminologies and definitions not defined
here, we refer the reader to Bondy and Murty [4].

Let G be a graph and v be a vertex of G. The neighborhood of v in G, denoted
by NG(v), is the set of neighbors of v in G; and the degree of v in G, denoted by
dG(v), is the number of neighbors of v in G. For two vertices u, v ∈ V (G), the
distance between u and v in G, denoted by dG(u, v), is the length of a shortest
path between u and v in G. When there is no danger of ambiguity, we use N(v),
d(v) and d(u, v) instead of NG(v), dG(v) and dG(u, v), respectively. For a subset
U of V (G), we set NU (v) = N(v)∩U , and dU (v) = |NU (v)|. For a subgraph S of
G such that v /∈ V (S), we use NS(v) and dS(v) instead of NV (S)(v) and dV (S)(v),
respectively.

Let G be a graph and G′ be a subgraph of G. If G′ contains all edges
xy ∈ E(G) with x, y ∈ V (G′), then G′ is an induced subgraph of G (or a subgraph
induced by V (G′)). For a given graph S, the graph G is S-free if G contains no
induced subgraph isomorphic to S. Note that if S1 is an induced subgraph of S2,
then an S1-free graph is also S2-free.

The bipartite graph K1,3 is the claw. We use Pi (i ≥ 1) and Ci (i ≥ 3) to
denote the path and cycle of order i, respectively. We denote by Zi (i ≥ 1) the
graph obtained by identifying a vertex of a C3 with an end-vertex of a Pi+1; by
Bi,j (i, j ≥ 1) the graph obtained by identifying two vertices of a C3 with the ends
of a Pi+1 and a Pj+1, respectively; and by Ni,j,k (i, j, k ≥ 1) the graph obtained
by identifying the three vertices of a C3 with the ends of a Pi+1, a Pj+1 and a
Pk+1, respectively. In particular, we set B = B1,1, N = N1,1,1, and W = B1,2.
(These three graphs are sometimes called the bull, the net and the wounded,
respectively.)

To find sufficient conditions for hamiltonicity of graphs is a standard topic. In
particular, sufficient conditions for hamiltonicity of graphs in terms of forbidden
subgraphs have received much attention from graph theorists. The following are
some results in this area, where the graphs L1 and L2 are shown in Figure 1.

Theorem 1. Let G be a 2-connected graph.

(1) ([12]) If G is claw-free and N -free, then G is hamiltonian.

(2) ([6]) If G is claw-free and P6-free, then G is hamiltonian.

(3) ([1]) If G is claw-free and W -free, then G is hamiltonian.

(4) ([15]) If G is claw-free and Z3-free, then G is hamiltonian or G = L1 or L2.

In 1991, Bedrossian [1] characterized all pairs of forbidden subgraphs for a
2-connected graph to be hamiltonian, in his Ph.D. Thesis. In 1997, Faudree and
Gould [14] extended Bedrossian’s result by proving the ‘only if’ part based on
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infinite families of non-hamiltonian graphs. Before showing the result of Faudree
and Gould, we first remark that the only connected graph S of order at least 3
such that the statement ‘every 2-connected S-free graph is hamiltonian’ holds, is
P3, see [14]. So in the following theorem, we only consider the forbidden pairs
excluding P3.

L1 L2

Figure 1. Graphs L1 and L2.

Theorem 2 [14]. Let R,S be connected graphs of order at least 3 with R,S 6= P3

and let G be a 2-connected graph of order n ≥ 10. Then G being R-free and

S-free implies G is hamiltonian if and only if (up to symmetry) R = K1,3 and

S = P4, P5, P6, C3, Z1, Z2, Z3, B, N or W .

Degree condition is also an important type of sufficient conditions for hamil-
tonicity of graphs. Let G be a graph of order n. A vertex v ∈ V (G) is a heavy

vertex of G if d(v) ≥ n/2; and a pair of vertices {u, v} is a heavy pair of G if
uv /∈ E(G) and d(u) + d(v) ≥ n. In 1952, Dirac [11] proved that every graph G
of order at least 3 is hamiltonian if every vertex of G is heavy. Ore [22] improved
Dirac’s result by showing that every graph G of order at least 3 is hamiltonian
if every pair of nonadjacent vertices is a heavy pair. Fan [13] further improved
Ore’s theorem by showing that every 2-connected graph G is hamiltonian if every
pair of vertices at distance 2 of G contains a heavy vertex.

It is natural to relax the forbidden subgraph conditions to ones that the
subgraphs are allowed, but some degree conditions are restricted to the subgraphs.
Early examples of this method used in scientific papers can date back to 1990s
[2, 19, 5]. In particular, Čada [10] introduced the class of o-heavy graphs by re-
stricting Ore’s condition to every induced claw of a graph. Li et al. [18] extended
Čada’s concept of claw-o-heavy graphs to a general one.

Let G′ be an induced subgraph of G. Following [18], if G′ contains a heavy
pair of G, then G′ is an o-heavy subgraph of G (or G′ is o-heavy in G). For a given
graph S, the graph G is S-o-heavy if every induced subgraph of G isomorphic to
S is o-heavy. (It should be mentioned that Čada originally named claw-o-heavy
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graphs as o-heavy graphs in [10].) Note that an S-free graph is trivially S-o-
heavy, and if S1 is an induced subgraph of S2, then an S1-o-heavy graph is also
S2-o-heavy.

Li et al. [18] completely characterized pairs of o-heavy subgraphs for a 2-
connected graph to be hamiltonian, which extends Theorem 2. The main result
in [18] is given as follows.

Theorem 3 [18]. Let R and S be connected graphs of order at least 3 with

R,S 6= P3 and let G be a 2-connected graph. Then G being R-o-heavy and S-o-
heavy implies G is hamiltonian if and only if (up to symmetry) R = K1,3 and

S = P4, P5, C3, Z1, Z2, B,N or W .

