Discussiones Mathematicae Graph Theory 37 (2017) 963–973 doi:10.7151/dmgt.1966

EVERY 8-TRACEABLE ORIENTED GRAPH IS TRACEABLE

Susan A. van Aardt¹

Department of Mathematical Sciences University of South Africa P.O. Box 392, Unisa, 0003 South Africa

e-mail: vaardsa@unisa.ac.za

Abstract

A digraph of order n is k-traceable if $n \geq k$ and each of its induced subdigraphs of order k is traceable. It is known that if $2 \leq k \leq 6$, every k-traceable oriented graph is traceable but for k = 7 and for each $k \geq 9$, there exist k-traceable oriented graphs that are nontraceable. We show that every 8-traceable oriented graph is traceable.

Keywords: oriented graph, traceable, hypotraceable, k-traceable, generalized tournament.

2010 Mathematics Subject Classification: 05C20, 05C38.

1. Introduction and Background

A digraph is traceable if it contains a path that visits every vertex and hamilto-nian if it contains a cycle that visits every vertex. A digraph is k-traceable if it has at least k vertices and each of its induced subdigraphs of order k is traceable. Obviously, an oriented graph is 2-traceable if and only if it is a nontrivial tournament. Thus k-traceable oriented graphs may be regarded as generalized tournaments. It is well-known that every tournament is traceable. The following theorem shows that k-traceable oriented graphs retain this property for small values of k.

Theorem 1 [3]. For k = 2, 3, 4, 5, 6, every k-traceable oriented graph is traceable.

However, not all k-traceable oriented graphs are traceable. In particular, we know the following.

¹Supported by the National Research Foundation of S.A, Grant 81075.

Theorem 2 [2, 6].

(1) For k = 7 and for every $k \ge 9$, there exist k-traceable oriented graphs of order k + 1 that are nontraceable.

(2) There exist nontraceable k-traceable oriented graphs of order k + 2 for infinitely many k.

The following traceability conjecture, called the TC, is considered in [1, 3, 4, 5, 7, 9].

Conjecture 1 (TC). For $k \geq 2$, every k-traceable oriented graph of order at least 2k-1 is traceable.

The next two results were established by means of exhaustive computer searches.

Theorem 3 [7]. All 8-traceable oriented graphs of order 9, 10 and 11 are traceable.

Theorem 3 was used in [1] to prove, by means of an iterative procedure, that the TC holds for k = 8. In fact, the following slightly stronger result was proved.

Theorem 4 [1]. Every 8-traceable oriented graph of order at least 14 is traceable.

In this paper we prove analytically that all 8-traceable oriented graphs of order 12 and 13 are also traceable. Hence we conclude that every 8-traceable oriented graph is traceable.

2. Preliminaries and Auxiliary Results

The set of vertices and the set of arcs of a digraph D are denoted by V(D) and A(D), respectively, and the order of D is denoted n(D). If D is a digraph and $X \subset V(D)$, then $\langle X \rangle$ denotes the subdigraph induced by X in D. If $v \in V(D)$, we denote the sets of out-neighbours and in-neighbours of v by $N^+(v)$ and $N^-(v)$ and the cardinalities of these sets by $d^+(v)$ and $d^-(v)$, respectively. For undefined concepts we refer the reader to [8].

A digraph is strong (or strongly connected) if for every pair of vertices x, y in D there is a path from x to y. A maximal strong subdigraph of a digraph D is called a strong component of D. We say that a strong component is trivial if has only one vertex. If D is a digraph with h strong components, then its strong components have an acyclic ordering D_1, D_2, \ldots, D_h such that if there is an arc from D_i to D_j , then $i \leq j$. If D is k-traceable for some $k \geq 2$, this acyclic ordering is unique since there is at least one arc from D_i to D_{i+1} for $i = 1, 2, \ldots, h-1$.

Throughout this paper we label the strong components of a k-traceable digraph in accordance with this acyclic ordering.

