EVERY 8-TRACEABLE ORIENTED GRAPH IS TRACEABLE

Susan A. VAN AARDT ${ }^{1}$
Department of Mathematical Sciences
University of South Africa
P.O. Box 392, Unisa, 0003 South Africa
e-mail: vaardsa@unisa.ac.za

Abstract

A digraph of order n is k-traceable if $n \geq k$ and each of its induced subdigraphs of order k is traceable. It is known that if $2 \leq k \leq 6$, every k-traceable oriented graph is traceable but for $k=7$ and for each $k \geq 9$, there exist k-traceable oriented graphs that are nontraceable. We show that every 8-traceable oriented graph is traceable.

Keywords: oriented graph, traceable, hypotraceable, k-traceable, generalized tournament.
2010 Mathematics Subject Classification: 05C20, 05C38.

1. Introduction and Background

A digraph is traceable if it contains a path that visits every vertex and hamiltonian if it contains a cycle that visits every vertex. A digraph is k-traceable if it has at least k vertices and each of its induced subdigraphs of order k is traceable. Obviously, an oriented graph is 2-traceable if and only if it is a nontrivial tournament. Thus k-traceable oriented graphs may be regarded as generalized tournaments. It is well-known that every tournament is traceable. The following theorem shows that k-traceable oriented graphs retain this property for small values of k.

Theorem 1 [3]. For $k=2,3,4,5,6$, every k-traceable oriented graph is traceable.
However, not all k-traceable oriented graphs are traceable. In particular, we know the following.

[^0]Theorem $2[2,6]$.
(1) For $k=7$ and for every $k \geq 9$, there exist k-traceable oriented graphs of order $k+1$ that are nontraceable.
(2) There exist nontraceable k-traceable oriented graphs of order $k+2$ for infinitely many k.

The following traceability conjecture, called the TC, is considered in $[1,3,4$, $5,7,9]$.

Conjecture 1 (TC). For $k \geq 2$, every k-traceable oriented graph of order at least $2 k-1$ is traceable.

The next two results were established by means of exhaustive computer searches.

Theorem 3 [7]. All 8-traceable oriented graphs of order 9, 10 and 11 are traceable.

Theorem 3 was used in [1] to prove, by means of an iterative procedure, that the TC holds for $k=8$. In fact, the following slightly stronger result was proved.

Theorem 4 [1]. Every 8-traceable oriented graph of order at least 14 is traceable.
In this paper we prove analytically that all 8 -traceable oriented graphs of order 12 and 13 are also traceable. Hence we conclude that every 8 -traceable oriented graph is traceable.

2. Preliminaries and Auxiliary Results

The set of vertices and the set of arcs of a digraph D are denoted by $V(D)$ and $A(D)$, respectively, and the order of D is denoted $n(D)$. If D is a digraph and $X \subset V(D)$, then $\langle X\rangle$ denotes the subdigraph induced by X in D. If $v \in V(D)$, we denote the sets of out-neighbours and in-neighbours of v by $N^{+}(v)$ and $N^{-}(v)$ and the cardinalities of these sets by $d^{+}(v)$ and $d^{-}(v)$, respectively. For undefined concepts we refer the reader to [8].

A digraph is strong (or strongly connected) if for every pair of vertices x, y in D there is a path from x to y. A maximal strong subdigraph of a digraph D is called a strong component of D. We say that a strong component is trivial if has only one vertex. If D is a digraph with h strong components, then its strong components have an acyclic ordering $D_{1}, D_{2}, \ldots, D_{h}$ such that if there is an arc from D_{i} to D_{j}, then $i \leq j$. If D is k-traceable for some $k \geq 2$, this acyclic ordering is unique since there is at least one arc from D_{i} to D_{i+1} for $i=1,2, \ldots, h-1$.

Throughout this paper we label the strong components of a k-traceable digraph in accordance with this acyclic ordering.

A digraph D is hypotraceable if $n(D) \geq 3$ and D is nontraceable but the removal of any vertex leaves a traceable digraph. Thus for $k \geq 2$ a k-traceable digraph of order $k+1$ is hypotraceable if and only if it is nontraceable.

The following immediate consequence of Theorem 3 plays an important role in the proof of our main result.

Lemma 5. If D is an 8-traceable oriented graph of order $n \geq 12$, then D is also 9-, 10- and 11-traceable.

Lemma 5 implies that if there exists a nontraceable 8-traceable oriented graph of order 12 , then it would be hypotraceable. We observe the following.

Observation 6. A hypotraceable digraph does not have a vertex with in-degree or out-degree equal to 1 .