Following [20], we introduce another type of heavy subgraph condition moti-
vated by Fan’s condition [13]. Let G be a graph and G′ be an induced subgraph of
G. If for each two vertices u, v ∈ V (G′) with dG′(u, v) = 2, either u or v is heavy
in G, then G′ is an f-heavy subgraph of G (or G′ is f-heavy in G). For a given
graph S, the graph G is S-f-heavy if every induced subgraph of G isomorphic to
S is f-heavy. A claw-f-heavy graph is also called a 2-heavy graph (see [5]).

Note that an S-free graph is trivially S-f-heavy, but in general, an S1-f-heavy
graph is not necessarily S2-f-heavy when S1 is an induced subgraph of S2. In
Figure 2, we show the implication relations among the conditions being S-f-heavy
for the graphs S listed in Theorem 2.

P3

W Z2 Z3

P4 P5 P6 C3

Z1 B N

R R R

-1
�

- - - -
�

- -
1

R

Figure 2. S1 → S2: Being S1-f-heavy implies being S2-f-heavy.

We remark that f-heavy conditions cannot compare with o-heavy conditions
in general. For example, every P3-o-heavy graph is P3-f-heavy; and every claw-f-
heavy graph is claw-o-heavy, but for the conditions being N -o-heavy and being
N -f-heavy, no one can imply the other.

Motivated by Theorem 3, Ning and Zhang [20] characterized pairs of f-heavy
subgraphs for a 2-connected graph to be hamiltonian, which not only is a new
extension of Theorem 2 but also unifies some previous theorems given in [2, 9, 19].

Theorem 4 [20]. Let R and S be connected graphs with R,S 6= P3 and let G be

a 2-connected graph of order n ≥ 10. Then G being R-f-heavy and S-f-heavy im-

plies G is hamiltonian if and only if (up to symmetry) R = K1,3 and S = P4, P5,
P6, Z1, Z2, Z3, B,N or W .
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Now we will put our views to another new sufficient condition for hamiltonic-
ity of graphs due to Hu [17]. Some previous theorems can be obtained from Hu’s
theorem as corollaries (see [2, 19]).

Theorem 5 [17]. Let G be a 2-connected graph. If G is 2-heavy and every induced

P4 in an induced N of G contains a heavy vertex, then G is hamiltonian.

In fact, we can see that the cases S = Z1, B,N in Theorem 4 can be deduced
from Hu’s theorem. This motivates us to consider the counterpart results for
other subgraphs. Armed with this idea, we first propose the following definition.

Definition 1. Let G be a graph and G′ be an induced subgraph of G. If for
every maximal clique C of G′, each nontrivial component of G′ − C contains a
heavy vertex of G, then G′ is a clique-heavy (or in short, c-heavy) subgraph of G.
For a given graph S, G is S-c-heavy if every induced subgraph of G isomorphic
to S is c-heavy.

In Figure 3, we show the implication relations of the conditions being S-c-
heavy for the graphs S listed in Theorem 2.

Z1 B N
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Z2 W Z3
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Figure 3. S1 → S2: Being S1-c-heavy implies being S2-c-heavy.

So Theorem 5 can be stated as every 2-connected claw-f-heavy and N -c-heavy
graph is hamiltonian. As we will show below, this can be extended to that every
2-connected claw-o-heavy and N -c-heavy graph is hamiltonian.

We remark that saying a graph is claw-c-heavy is meaningless (if we remove
a maximal clique from a claw, then only isolated vertices remain). Motivated by
Theorems 2, 3 and 4, we naturally propose the following problem.

Problem 1. Which connected graphs S imply that every 2-connected claw-free
(or claw-f-heavy or claw-o-heavy) and S-c-heavy graph is hamiltonian?

The solution to Problem 1 is one of the main results in this paper.

Theorem 6. Let S be a connected graph of order at least 3 and let G be a 2-
connected claw-o-heavy graph of order n ≥ 10. Then G being S-c-heavy implies

G is hamiltonian if and only if S = P4, P5, P6, Z1, Z2, Z3, B,N or W .
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Note that the only subgraphs appearing in Theorem 2 but missing here are
P3 and C3. Also note that every graph is P3-c-heavy and C3-c-heavy and there
exist 2-connected claw-free graphs which are non-hamiltonian. By Theorem 2
and the fact that every claw-free (claw-f-heavy) graph is claw-o-heavy, we can see
that Theorem 6 gives a complete solution to Problem 1.

We point out that a special case of our work results in a new proof of a
stronger version of Theorem 5.

Theorem 7. Let G be a 2-connected graph. If G is claw-o-heavy and N -c-heavy,

then G is hamiltonian.

Some previous theorems can also be obtained from this theorem as corollaries
in a unified way.

Corollary 1 [17]. Let G be a graph. If G is claw-f-heavy and N -c-heavy, then

G is hamiltonian.

Corollary 2 [20]. Let G be a graph. If G is claw-o-heavy and N -f-heavy, then

G is hamiltonian.

Corollary 3 [19]. Let G be a graph. If G is claw-f-heavy and B-f-heavy, then G
is hamiltonian.

Corollary 4 [2]. Let G be a graph. If G is claw-f-heavy and Z1-f-heavy, then G
is hamiltonian.

We remark that our methods used here are completely different from the ones
in [17, 18, 20]. We mainly use the claw-o-heavy closure theory introduced by Čada
[10], and many other results from the area of forbidden subgraphs. However, our
technique here is new, and it is heavily dependent on some new concepts and tools
developed by us recently. (See Lemma 7 in Section 2 for example.) We point
out that this is the first time to deal with hamiltonicity of graphs under pairs
of heavy subgraph conditions by using c-Closure theory systemically, compared
with several previous works in [2, 19, 17, 9, 18, 20, 21].