A digraph D is hypotraceable if $n(D) \geq 3$ and D is nontraceable but the removal of any vertex leaves a traceable digraph. Thus for $k \geq 2$ a k-traceable digraph of order k+1 is hypotraceable if and only if it is nontraceable.

The following immediate consequence of Theorem 3 plays an important role in the proof of our main result.

Lemma 5. If D is an 8-traceable oriented graph of order $n \ge 12$, then D is also 9-, 10- and 11-traceable.

Lemma 5 implies that if there exists a nontraceable 8-traceable oriented graph of order 12, then it would be hypotraceable. We observe the following.

Observation 6. A hypotraceable digraph does not have a vertex with in-degree or out-degree equal to 1.

We shall also use the following properties of hypotraceable digraphs.

Lemma 7. Let D be be hypotraceable digraph with strong components D_1, \ldots, D_h . Then the following hold.

- (1) If D_t is a trivial strong component, then t is either 1 or h.
- (2) D_1 and D_h are nonhamiltonian.
- **Proof.** (1) Let $D_t = \{w\}$ for some $t \in \{2, ..., h-1\}$. Now let $x \in D_1$ and $z \in D_h$. Then D-z and D-x have Hamilton paths P and Q, respectively. Note that P has a subpath with vertex set $\bigcup_{i=1}^t V(D_i)$ ending at w, and Q has a subpath with vertex set $\bigcup_{i=1}^h V(D_i)$ starting at w. Hence the concatenation of P and Q is a Hamilton path of D.
- (2) Suppose to the contrary that D_1 has a Hamilton cycle $v_1 \cdots v_\ell v_1$. Then $D-v_1$ is traceable. Hence $D-V(D_1)$ has a Hamilton path P whose initial vertex has an in-neighbour v_i in D_1 . But then $v_{i+1}v_{i+2}\cdots v_\ell v_1\cdots v_i P$ is a Hamilton path of D.

We shall also use the following result of Grötschel and Wakabayashi [10].

Lemma 8 [10]. Every nontrivial strong component of a hypotraceble digraph has order at least 5.

The proof of our main theorem relies heavily on results proved in the papers [1, 3, 5, 7] and [9]. In the sequel, results extracted from these papers are stated without proof.

Lemma 9 [3, 5]. Let $2 \le k \le n$ and let D be a k-traceable oriented graph of order n. Then the following hold.

- (1) $d(v) \ge n k + 1$ for every $v \in V(D)$.
- (2) $|N^+(x) \cup N^+(y)| \ge n k + 1$ and $|N^-(x) \cup N^-(y)| \ge n k + 1$ for every pair of distinct nonadjacent vertices $x, y \in V(D)$.

Lemma 10 [3, 9]. Let $2 \le k \le n$ and let D be a nontraceable k-traceable oriented graph of order n. Suppose x and y are distinct nonadjacent vertices in D and let

$$S \in \{N^+(x), N^-(x), N^+(x) \cup N^+(y), N^-(x) \cup N^-(y)\}.$$

If |S| = n - k + 1, then $\langle S \rangle$ is nontraceable.

We shall often use the following corollary of Lemma 10 in combination with Lemma 5.

Corollary 11 [3]. Let $k \geq 2$ and suppose D is a nontraceable oriented graph of order n that is j-traceable for j = k, k + 1, ..., n - 1. If $x \in V(D)$ such that $d^+(x) \geq 2$ (or $d^-(x) \geq 2$) and P is a path in D - x that contains all the out-neighbours (or all the in-neighbours) of x, then $n(P) \geq n - k + 2$.

We shall also use the next result, which is easily derived from Corollary 11.

Corollary 12. Suppose $x \in V(D)$ such that $d^+(x) \ge 2$ (or $d^-(x) \ge 2$) and C is a t-cycle in D-x such that $N^+(x)$ (or $N^-(x)$) is contained in C. If i consecutive vertices of C are not out-neighbours (or in-neighbours) of x, then $i \le t-n+k-2$.