We shall also use the following properties of hypotraceable digraphs.
Lemma 7. Let D be be hypotraceable digraph with strong components D_{1}, \ldots, D_{h}. Then the following hold.
(1) If D_{t} is a trivial strong component, then t is either 1 or h.
(2) D_{1} and D_{h} are nonhamiltonian.

Proof. (1) Let $D_{t}=\{w\}$ for some $t \in\{2, \ldots, h-1\}$. Now let $x \in D_{1}$ and $z \in D_{h}$. Then $D-z$ and $D-x$ have Hamilton paths P and Q, respectively. Note that P has a subpath with vertex set $\bigcup_{i=1}^{t} V\left(D_{i}\right)$ ending at w, and Q has a subpath with vertex set $\bigcup_{i=t}^{h} V\left(D_{i}\right)$ starting at w. Hence the concatenation of P and Q is a Hamilton path of D.
(2) Suppose to the contrary that D_{1} has a Hamilton cycle $v_{1} \cdots v_{\ell} v_{1}$. Then $D-v_{1}$ is traceable. Hence $D-V\left(D_{1}\right)$ has a Hamilton path P whose initial vertex has an in-neighbour v_{i} in D_{1}. But then $v_{i+1} v_{i+2} \cdots v_{\ell} v_{1} \cdots v_{i} P$ is a Hamilton path of D.

We shall also use the following result of Grötschel and Wakabayashi [10].
Lemma 8 [10]. Every nontrivial strong component of a hypotraceble digraph has order at least 5.

The proof of our main theorem relies heavily on results proved in the papers $[1,3,5,7]$ and $[9]$. In the sequel, results extracted from these papers are stated without proof.

Lemma 9 [3, 5]. Let $2 \leq k \leq n$ and let D be a k-traceable oriented graph of order n. Then the following hold.
(1) $d(v) \geq n-k+1$ for every $v \in V(D)$.
(2) $\left|N^{+}(x) \cup N^{+}(y)\right| \geq n-k+1$ and $\left|N^{-}(x) \cup N^{-}(y)\right| \geq n-k+1$ for every pair of distinct nonadjacent vertices $x, y \in V(D)$.

Lemma $10[3,9]$. Let $2 \leq k \leq n$ and let D be a nontraceable k-traceable oriented graph of order n. Suppose x and y are distinct nonadjacent vertices in D and let

$$
S \in\left\{N^{+}(x), N^{-}(x), N^{+}(x) \cup N^{+}(y), N^{-}(x) \cup N^{-}(y)\right\}
$$

If $|S|=n-k+1$, then $\langle S\rangle$ is nontraceable.
We shall often use the following corollary of Lemma 10 in combination with Lemma 5.

Corollary 11 [3]. Let $k \geq 2$ and suppose D is a nontraceable oriented graph of order n that is j-traceable for $j=k, k+1, \ldots, n-1$. If $x \in V(D)$ such that $d^{+}(x) \geq 2\left(\right.$ or $\left.d^{-}(x) \geq 2\right)$ and P is a path in $D-x$ that contains all the out-neighbours (or all the in-neighbours) of x, then $n(P) \geq n-k+2$.

We shall also use the next result, which is easily derived from Corollary 11.
Corollary 12. Suppose $x \in V(D)$ such that $d^{+}(x) \geq 2$ (or $\left.d^{-}(x) \geq 2\right)$ and C is at-cycle in $D-x$ such that $N^{+}(x)\left(\right.$ or $\left.N^{-}(x)\right)$ is contained in C. If i consecutive vertices of C are not out-neighbours (or in-neighbours) of x, then $i \leq t-n+k-2$.

Another consequence of Corollary 11 is the following.
Lemma 13. Suppose D is an oriented graph of order $n \geq 2 k-4$ with at most two strong components and D is j-traceable for $j=k, k+1, \ldots, n-1$. If D contains a t-cycle for some t such that $k-4 \leq t \leq n-k$, then D is traceable.

Proof. Suppose D is nontraceable and D contains a t-cycle C, with $k-4 \leq t \leq$ $n-k$. Then $k \leq n-t<n-1$, so D is $(n-t)$-traceable by our assumption. Hence $D-V(C)$ is traceable. Let $P=v_{1} \cdots v_{n-t}$ be a Hamilton path of $D-V(C)$. Since D is nontraceable, $D-V(C)$ is nonhamitonian, so $v_{n-t} \notin N^{-}\left(v_{1}\right)$. We may assume that v_{1} is not a source. (If it is, then v_{n-t} is not a sink and we consider it instead.) If v_{1} has an in-neighbour on C, then D is traceable, so we may assume that $N^{-}\left(v_{1}\right) \subseteq V(P)$. But then $N^{-}\left(v_{1}\right)$ is contained in a path of order at most $n-t-3 \leq n-k+1$ (since $t \geq k-4)$. This contradicts Corollary 11.