The rest of this paper is organized as follows. In Section 2, we will present
necessary and additional preliminaries (including the introduction to claw-free
closure theory, claw-o-heavy closure theory and a useful theorem of Brousek). In
Section 3, in the spirit of some previous works of Brousek et al. [8], we will study
the stability of some subclasses of the class of claw-o-heavy graphs. In Section 4,
by using the closure theory and a previous result of Brousek [7], we give the proof
of Theorem 6. In Section 5, one useful remark is given to conclude this paper.

2. Preliminaries

The main tools in our paper are two kinds of closure theories introduced by
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Ryjáček [23] and Čada [10], respectively. These two closure theories are used
to study hamiltonian properties of claw-free graphs and claw-o-heavy graphs,
respectively. We will give some terminologies and notations with a prefix or
superscript r or c, respectively, to distinguish them.

r-Closure theory

Let G be a claw-free graph and x be a vertex of G. Following [23], we call x
an r-eligible vertex of G if N(x) induces a connected subgraph in G but not a
complete graph. The completion of G at x, denoted by G′

x, is the graph obtained
from G by adding all missing edges uv with u, v ∈ N(x).

Lemma 1 [23]. Let G be a claw-free graph and x be an r-eligible vertex of G.

Then

(1) the graph G′

x is claw-free, and

(2) the circumferences of G′

x and G are equal.

The r-closure of a claw-free graph G, denoted by clr(G), is defined by a
sequence of graphs G1, G2, . . . , Gt, and vertices x1, x2, . . . , xt−1 such that

(1) G1 = G, Gt = clr(G),

(2) xi is an r-eligible vertex of Gi, Gi+1 = (Gi)
′

xi
, 1 ≤ i ≤ t− 1, and

(3) clr(G) has no r-eligible vertices.

A claw-free graph G is r-closed if G has no r-eligible vertices, i.e., if clr(G) = G.

Theorem 8 [23]. Let G be a claw-free graph. Then

(1) the r-closure clr(G) is well defined,

(2) there is a C3-free graph H such that clr(G) is the line graph of H, and

(3) the circumferences of clr(G) and G are equal.

It is not difficult to get the following (see [8]).

Lemma 2 [8]. Let G be a claw-free graph. Then clr(G) is a K1,1,2-free supergraph

of G with the least number of edges.

Following [8], we say a family G of graphs is stable under the r-closure (or
shortly, r-stable) if for every graph in G, its r-closure is also in G. From Theorem
8, we can see that the class of all claw-free hamiltonian graphs and the class of
all claw-free non-hamiltonian graphs are r-stable.

c-Closure theory

Let G be a claw-o-heavy graph and let x ∈ V (G). Let G′ be the graph obtained
from G by adding the missing edges uv with u, v ∈ N(x) and {u, v} is a heavy
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pair of G. We call x a c-eligible vertex of G if N(x) is not a clique of G and one
of the following is true:

(1) G′[N(x)] is connected; or

(2) G′[N(x)] consists of two disjoint cliques C1 and C2, and x is contained in a
heavy pair {x, z} of G such that zy1, zy2 ∈ E(G) for some y1 ∈ C1 and y2 ∈ C2.
Note that if G is claw-free, then an r-eligible vertex is also c-eligible.

Lemma 3 [10]. Let G be a claw-o-heavy graph and x be a c-eligible vertex of G.

Then

(1) for every vertex y ∈ N(x), dG′

x
(y) ≥ dG′

x
(x),

(2) the graph G′

x is claw-o-heavy, and

(3) the circumferences of G′

x and G are equal.

The c-closure of a claw-o-heavy graph G, denoted by clc(G), is defined by a
sequence of graphs G1, G2, . . . , Gt, and vertices x1, x2, . . . , xt−1 such that

(1) G1 = G, Gt = clc(G),

(2) xi is a c-eligible vertex of Gi, Gi+1 = (Gi)
′

xi
, 1 ≤ i ≤ t− 1, and

(3) clc(G) has no c-eligible vertices.

Theorem 9 [10]. Let G be a claw-o-heavy graph. Then

(1) the c-closure clc(G) is well defined,

(2) there is a C3-free graph H such that clc(G) is the line graph of H, and

(3) the circumferences of clc(G) and G are equal.

A claw-o-heavy graph G is c-closed if clc(G) = G. Note that every line graph
is claw-free (see [3]). This implies that clc(G) is a claw-free graph. Also note
that for a claw-free graph, an r-eligible vertex is also c-eligible. This implies that
every c-closed graph is also r-closed.

Similarly as in the case of r-closure, we say a family G of graphs is stable

under the c-closure (or shortly, c-stable) if for every graph in G, its c-closure is
also in G.

The following lemma is an obvious but important fact, which can be deduced
from Lemma 14 in [10] easily.

Lemma 4 [10]. Let G be a claw-o-heavy graph. Then clc(G) has no heavy pair.

Here we list some new concepts introduced by us recently in [21]. Let G be a
claw-o-heavy graph and C be a maximal clique of clc(G). We call G[C] a region

of G. For a vertex v of G, we call v an interior vertex if it is contained in only
one region, and a frontier vertex if it is contained in two distinct regions.

A graph G is nonseparable if it is connected and has no cut-vertex (i.e., either
G is 2-connected, or G = K1 or K2). The following useful lemma originally
appeared as Lemma 2 in [21], and it plays the crucial role in our proofs.
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Lemma 5 [21]. Let G be a claw-o-heavy graph and R be a region of G. Then

(1) R is nonseparable,

(2) if v is a frontier vertex of R, then v has an interior neighbor in R or R is

complete and has no interior vertices, and

(3) for any two vertices u, v ∈ R, there is an induced path of G from u to v such

that every internal vertex of the path is an interior vertex of R.

Following [7], we define P to be the class of graphs obtained from two vertex-
disjoint triangles a1a2a3a1 and b1b2b3b1 by joining every pair of vertices {ai, bi}
by a path Pki , where ki ≥ 3 or by a triangle. We use Px1,x2,x3

to denote the graph
in P, where xi = ki if ai and bi are joined by a path Pki , and xi = T if ai and bi
are joined by a triangle. Note that L1 = PT,T,T and L2 = P3,T,T .

We give the following useful result to finish this section.

Theorem 10 [7]. Every non-hamiltonian 2-connected claw-free graph contains

an induced subgraph G′ ∈ P.

3. Stable Classes Under Closure Operation

Brousek et al. [8] studied the graphs S such that the class of claw-free and S-
free graphs is r-stable. Before we present their result, we first remark that if S
contains an induced claw or an induced K1,1,2, then the class of claw-free and
S-free graphs is trivially r-stable by Lemma 2. So in the following theorem we
assume that S is claw-free and K1,1,2-free.

Theorem 11 [8]. Let S be a connected claw-free and K1,1,2-free graph of order

at least 3. Then the class of claw-free and S-free graphs is r-stable, if and only if

S ∈ {C3, H} ∪ {Pi : i ≥ 3} ∪ {Zi : i ≥ 1} ∪ {Ni,j,k : i, j, k ≥ 1}.

Figure 4. Graph H (hourglass).

In the spirit of previous works of Brousek et al. [8], we will consider the
c-stability of the class of claw-o-heavy and S-c-heavy graphs. Before showing our
results about this topic, we first remark the following trivial facts.

If S is the join of a complete graph and an empty graph (specially, if S is
a complete graph or a star), then for every maximal clique C of S, S − C has
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only trivial components. Thus by our definition, every graph will be S-c-heavy.
Moreover, by our definition of c-stability, the class of claw-o-heavy and S-c-heavy
graphs is c-stable. In the following, we will characterize all the other graphs S
such that the class of claw-o-heavy and S-c-heavy graphs is c-stable.

a1 a2 a3 ai−1 ai

Pi

b

c

a a1 ai−1 ai

Zi

a

a1

b

b1

c

c1

N

Figure 5. Graphs Pi, Zi and N .

For a vertex x of a graph G, we set BG(x) = {uv : u, v ∈ N(x) and uv /∈
E(G)}. For convenience, we say a vertex or a pair of nonadjacent vertices is light
if it is not heavy.

Theorem 12. Let G be a claw-o-heavy and Pi-c-heavy graph, i ≥ 4, and x be a

c-eligible vertex of G. Then G′

x is Pi-c-heavy.

Proof. Let P be an induced Pi of G
′

x. We denote the vertices of P as in Figure
5, and will prove that one vertex of {a1, a2} is heavy in G′

x and one vertex of
{ai−1, ai} is heavy in G′

x. Note that dG′

x
(v) ≥ d(v) for every vertex v ∈ V (G). If

P is also an induced subgraph of G, then P is c-heavy in G, and then, is c-heavy
in G′

x. So we assume that P is not an induced subgraph of G, which implies
that E(P )∩BG(x) 6= ∅. Suppose that ajaj+1 is an edge in E(P )∩BG(x), where
1 ≤ j ≤ i− 1.

Since N(x) is a clique in G′

x, N(x)∩V (P ) = {aj , aj+1} and there is only one
edge in E(P )∩BG(x). If j ≥ 2, then P ′ = a1a2 · · · ajxaj+1 · · · ai−1 is an induced
Pi of G. Since G is Pi-c-heavy, one vertex of {a1, a2} is heavy in G, and then, is
heavy in G′

x. If j = 1, then P ′ = a1xa2 · · · ai−1 is an induced Pi of G. Thus one
vertex of {a1, x} is heavy in G. Note that dG′

x
(a1) ≥ dG′

x
(x) = d(x) (see Lemma

3). Thus a1 is heavy in G′

x. Hence in any case, we have shown that one vertex
of {a1, a2} is heavy in G′

x. By the symmetry, we can prove that one vertex of
{ai−1, ai} is heavy in G′

x.

Note that every c-closed graph has no heavy pairs, and note that every c-
heavy Pi with i ≥ 5 must have a heavy pair. By Theorem 12, we have

Corollary 5. Let G be a claw-o-heavy and Pi-c-heavy graph with i ≥ 5. Then

clc(G) is Pi-free.
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Corollary 6. For i ≥ 3, the class of claw-o-heavy and Pi-c-heavy graphs is c-

stable.

There are no counterpart results of Theorem 12 for the graph Zi. In fact,
there exist claw-free and Zi-free graphs G with an r-eligible vertex x such that
G′

x is not Zi-free, see [8]. However, we can prove that the class of claw-o-heavy
and Zi-c-heavy graphs is also c-stable for i 6= 2.

Theorem 13. Let G be a claw-o-heavy and Z1-c-heavy graph. Then clc(G) is

also Z1-c-heavy.

Proof. Let Z be an induced Z1 in clc(G). We denote the vertices of Z as in
Figure 5. We will prove that either b or c is heavy.

Claim 1. Let R be a region of G and x ∈ V (R) be a frontier vertex. If y, y′ are
two neighbors of x in R, then one vertex in {y, y′} is heavy in G.

Proof. Let z be a neighbor of x in G−R. Clearly yz, y′z /∈ E(G). If yy′ ∈ E(G),
then the subgraph of G induced by {x, y, y′, z} is a Z1. Since G is Z1-c-heavy,
either y or y′ is heavy in G. Now we assume that yy′ /∈ E(G). Then the subgraph
of G induced by {x, y, y′, z} is a claw. Note that {y, z} and {y′, z} are not heavy
pairs in clc(G), and then, are not heavy pairs in G. This implies that {y, y′} is a
heavy pair of G. Thus either y or y′ is heavy in G.