Lemma 14 [9]. Let $k \geq 2$ and suppose D is a k-traceable oriented graph of order n. Then any nontrivial strong component of D that is nonhamiltonian has at least $n-k+5$ vertices.

Lemma 15 [5]. Let $k \geq 2$ and suppose D is a k-traceable oriented graph of order $n \geq 2 k-3$. If D is nontraceable, then D has a nonhamiltonian strong component.

Lemma 16 [4]. If D is a k-traceable oriented graph with a strong component X such that $g(X) \geq 6$, then the order of D is at most $2 k-4$ if k is odd, and at most $2 k-5$ if k is even.

Corollary 17. If D is an 8 -traceable oriented graph of order at least 12 , then the girth of every nontrivial strong component of D is at most 5 .

We also need the following result, which is a special case of Lemma 17 of [1].
Lemma 18. Let D be a k-traceable oriented graph of order $2 k-3$ consisting of three strong components D_{1}, D_{2}, D_{3} such that D_{1} and D_{3} are singletons. Then D is traceable if there is a vertex v in D_{2} such that $d_{D_{2}}^{-}(v)<k-1$ and $d_{D_{2}}^{+}(v)<k-1$.

3. The Main Result

Theorem 19. Every 8-traceable oriented graph of order 12 is traceable.
Proof. Suppose, to the contrary, that D is a nontraceable 8 -traceable oriented graph of order 12. By Lemma $5, D$ is also $9-, 10$ - and 11-traceable and thus hypotraceable.

We note that Corollary 11 implies the following.
Claim 1. If v is a vertex in $V(D)$, then any path in $D-v$ that contains all the in-neighbours (or all the out-neigbhours) of v has order at least 6 .

We distinguish three cases.
Case (i) D is strong. First, suppose D contains a 3-cycle C. Since D is 9-traceable, $D-V(C)$ has a Hamilton path, say $P=v_{1} \cdots v_{9}$. First observe that since D is nontraceable, $D-V(C)$ is nonhamiltonian, and hence $v_{9} v_{1} \notin A(D)$. Also, no vertex in C is an in-neighbour of the initial vertex of any Hamilton path in $D-V(C)$ and similarly, no vertex in C is an out-neighbour of the terminal vertex of any Hamilton path of $D-V(C)$. Hence $N^{-}\left(v_{1}\right) \subseteq\left\{v_{3}, \ldots, v_{8}\right\}$. Since D is hypotraceable, it follows from Observation 6 that $d^{-}\left(v_{1}\right) \geq 2$. Hence, by Corollary $11, v_{3}, v_{8} \in N^{-}\left(v_{1}\right)$. Similarly, $v_{2}, v_{7} \in N^{+}\left(v_{9}\right)$. But now $Q=v_{9} v_{2} v_{3} v_{4} v_{5}$ $v_{6} v_{7} v_{8} v_{1}, R=v_{4} v_{5} v_{6} v_{7} v_{8} v_{9} v_{2} v_{3} v_{1}$ and $S=v_{9} v_{7} v_{8} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$ are also Hamilton paths in $D-V(C)$.

Let \mathcal{P} be the set of all Hamilton paths in $D-V(C)$. By considering the paths P and Q, we note that the initial vertex of any path in \mathcal{P} is also the terminal vertex of some path in \mathcal{P} and vice versa. Also, by considering the paths P and R, we observe that the fourth vertex of any path in \mathcal{P} is an initial vertex of some path in \mathcal{P}. Hence v_{4}, the initial vertex of R, is the terminal vertex of some path in \mathcal{P} and v_{6}, the terminal vertex of S, is an initial vertex of some path in \mathcal{P}. Also v_{7}, the fourth vertex of R, is the initial vertex of a path in \mathcal{P} and the terminal
vertex of another. Hence no vertex in C has a neighbour in $\left\{v_{1}, v_{4}, v_{6}, v_{7}, v_{9}\right\}$. But now $\left\langle\left\{v_{1}, v_{4}, v_{6}, v_{7}, v_{9}\right\} \cup V(C)\right\rangle$ is a nontraceable subdigraph of D with 8 vertices, contradicting that D is 8 -traceable. Hence D does not contain a 3 -cycle.

By Corollary $17, g(G)<6$ and by Lemma $13, D$ does not contain a 4-cycle. Hence $g(D)=5$. Now let X be a 5 -cycle in D.

By Claim 1, every vertex in $D-V(X)$ has at least one out-neighbour in $D-V(X)$. Hence $D-V(X)$ contains a cycle.