Suppose that both b and c are light. Let R be the region of G containing
{a, b, c}. Note that R is a clique in clc(G). If |V (R)| ≥ |V (G)|/2 + 1, then b is
heavy in clc(G), a contradiction. So we assume that |V (R)| ≤ (|V (G)| + 1)/2.
This implies that every interior vertex of R is light in clc(G), and also, light in G.

If R has no interior vertex, then by Lemma 5, R is a clique in G. By Claim 1,
either b or c is heavy in G, a contradiction. So we assume that R has an interior
vertex. By Lemma 5, R has an interior vertex adjacent to a. Since a has at least
two neighbors in R, we may choose two neighbors x, y of a in R such that x is
an interior vertex of R. Note that x is light in G. By Claim 1, y is heavy in G.
Recall that b, c and every interior vertex of R are light. Hence y 6= b, c and y is a
frontier vertex of R.

If both by and cy are in E(G), then by Claim 1, either b or c is heavy in G,
a contradiction. So we conclude that by /∈ E(G) or cy /∈ E(G).

If dG−R(y) = 1, then d(y) = dR(y) + 1 ≤ |V (R)| − 2 + 1 ≤ (n− 1)/2. Hence
y is light in G, a contradiction. So we conclude that dG−R(y) ≥ 2. Also note
that dR(y) ≥ 2 by Lemma 5. Let x′, x′′ be two vertices in NR(y) and y′, y′′ be
two vertices in NG−R(y). By Claim 1, one vertex of {x′, x′′} is heavy in G, and
one vertex of {y′, y′′} is heavy in G. We assume without loss of generality that
x′, y′ are heavy in G. Then {x′, y′} is a heavy pair in G, and also is a heavy pair
of clc(G), a contradiction.
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Theorem 14. Let G be a claw-o-heavy and Zi-c-heavy graph with i ≥ 3. Then

clc(G) is Zi-free.

Proof. The proof is almost the same as the proof of Lemma 3 in [21]. The only
difference occurs when we find an induced Zi in clc(G), instead of a Z3 as done
in the proof of Lemma 3 in [21], and when we use the c-heavy condition, instead
of the f-heavy condition. But we still shall carry it in full, due to some specific
details and the integrity of this paper. Now we give the proof along the outline
in [21] step by step.

Suppose the contrary. Let Z be an induced Zi in clc(G). We denote the
vertices of Z as in Figure 5. Let R be the region of G containing {a, b, c}. Proofs
of the first two claims are almost the same as of Claims 1 and 2 in the proof of
Lemma 3 in [21].

Claim 1 [21, Claim 1 in the proof of Lemma 3]. |NR(a2) ∪NR(a3)| ≤ 1.

Proof. Note that every vertex in G − R has at most one neighbor in R. If
NR(a2) = ∅, then the assertion is obviously true. Now we assume that NR(a2) 6=
∅. Let x be the vertex in NR(a2). Clearly x 6= a and a1x /∈ E(clc(G)). If a3x /∈
E(clc(G)), then {a2, a1, a3, x} induces a claw in clc(G), a contradiction. This
implies that a3x ∈ E(clc(G)), and x is the unique vertex in Nclc(G)(a3) ∩ V (R).
Thus NR(a2) ∪NR(a3) = {x}.

We denote by IR the set of interior vertices of R, and by FR the set of frontier
vertices of R.

Claim 2 [21, Claim 2 in the proof of Lemma 3]. Let x, y be two vertices in R.

(1) If {x, y} is a heavy pair of G, then x, y have two common neighbors in IR.

(2) If x, y ∈ IR∪{a}, xy ∈ E(G) and d(x)+d(y) ≥ n, then x, y have a common

neighbor in IR.

Proof. (1) Note that every vertex in FR has at least one neighbor in G −
R, and every vertex in G − R has at most one neighbor in FR. We have
|NG−R(FR\{x, y})| ≥ |FR\{x, y}|. Also note that n = |IR\{x, y}|+ |FR\{x, y}|+
|V (G−R)|+ 2. Thus

n ≤ d(x) + d(y)

= dIR(x) + dIR(y) + dFR
(x) + dFR

(y) + dG−R(x) + dG−R(y)

≤ dIR(x) + dIR(y) + 2|FR\{x, y}|+ dG−R(x) + dG−R(y)

≤ dIR(x) + dIR(y) + |FR\{x, y}|+ |NG−R(FR\{x, y})|

+ |NG−R(x)|+ |NG−R(y)|

= dIR(x) + dIR(y) + |FR\{x, y}|+ |NG−R(FR)|

≤ dIR(x) + dIR(y) + |FR\{x, y}|+ |V (G−R)|,
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and

dIR(x) + dIR(y) ≥ n− |FR\{x, y}| − |V (G−R)| = |IR\{x, y}|+ 2.

This implies that x, y have two common neighbors in IR.

(2) Note that if a2, a3 ∈ NG−R(R), then they have a common neighbor in
FR\{a}. By Claim 1, we can see that

|V (G−R)| ≥ |FR|+ 1 and |V (G−R)\NG−R(a)| ≥ |FR\{a}|+ 1.

If x, y ∈ IR, then

n ≤ d(x) + d(y) = dIR(x) + dIR(y) + dFR
(x) + dFR

(y)

≤ dIR(x) + dIR(y) + 2|FR| ≤ dIR(x) + dIR(y) + |FR|+ |V (G−R)| − 1,

and

dIR(x) + dIR(y) ≥ n− |FR| − |V (G−R)|+ 1 = |IR|+ 1.

This implies that x, y have a common neighbor in IR.

If one of x, y, say y, is equal to a, then

n ≤ d(x) + d(a) = dIR(x) + dIR(a) + dFR
(x) + dFR

(a) + dG−R(a)

≤ dIR(x) + dIR(a) + |FR|+ |FR\{a}|+ dG−R(a)

≤ dIR(x) + dIR(a) + |FR|+ |V (G−R)\NG−R(a)| − 1 + |NG−R(a)|

≤ dIR(x) + dIR(a) + |FR|+ |V (G−R)| − 1,

and

dIR(x) + dIR(a) ≥ n− |FR| − |V (G−R)|+ 1 = |IR|+ 1.

This implies that x, a have a common neighbor in IR.

From here, the main difference from the proof presented here and the proof
of Lemma 3 in [21] occurs, considering that we would find an induced Zi and use
the Zi-c-heavy condition here.

By Lemma 5, G has an induced path P from a to ai such that every vertex
of P is either in {aj : 0 ≤ j ≤ i} or an interior vertex of some regions (we set
a0 = a). Let a, a′1, a

′

2, . . . , a
′

i be the first i + 1 vertices of P . Note that every
vertex a′i is nonadjacent to every vertex in {b, c}∪ IR. If abca is also a triangle in
G, then {a, b, c, a′1, . . . , a

′

i} induces a Zi in G. Thus one vertex of {b, c} is heavy
in G and one of {a′i−1, a

′

i} is heavy in G. We assume without loss of generality
that b, a′i−1 are heavy in G, and then, also are heavy in clc(G). Then {b, a′i−1} is
a heavy pair in clc(G), a contradiction. So we only consider the case one edge of
{ab, bc, ac} does not exist in G.
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If IR = ∅, then R is a clique in G, and ab, bc, ac ∈ E(G), a contradiction.
Thus, IR 6= ∅. By Lemma 5, a has a neighbor in IR.

Claim 3 [21, Claim 3 in the proof of Lemma 3]. dIR(a) = 1.

Proof. If a is contained in a triangle axya such that x, y ∈ IR, then {a, x, y, a′1,
. . . , a′i} induces a Zi in G. Thus one vertex of {x, y} is heavy in G and one vertex
of {a′i−1, a

′

i} is heavy in G, a contradiction. Hence, NIR(a) is an independent set.
Suppose that dIR(a) ≥ 2. Let x, y be two vertices in NIR(a). Then xy /∈

E(G). Since {a, x, y, a′1} induces a claw in G, and {a′1, x}, {a
′

1, y} are not heavy
pairs of G, it follows {x, y} is a heavy pair of G. Without loss of generality,
suppose that x is heavy in G.

If a is also heavy in G, then by Claim 2, a, x have a common neighbor in IR,
contradicting the fact that NIR(a) is independent. So we conclude that a is light
in G.

Since {x, y} is a heavy pair of G, by Claim 2, x, y have two common neighbors
in IR. Let x

′, y′ be two vertices in NIR(x) ∩NIR(y). Clearly ax′, ay′ /∈ E(G).
If x′y′ ∈ E(G), then {x, x′, y′, a, a′1, . . . , a

′

i−1} induces a Zi in G. Thus one
vertex of {a′i−2, a

′

i−1} is heavy in G. This implies either {x, a′i−2} or {x, a′i−1} is a
heavy pair of G, and also a heavy pair of clc(G), a contradiction. So we conclude
that x′y′ /∈ E(G).

Note that {x, x′, y′, a} induces a claw in G, and a is light in G. So one vertex
of {x′, y′} is heavy in G. We assume without loss of generality that x′ is heavy
in G. By Claim 2, x, x′ have a common neighbor x′′ in IR. Clearly ax′′ /∈ E(G).
Thus {x, x′, x′′, a, a′1, . . . , a

′

i−1} induces a Zi, and hence one vertex of {a′i−2, a
′

i−1}
is heavy in G, a contradiction.

Now let x be the vertex in NIR(a). The left part is almost the same as in the
proof of Lemma 3 in [21]. We rewrite it here.

Claim 4 [21, Claim 4 in the proof of Lemma 3]. NR(a) = V (R)\{a}.

Proof. Suppose that (V (R)\{a})\NR(a) 6= ∅. By Lemma 5, R−x is connected.
Let y be a vertex in (V (R)\{a})\NR(a) such that a, y have a common neighbor
z in R − x. Since NIR(a) = {x} and z ∈ NR(a)\{x}, z is a frontier vertex of
R. Let z′ be a vertex in NG−R(z). Then {z, y, a, z′} induces a claw in G. Since
{a, z′}, {y, z′} are not heavy pairs of G, {a, y} is a heavy pair of G. By Claim 2,
a, y have two common neighbors in IR, contradicting Claim 3.

By Claims 3 and 4, we can see that |IR| = 1. Recall that one edge of {ab,
bc, ac} is not in E(G). By Claim 4, ab, ac ∈ E(G). This implies that bc /∈ E(G),
and {a, b, c, a′1} induces a claw in G. Since {b, a′1}, {c, a

′

1} are not heavy pairs of
G, {b, c} is a heavy pair of G. By Claim 2, b, c have two common neighbors in
IR, contradicting the fact that |IR| = 1.
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Corollary 7. For i = 1 or i ≥ 3, the class of claw-o-heavy and Zi-c-heavy graphs

is c-stable.

Theorem 15. Let S be a connected claw-free and K1,1,2-free graph of order at

least 3. Then the class of claw-o-heavy and S-c-heavy graphs is c-stable, if and

only if

S ∈ {Ki : i ≥ 3} ∪ {Pi : i ≥ 3} ∪ {Zi : i = 1 or i ≥ 3}.