If $D-V(X)$ contains a 7 -cycle, D is obviously traceable.
Now suppose Y is a 6 -cycle in $D-V(X)$ and let v be the vertex of $D-$ $(V(X) \cup V(Y))$. Then by Claim 1, v has an in- and an out-neighbour on Y. Hence, since D is nontraceable, v has no neighbour on X. But then by Corollary 11 every vertex in Y is an in-neighbour and an out-neighbour of v contradicting the fact that D is an oriented graph.

Hence we may assume that $D-V(X)$ contains no 6 -cycle or 7 -cycle. Now suppose Y is a 5 -cycle in $D-V(X)$ and let $v_{1}, v_{2} \in V(D)-(V(X) \cup V(Y))$. By Lemma $9(1), \delta(D) \geq 5$, so we may assume without loss of generality that $d^{+}\left(v_{1}\right) \geq 3$ and $d^{-}\left(v_{1}\right) \geq 2$. If v_{1}, v_{2} are nonadjacent, then it follows from Claim 1 that each of v_{1} and v_{2} has an in-neighbour as well as an out-neighbour on each of X and Y. Thus we may further assume that v_{1} has two out-neighbours and an in-neighbour on X. But since D has no 3 -, 4 - or 6 -cycle, this is not possible. Hence we may assume that $v_{1} v_{2} \in A(D)$. But then, by Claim 1, v_{1} has an in-neighbour in X and v_{2} has an out-neighbour in Y. Hence D is traceable.

Case (ii) D has exactly two strong components. By Lemma 7(2) we may assume that neither D_{1} nor D_{2} is hamiltonian. Hence by Lemma 14 we may assume without loss of generality that D_{1} is a singleton x and D_{2} is nonhamiltonian, and $n\left(D_{2}\right)=11$.

Now suppose D_{2} contains a 3 -cycle Z. Then since D is 9-traceable, $D-V(Z)$ has a 9 -path $P=x v_{1} v_{2} \cdots v_{8}$ and $N^{+}\left(v_{8}\right) \subseteq V(P)$. By Claim 1, $v_{1}, v_{6} \in N^{+}\left(v_{8}\right)$, so $\langle V(P)\rangle$ contains an 8-cycle Y. By Observation 6, every vertex in Z has an out-neighbour on Y. Hence, since D is nontraceable, no vertex in Z is in $N^{+}(x)$. Thus by Lemma $9(1), x$ has at least five out-neighbours on Y and since D is nontraceable, the predecessor of each out-neighbour of x on Y is not an inneighbour of any vertex in Z. Now let $z \in V(Z)$. Then z has at most three inneighbours on Y and thus at most four in-neighbours in D_{2}, so $\left|N^{-}(z) \cup N^{-}(x)\right| \leq$ 4 , contradicting Lemma $9(2)$. Hence D has no 3 -cycle. By Corollary $17, g(G)<6$ and by Lemma $13, D$ does not contain a 4 -cycle. Hence $g(D)=5$.

Let Z be an induced 5-cycle in D_{2}. By Corollary 11, every vertex in $D-V(Z)$ has an out-neighbour in $D-V(Z)$, so $D-V(Z)$ contains a cycle Y.

Suppose Y is a 6-cycle. By Claim 1, every vertex in Z has an out-neighbour in Y and hence every vertex in Z is the initial vertex of a Hamilton path in D_{2}. Therefore no vertex on Z is an out-neighbour of x. By Corollary 12, every vertex
of Y is an out-neighbour of x. But, since D_{2} is strong, at least one vertex on Y has an out-neighbour on X and hence D is traceable.

Therefore we may assume that Y is a 5 -cycle. Hence neither $D_{2}-V(Z)$ nor $D_{2}-V(Y)$ has a 6-cycle. Let v be the vertex in $V\left(D_{2}\right)-(V(Z) \cup V(Y))$. If $v \notin N^{+}(x)$, then by Lemma $9(2), d^{-}(v) \geq 5$, so v has at least three in-neighbours in at least one of Z and Y, say Y. However, Claim 1 implies that v also has an out-neighbour in Y, and then $D_{2}-V(Z)$ has a 6 -cycle. This contradiction shows that $x v \in A(D)$. But v has an out-neighbour in Y and every vertex in Y has at least one out-neighbour in X, so D is traceable.

Case (iii) D has at least three strong components. By Lemma 7(2) and Lemma 14 , each of D_{1} and D_{h} is either a singleton or has order at least 9 . Since $n=12$ it follows from Lemma $7(1)$ that D_{1} and D_{h} are both singletons. By Lemma 7(1) and Lemma 8, either $h=4$ and $n\left(D_{2}\right)=n\left(D_{3}\right)=5$, or $h=3$ and $n\left(D_{2}\right)=10$.

Suppose the former. Let $D_{1}=x$ and let S be a set of vertices in D such that $|S|=8$ and $\left\{x \cup V\left(D_{2}\right)\right\} \subset S$. Since D is 8 -traceable, $\langle S\rangle$ has a Hamilton path with subpath $x v_{1} \cdots v_{5}$ where $v_{i} \in V\left(D_{2}\right), i=1, \ldots, 5$. Note that $\left\langle D-\left\{x, v_{1}\right.\right.$, $\left.\left.v_{2}, v_{3}\right\}\right\rangle$ has order 8 and therefore has a Hamilton path Q with initial arc $v_{4} v_{5}$. But then $x v_{1} v_{2} v_{3} Q$ is a Hamilton path in D - a contradiction.

Now suppose $h=3$ and $n\left(D_{2}\right)=10$. Let x and z be the vertices in D_{1} and D_{3} respectively. Note that if $x z \in A(D)$, then $D-x z$ is also a nontraceable 8 -traceable oriented graph of order 12 . Hence we may assume that $x z \notin A(D)$.

Claim 2. Let $v \in V\left(D_{2}\right)$. If v is not a neighbour of x, then $d^{-}(v) \geq 6$. Similarly, if v is not a neighbour of z, then $d^{+}(v) \geq 6$.

Proof. Suppose $v \notin N(x)$. Since $d^{-}(x)=0$, Lemma $9(2)$ implies that $d^{-}(v) \geq 5$. Suppose $d^{-}(v)=5$. Let $B=V\left(D_{2}\right)-\left\{v \cup N^{-}(v)\right\}$. Then $|B|=4$. Since D is 8-traceable, the oriented graph $\langle V(D)-B\rangle$ has a Hamilton path $x u_{1} u_{2} u_{3} u_{4} u_{5} v z$ where $N^{-}(v)=\left\{u_{1}, \ldots, u_{5}\right\}$. Also $\left\langle B \cup\left\{x, u_{1}, v, z\right\}\right\rangle$ has a Hamilton path Q and, since u_{1} is the only in-neighbour of v in this oriented graph, $u_{1} v \in A(Q)$. But then the path obtained by replacing the arc $u_{1} v$ with the path $u_{1} u_{2} u_{3} u_{4} u_{5} v$ is a Hamilton path of D. This proves that $d^{-}(v) \geq 6$ and, similarly, $d^{+}(v) \geq 6$ if $v \notin N(z)$. This proves Claim 2.

Claim 3. D_{2} is nonhamiltonian.
Proof. Suppose to the contrary that $v_{1} v_{2} \cdots v_{10} v_{1}$ is a Hamilton cycle in D_{2}. Let $v_{i} \notin N^{+}(x)$ for some $i \in\{1, \ldots, 10\}$. Then by Claim $2, v_{i} \in N^{-}(z)$ and hence, since D is nontraceable, $v_{i+1} \notin N^{+}(x)$. Since $D-x$ is traceable, we may assume, without loss of generality, that $v_{1} \in N^{-}(z)$. Hence it follows by induction that $v_{i} \notin N^{+}(x)$ for $i=2, \ldots, 10$, contradicting that $d^{+}(x) \geq 5$. This proves Claim 3.

Since D is hypotraceable, we may assume that $P=v_{1} v_{2} \cdots v_{10} z$ is a Hamilton path in $D-x$. It follows from Claim 2 that every vertex in D_{2} is adjacent to at least one of x and z. In particular, $v_{1} \notin N^{+}(x)$, so $v_{1} \in N^{-}(z)$. Let v_{ℓ} be the last in-neighbour of v_{1} on P. By Claim $3, \ell \neq 10$ and hence it follows from Claim 1 that $\ell \in\{8,9\}$. Let $C=v_{1} \cdots v_{\ell} v_{1}$.

First we show that $x v_{\ell+1} \in A(D)$. Suppose to the contrary that $x v_{\ell+1} \notin$ $A(D)$. Then it follows from Claim 2 that $v_{\ell+1}$ has at least six in-neighbours on C. If v_{j} is any in-neighbour of $v_{\ell+1}$ on C, then $v_{j+1} \notin N^{+}(x)$, since otherwise $x v_{j+1} \cdots v_{\ell} v_{1} \cdots v_{j} v_{\ell+1} \cdots v_{10} z$ is a Hamilton path of D. Hence there are at least six vertices on C that are not out-neighbours of x. But this contradicts the fact that x has at least five out-neighbours in D_{2}. Hence $x v_{\ell+1} \in A(D)$.