Proof. If S = Ki, i ≥ 3, then every graph is S-c-heavy, and the class of claw-
o-heavy and S-c-heavy graphs is c-stable. If S = Pi, i ≥ 3 or S = Zi, i = 1
or i ≥ 3, then by Corollaries 6 and 7, the class of claw-o-heavy and S-c-heavy
graphs is c-stable. This completes the ‘if’ part of the proof.

Now we consider the ‘only if’ part of the theorem. We first construct some
claw-o-heavy graphs as in Figure 6.

Kr

a1

a2

ar−1

ar

b1

b2

c1

c2

G1 (r ≥ 3)

Kr

Kk

Kk

a1

a2

a3

a4

b1b2

b3 b4

G2 (k + 3 ≤ r ≤ 2k − 2)

Kr

a0 a1 at−1 at

b0 b1 bt−1 bt

c0 c1 ct−1 ct

d0 d1 dt−1 dt

G3 (t ≥ max{i, j, k} and r ≥ 4t)

Kr

a1

a2

a3

a4

b1

b4

c1

c2

c3

c4

G4 (r ≥ 8)

Figure 6. Some claw-o-heavy graphs.

Suppose S is a claw-free and K1,1,2-free graph such that the class of claw-
o-heavy and S-c-heavy graphs is c-stable. Consider the case where the class of
claw-free and S-free graphs is r-stable. By Theorem 11, S ∈ {C3, H} ∪ {Pi : i ≥
1} ∪ {Zi : i ≥ 1} ∪ {Ni,j,k : i, j, k ≥ 1}. Now we will explain why the graphs in
Figure 6 are the required graphs.

• The graph G1 is Z2-c-heavy, and the closure clc(G1) is obtained by adding all
possible edges between vertices in the V (Kr) ∪ {a1, . . . , ar, b1, b2}. Notice that
the subgraph of clc(G1) induced by {a1, a2, b1, c1, c2} is a Z2 which is not c-heavy
in clc(G1).
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• The graph G2 is N -c-heavy, and the closure clc(G2) is obtained by adding
all possible edges between vertices in the V (Kr) ∪ {a1, . . . , a4}. Notice that the
subgraph of clc(G2) induced by {a1, b1, a2, b2, a3, b3} is an N which is not c-heavy
in clc(G2) (noting that a2, a3 are not heavy in clc(G)).

• The graph G3 is Ni,j,k-c-heavy for max{i, j, k} ≥ 2 (in fact, it is Ni,j,k-free),
and the closure clc(G3) is obtained by adding all possible edges between vertices
in the V (Kr) ∪ {a0, b0, c0, d0}. Notice that the subgraph of clc(G3) induced by
{a0, . . . , ai, b0, . . . , bj , c0, . . . , ck} is an Ni,j,k which is not c-heavy in clc(G3).

• The graph G4 is H-c-heavy (max{i, j, k} ≥ 2) (in fact, it is H-free), and
the closure clc(G4) is obtained by adding all possible edges between vertices
in the V (Kr) ∪ {a1, . . . , a4}. Notice that the subgraph of clc(G4) induced by
{a1, a2, b1, c1, c2} is an H which is not c-heavy in clc(G4).

Thus, we can see S is C3, Pi, i ≥ 1 or Zi, i = 1 or i ≥ 3.

Next we consider the case where the class of claw-free and S-free graphs is
not r-stable. Let G′ be a claw-free and S-free graph such that clr(G) is not S-free.
Let G be the disjoint union of G′ and an empty graph of order |V (G′)|. Clearly G
is claw-free and S-free, and then, claw-o-heavy and S-c-heavy. Let Gi, 1 ≤ i ≤ r,
be the sequence of graphs in the definition of the c-closure of G, where G = G1

and clc(G) = Gr. Note that for every i, every vertex of Gi has degree less than
|V (G)|/2. This implies that the c-eligible vertices of Gi are exactly the r-eligible
ones. Thus clc(G) = clr(G) and clc(G) contains an induced S. Note that clc(G)
has no heavy vertex. If S has a maximal clique C such that S−C has a nontrivial
component, then the induced S in clc(G) is not c-heavy, a contradiction. So we
conclude that for every maximal clique C of S, S − C has only isolated vertex.

Let C be a maximal clique of S. If V (S)\V (C) = ∅, then S is a complete
graph Kk. Now we consider the case that V (S)\V (C) 6= ∅. Note that every
vertex of S − C is an isolated vertex. Let x be a vertex in S − C. Since C is a
maximal clique, C\NS(x) 6= ∅. If |C\NS(x)| ≥ 2, then let C ′ be a maximal clique
of S containing x. Then S−C ′ will have a nontrivial component, a contradiction.
So we conclude that |C\NS(x)| = 1. Let y be the vertex in C\NS(x). By our
assumption that S is connected, we obtain |C| ≥ 2. If |C| ≥ 3, letting z, z′ be
two vertices of C\{y}, then {x, y, z, z′} induces a K1,1,2 of S, a contradiction.
Thus we conclude that C has exactly two vertices. Let z be the vertex of C other
than y. Note that C ′ = (C ∪ {x})\{y} is a maximal clique of S. Every vertex of
S−C ′ is nonadjacent to y. If S−C has a vertex w other than x, then {z, x, y, w}
induces a claw in S, a contradiction. This implies that S−C has only one vertex
x, and S = P3, a contradiction.

By Theorem 15, the class of claw-o-heavy and N -c-heavy graphs is not c-
stable. However, we have a slightly larger class of graphs which is c-stable.
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Let G be a graph and M be an induced N in G. We denote the vertices of M
as in Figure 5. Note that M is c-heavy in G if and only if there are two vertices
u, v of M which are heavy in G such that {u, v} /∈ {{a, a1}, {b, b1}, {c, c1}}.
Now we say that M is p-heavy in G if there are two vertices u, v of M with
d(u)+ d(v) ≥ n, such that {u, v} /∈ {{a, a1}, {b, b1}, {c, c1}}. Also, we say that G
is N -p-heavy if every induced N in G is p-heavy. Note that an N -c-heavy graph
is also N -p-heavy.