Since D_{2} is strong and $\ell \in\{8,9\}, v_{10}$ has at least one out-neighbour on C. By Claim 3, v_{1} is not an out-neighbour of v_{10}. Also, v_{2} is not an out-neighbour of v_{10} otherwise $x v_{\ell+1} \cdots v_{10} v_{2} v_{3} \cdots v_{\ell} v_{1} z$ is a Hamilton path in D. Thus the out-neighbours of v_{10} in D_{2} lie on the path $Q=v_{3} v_{4} \cdots v_{8}$. Note that by Claim 2 , there is at most one vertex on $v_{3} \cdots v_{\ell}$ that is not an in-neighbour of v_{1}. Let v_{j} and $v_{j+r}, r \geq 0$ be the first and last out-neighbours of v_{10} on Q. Since either v_{j+r} or v_{j+r+1} is an in-neighbour of v_{1}, it follows that $v_{j} v_{j+1} \cdots v_{j+r} v_{1} z$ or $v_{j} v_{j+1} \cdots v_{j+r} v_{j+r+1} v_{1} z$ is a path in $D-v_{10}$ that contains all the out-neighbours of v_{10}. Hence it follows from Claim 1 that $r \geq 2$ and hence v_{10} has at least two nonconsecutive out-neighbours on Q.

Hence v_{7} and v_{8} cannot be the only out-neighbours of v_{10} and we may therefore assume that v_{j} is an out-neighbour of v_{10} for some $j \in\{3, \ldots, 6\}$. Then $v_{j-1} z \notin A(D)$ otherwise $x v_{\ell+1} \cdots v_{10} v_{j} \cdots v_{\ell} v_{1} \cdots v_{j-1} z$ is a Hamilton path in D. Hence by Claim 2, v_{j-1} has at least six out-neighbours in D_{2}. Since $v_{j-1} \in$ $\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}, v_{j-1}$ has at most three out-neigbhours on the path $v_{1} \cdots v_{j-3}$ and therefore at least two out-neighbours on the path $v_{j+1} \cdots v_{10}$.

Now suppose $\ell=8$. Then by Claim $2, N^{-}\left(v_{1}\right)=\left\{v_{3}, \ldots, v_{8}\right\}$. In this case v_{j-1} has at least one out-neighbour v_{i} on the path $v_{j+1} \cdots v_{9}$, for $j \in\{3, \ldots, 6\}$. Then v_{i-1} lies on the path $v_{j} \cdots v_{8}$, for $j \in\{3, \ldots, 6\}$ and hence $v_{i-1} v_{1} \in A(D)$. But now $v_{10} v_{j} v_{j+1} \cdots v_{i-1} v_{1} v_{2} \cdots v_{j-1} v_{i} \cdots v_{10}$ is a Hamilton cycle in D_{2}, contradicting Claim 3.

Finally suppose $\ell=9$. If v_{10} is an out-neighbour of v_{j-1}, then $v_{j-1} v_{10} v_{j} \cdots v_{9}$ $v_{1} \cdots v_{j-1}$ is a Hamilton cycle in D_{2}. Hence $v_{j-1} v_{10} \notin A(D)$. It therefore follows that v_{j-1} has at least two out-neighbours on the path $v_{j+1} \cdots v_{9}$. By Claim 2, at most one of the vertices on the path $v_{j} \cdots v_{8}$ is not an in-neighbour of v_{1}. Hence v_{j-1} has an out-neighbour v_{i} on $v_{j+1} \cdots v_{9}$ such that v_{i-1} is an in-neighbour of v_{1}. In this case $v_{10} v_{j} v_{j+1} \cdots v_{i-1} v_{1} v_{2} \cdots v_{j-1} v_{i} v_{i+1} \cdots v_{10}$ is a Hamilton cycle in D, again contradicting Claim 3 .

Theorem 20. Every 8-traceable oriented graph of order 13 is traceable.

Proof. Suppose D is a nontraceable 8-traceable oriented graph of order 13. Then by Lemma 5 and Theorem $19, D$ is also 9 -, $10-$, 11- and 12 -traceable.

By Lemmas 14 and $15, D$ has a nonhamiltonian strong component of order at least 10. Hence it follows from Lemma 8 and Lemma 7(1) that we only need to consider the following three cases.

Case (i) D has three strong components. In this case we can assume that $D_{1}=x$ and $D_{3}=z$ and $n\left(D_{2}\right)=11$. Let $P=v_{1} v_{2} \cdots v_{11} z$ be a Hamilton path in $D-x$. By Lemma 18 we may assume that either $d_{D_{2}}^{-}(v) \geq 7$ or $d_{D_{2}}^{+}(v) \geq 7$ for every $v \in V\left(D_{2}\right)$. If $v \notin N(x)$, then it follows from Lemma $9(2)$ that $d^{-}(v) \geq 6$. Then $d^{+}(v) \leq 12-6=6$ and hence $d^{-}(v) \geq 7$. Similarly $d^{+}(v) \geq 7$ for every vertex $v \notin N_{D_{2}}^{-}(z)$. Hence, $d_{D_{2}}^{-}\left(v_{1}\right) \geq 7$. Let v_{ℓ} be the last in-neighbour of v_{1} on P. Since D_{2} is nonhamiltonian, $\ell \in\{9,10\}$. Let $C=v_{1} \cdots v_{\ell} v_{1}$. By Lemma $9(1), x$ has at least four out-neighbours on C. If v_{j} is any out-neighbour of x on C, v_{j-1} is not in $N^{-}\left(v_{\ell+1}\right)$, since otherwise $x v_{j} \cdots v_{\ell} v_{1} \cdots v_{j-1} v_{\ell} v_{\ell+1} \cdots v_{11} z$ is a Hamilton path of D. Hence there are at least four vertices on C that are not in-neighbours of $v_{\ell+1}$. Since $v_{\ell+1}$ is not an in-neighbour of itself, $v_{\ell+1}$ has at most six in-neighbours in D_{2} and therefore by Lemma $9(2)$ we may assume that $x v_{\ell+1} \in A(D)$ and that $N_{D_{2}}^{+}\left(v_{\ell+1}\right) \geq 7$.

Suppose $\ell=9$. If $v_{j} \in N_{C}^{+}\left(v_{10}\right)$, then v_{j-1} is not an in-neighbour of v_{11} otherwise $x v_{10} v_{j} \cdots v_{9} v_{1} \cdots v_{j-1} v_{11} z$ is a Hamilton path of D. Hence there are at least six vertices on C that are not in-neighbours of v_{11} and therefore $d_{D_{2}}^{-}\left(v_{11}\right)<7$ and hence by Lemma $18, N_{C}^{+}\left(v_{11}\right) \geq 7$. But for each out-neighbour v_{j} of v_{11} in D_{2}, v_{j-1} is not an in-neighbour of z since otherwise $x v_{10} v_{11} v_{j} \cdots v_{9} v_{1} \cdots v_{j-1} z$ is a Hamilton path of D. Hence $\left|N_{D_{2}}^{-}(z)\right| \leq 4$, contradicting Lemma $9(1)$.

Now suppose $\ell=10$. Then v_{11} has at least seven out-neighbours in D_{2}. If v_{j} is an out-neighbour of v_{11}, then v_{j-1} is not an in-neighbour of z, since otherwise $x v_{11} v_{j} \cdots v_{10} v_{1} \cdots v_{j-1} z$ is a Hamilton path of D. Again we have that $\left|N_{D_{2}}^{-}(z)\right| \leq 4$, which contradicts Lemma $9(2)$. This proves Case (i).

In Cases (ii) and (iii) it follows from Lemma 12 that D does not contain a 4 -cycle or a 5 -cycle and so by Corollary $17, D$ has a 3 -cycle. Hence, for the remainder of the proof let $W=w_{1} w_{2} w_{3} w_{1}$ be a 3 -cycle in D. Since D is $10-$ traceable, $D-V(W)$ has a Hamilton path $P=v_{1} \cdots v_{10}$.

Case (ii) D has two strong components. In this case we may assume one strong component is trivial and the other has order 12 . Hence, either v_{1} is a source or v_{10} is a sink. Assume the former. Since D is nontraceable, $N^{+}\left(v_{10}\right) \subseteq$ $\left\{v_{2}, \ldots, v_{8}\right\}$. It therefore follows from Corollary 11 that $v_{2}, v_{8} \in N^{+}\left(v_{10}\right)$. Now let C denote the 9 -cycle $v_{2} v_{3} \cdots v_{10} v_{2}$. From Observation 6 , every vertex on W has an out-neighbour on C. Suppose w_{1} is an out-neighbour of v_{1}. Then $v_{1} w_{1} w_{2} w_{3}$ followed by an out-neighbour of w_{3} on C and the remainder of the vertices of C is a Hamilton path of D. Hence, $N^{+}\left(v_{1}\right) \subseteq C$ and by Lemma 9(1),
$\left|N_{C}^{+}\left(v_{1}\right)\right| \geq 6$. Now for each out-neighbour of v_{1} on C, its predecessor on C is not an in-neighbour of any vertex of W, since otherwise D is traceable. But then $\left|N^{-}\left(w_{1}\right) \cup N^{-}\left(v_{1}\right)\right| \leq 4$, contradicting Lemma 9(2).