Now we prove that the class of claw-o-heavy andN -p-heavy graphs is c-stable.

Theorem 16. Let G be a claw-o-heavy and N -p-heavy graph, and x be a c-eligible

vertex of G. Then G′

x is N -p-heavy.

Proof. Let M be an induced N in G′

x. We will prove that M is p-heavy. We
denote the vertices of M as in Figure 5. Let n = |V (G)|. If M is also an induced
subgraph of G, then M is p-heavy in G, and then, is p-heavy in G′

x.
Now we consider the case E(M) ∩ BG(x) 6= ∅. First suppose that aa1 ∈

BG(x). Note that N(x) is a clique in G′

x. This implies that N(x) ∩ V (M) =
{a, a1}. Thus {a, x, b, b1, c, c1} induces an N in G. Since G is N -p-heavy and
dG′

x
(a) ≥ dG′

x
(x) ≥ d(x), M is p-heavy in G′

x. Now we consider the case aa1 /∈
BG(G), and similarly, bb1, cc1 /∈ BG(G). Thus at least one edge in {ab, ac, bc} is
in BG(x).

If |BG(x) ∩ {ab, ac, bc}| = 1, then, without loss of generality, suppose that
ab ∈ BG(x). Then {c, a, b, c1} induces a claw. Thus one of the three pairs {a, b},
{a, c1}, {b, c1} is a heavy pair in G, and then has degree sum at least n in G′

x.
Hence M is p-heavy in G′

x.
If |BG(x) ∩ {ab, ac, bc}| = 2, then, without loss of generality, suppose that

ab, ac ∈ BG(x). Then {x, a, b, b1, c, c1} induces an N . Thus there are two vertices
u, v in {x, a, b, b1, c, c1} such that {u, v} /∈ {{x, a}, {b, b1}, {c, c1}}, with degree
sum at least n in G. Since dG′

x
(a) ≥ d(x), we can see that M is p-heavy.

If |BG(x)∩{ab, ac, bc}| = 3, then all the three edges {ab, ac, bc} are in BG(x),
which implies that {x, a, b, c} induces a claw in G. So, one pair of {{a, b}, {a, c},
{b, c}} is a heavy pair in G, and then has degree sum at least n in G′

x. Hence,
M is p-heavy in G′

x.

Corollary 8. The class of claw-o-heavy and N -p-heavy graphs is c-stable.

4. Proof of Theorem 6

Note that every graph is P3-c-heavy and C3-c-heavy, and there indeed exist some
2-connected claw-o-heavy graphs which are not hamiltonian. The ‘only if’ part
of the theorem can be deduced by Theorem 2 immediately. Now we prove the ‘if’
part of the theorem.
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The cases S = P4, P5, P6

Note that every P4-c-heavy graph is P5-c-heavy and every P5-c-heavy graph is
P6-c-heavy. We only need to prove the case S = P6.

Let G be a claw-o-heavy and P6-c-heavy graph. By Theorem 9 and Corollary
6, clc(G) is claw-free and P6-free. By Theorem 1, clc(G) is hamiltonian, and by
Theorem 9, so is G.

The cases S = Z1, B, N

Note that every Z1-c-heavy graph is B-c-heavy and every B-c-heavy graph is
N -c-heavy. We only need deal with the case S = N .

Let G be a claw-o-heavy and N -c-heavy graph. Note that every N -c-heavy
graph is also N -p-heavy. By Theorem 9 and Corollary 8, clc(G) is claw-free and
N -p-heavy. If clc(G) is hamiltonian, then so is G. So we assume that clc(G)
is not hamiltonian. Since clc(G) is 2-connected and claw-free, by Theorem 10,
clc(G) has an induced subgraph in P. We use the notation ai, bi, i = 1, 2, 3, as in
Section 2 and let n = |V (G)|.

Note that clc(G) has no heavy pair. Since clc(G) is N -p-heavy, every induced
N of clc(G) has two vertices in its triangle with degree sum at least n. Since both
triangles a1a2a3a1 and b1b2b3b1 are contained in some induced N of clc(G), two
vertices of {a1, a2, a3} have degree sum at least n and two vertices of {b1, b2, b3}
have degree sum at least n. We assume without loss of generality that a1 has
the maximum degree in clc(G) among all the six vertices. Then two pairs of
{{a1, b1}, {a1, b2}, {a1, b3}} have degree sum at least n. Since a1 is nonadjacent
to b2, b3, cl

c(G) has a heavy pair, a contradiction.

The cases S = Z2, W

Note that every Z2-c-heavy graph is W -c-heavy. We only need to prove the case
S = W . If G is W -c-heavy, then it is also W -o-heavy. By Theorem 3, G is
hamiltonian.

The case S = Z3

Let G be a claw-o-heavy and Z3-c-heavy graph. By Theorem 9 and Theorem
14, clc(G) is claw-free and Z3-free. By Theorem 1, clc(G) is hamiltonian or
clc(G) = L1 or L2 (see Figure 1). If clc(G) = L1 or L2, then G has no c-eligible
vertices (any c-eligible vertex of G is an interior vertex and of degree at least 3
in clc(G)). Thus G = clc(G) = L1 or L2, contradicting the assumption n ≥ 10.

5. One Remark

In fact, in this paper we prove the following theorem, which is a common extension
of the case S = N in Theorems 3, 4 and 6.
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Theorem 17. Let G be a 2-connected graph. If G is claw-o-heavy and N -p-heavy,

then G is hamiltonian.
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