Case (iii) D is strong. Note that $D-V(W)$ is nonhamiltonian, since otherwise D would be traceable. Hence $v_{10} \notin N^{-}\left(v_{1}\right)$ and therefore by Corollary $11, v_{3}, v_{9} \in N^{-}\left(v_{1}\right)$ and $v_{2}, v_{8} \in N^{+}\left(v_{10}\right)$. But now $Q=v_{10} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} v_{9} v_{1}$, $R=v_{4} v_{5} v_{6} v_{7} v_{8} v_{9} v_{10} v_{2} v_{3} v_{1}$ and $S=v_{10} v_{8} v_{9} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7}$ are also Hamilton paths in $D-V(W)$.

Let \mathcal{P} be the set of all Hamilton paths in $D-V(W)$. By considering the paths P and Q, we note that for any path in \mathcal{P} with initial vertex v_{i} and terminal vertex v_{j}, there is a path in \mathcal{P} with initial vertex v_{j} and terminal vertex v_{i}. Hence, since $D-V(W)$ is nonhamiltonian, v_{1} and v_{10} are nonadjacent.

Applying this observation to the paths R and S it follows that v_{1} and v_{4} are nonadjacent and v_{7} and v_{10} are nonadjacent.

By considering the paths P and R, we observe that for any path $P \in \mathcal{P}$, there is a path in \mathcal{P} whose initial vertex is the fourth vertex of P and whose terminal vertex is the first vertex of P. Hence by our previous observation, the first and fourth vertices of any path in \mathcal{P} are nonadjacent.

Similarly, by considering the paths P and S, we observe that for any path in $P \in \mathcal{P}$, there is a path in \mathcal{P} whose initial vertex is the terminal vertex of P and whose terminal vertex is the seventh vertex of P. Hence the seventh and terminal vertices of any path in \mathcal{P} are nonadjacent.

By applying these observations to the paths Q and R it follows that v_{4} and v_{10} are nonadjacent, v_{1} and v_{7} are nonadjacent, and v_{4} and v_{7} are nonadjacent.

Thus $\left\{v_{1}, v_{4}, v_{7}, v_{10}\right\}$ is an independent set and therefore, for any $w_{i} \in V(W)$, the set $\left\{w_{i}, v_{1}, v_{4}, v_{7}, v_{10}\right\}$ is an independent set of order 5 contradicting the fact that D is 8 -traceable.

Acknowledgement

The author would like to thank Marietjie Frick and Alewyn Burger for valuable discussions on this topic.

References

[1] S.A. van Aardt, A.P. Burger, J.E. Dunbar, M. Frick, J.M. Harris and J.E. Singleton, An iterative approach to the Traceabiltiy Conjecture for Oriented Graphs, Electron. J. Combin. 201 (2013) \#P59.
[2] S.A. van Aardt, A.P. Burger, M. Frick, B. Llano and R. Zuazua, Infinite families of 2-hypohamiltonian/2-hypotraceable oriented graphs, Graphs Combin. 30 (2014) 783-800.
doi:0.1007/s00373-013-1312-1
[3] S.A. van Aardt, J.E. Dunbar, M. Frick, P. Katrenič, M.H. Nielsen and O.R. Oellermann, Traceability of k-traceable oriented graphs, Discrete Math. 310 (2010) 1325-1333.
doi:10.1016/j.disc.2009.12.022
[4] S.A. van Aardt, J.E. Dunbar, M. Frick and M.H. Nielsen, Cycles in k-traceable oriented graphs, Discrete Math. 311 (2011) 2085-2094. doi:10.1016/j.disc.2011.05.032
[5] S.A. van Aardt, J.E. Dunbar, M. Frick, M.H. Nielsen and O.R. Oellermann, A traceability conjecture for oriented graphs, Electron. J. Combin. 15 (2008) \#R150.
[6] S.A. van Aardt, M. Frick, P. Katrenič and M.H. Nielsen, The order of hypotraceable oriented graphs, Discrete Math. 11 (2011) 1273-1280. doi:10.1016/j.disc.2011.03.009
[7] A.P. Burger, Computational results on the traceability of oriented graphs of small order, Electron. J. Combin. 20 (2013) \#P23.
[8] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Second Ed. (Springer-Verlag, London, 2009). doi:10.1007/978-1-84800-998-1
[9] M. Frick and P. Katrenič, Progress on the traceability conjecture, Discrete Math. Theor. Comput. Sci. 10 (2008) 105-114.
[10] M. Grötschel and Y. Wakabayashi, Constructions of hypotraceable digraphs, in: Mathematical Programming, R.W. Cottle, M.L. Kelmanson and B. Korte (Ed(s)), (Elsevier Science Publishers B.V., 1984).

Received 6 January 2016
Revised 10 August 2016
Accepted 10 August 2016

[^0]: ${ }^{1}$ Supported by the National Research Foundation of S.A, Grant 81075.