Another consequence of Corollary 11 is the following.

Lemma 13. Suppose D is an oriented graph of order $n \ge 2k-4$ with at most two strong components and D is j-traceable for $j=k,k+1,\ldots,n-1$. If D contains a t-cycle for some t such that $k-4 \le t \le n-k$, then D is traceable.

Proof. Suppose D is nontraceable and D contains a t-cycle C, with $k-4 \le t \le n-k$. Then $k \le n-t < n-1$, so D is (n-t)-traceable by our assumption. Hence D-V(C) is traceable. Let $P=v_1\cdots v_{n-t}$ be a Hamilton path of D-V(C). Since D is nontraceable, D-V(C) is nonhamitonian, so $v_{n-t} \notin N^-(v_1)$. We may assume that v_1 is not a source. (If it is, then v_{n-t} is not a sink and we consider it instead.) If v_1 has an in-neighbour on C, then D is traceable, so we may assume that $N^-(v_1) \subseteq V(P)$. But then $N^-(v_1)$ is contained in a path of order at most $n-t-3 \le n-k+1$ (since $t \ge k-4$). This contradicts Corollary 11.

Lemma 14 [9]. Let $k \ge 2$ and suppose D is a k-traceable oriented graph of order n. Then any nontrivial strong component of D that is nonhamiltonian has at least n - k + 5 vertices.

Lemma 15 [5]. Let $k \ge 2$ and suppose D is a k-traceable oriented graph of order $n \ge 2k-3$. If D is nontraceable, then D has a nonhamiltonian strong component.

Lemma 16 [4]. If D is a k-traceable oriented graph with a strong component X such that $g(X) \geq 6$, then the order of D is at most 2k - 4 if k is odd, and at most 2k - 5 if k is even.

Corollary 17. If D is an 8-traceable oriented graph of order at least 12, then the girth of every nontrivial strong component of D is at most 5.

We also need the following result, which is a special case of Lemma 17 of [1].

Lemma 18. Let D be a k-traceable oriented graph of order 2k-3 consisting of three strong components D_1 , D_2 , D_3 such that D_1 and D_3 are singletons. Then D is traceable if there is a vertex v in D_2 such that $d_{D_2}^-(v) < k-1$ and $d_{D_2}^+(v) < k-1$.

3. The Main Result

Theorem 19. Every 8-traceable oriented graph of order 12 is traceable.

Proof. Suppose, to the contrary, that D is a nontraceable 8-traceable oriented graph of order 12. By Lemma 5, D is also 9-, 10- and 11-traceable and thus hypotraceable.

We note that Corollary 11 implies the following.

Claim 1. If v is a vertex in V(D), then any path in D-v that contains all the in-neighbours (or all the out-neighbours) of v has order at least 6.

We distinguish three cases.

Case (i) D is strong. First, suppose D contains a 3-cycle C. Since D is 9-traceable, D-V(C) has a Hamilton path, say $P=v_1\cdots v_9$. First observe that since D is nontraceable, D-V(C) is nonhamiltonian, and hence $v_9v_1\notin A(D)$. Also, no vertex in C is an in-neighbour of the initial vertex of any Hamilton path in D-V(C) and similarly, no vertex in C is an out-neighbour of the terminal vertex of any Hamilton path of D-V(C). Hence $N^-(v_1)\subseteq \{v_3,\ldots,v_8\}$. Since D is hypotraceable, it follows from Observation 6 that $d^-(v_1)\geq 2$. Hence, by Corollary 11, $v_3,v_8\in N^-(v_1)$. Similarly, $v_2,v_7\in N^+(v_9)$. But now $Q=v_9v_2v_3v_4v_5v_6v_7v_8v_1$, $R=v_4v_5v_6v_7v_8v_9v_2v_3v_1$ and $S=v_9v_7v_8v_1v_2v_3v_4v_5v_6$ are also Hamilton paths in D-V(C).

Let \mathcal{P} be the set of all Hamilton paths in D-V(C). By considering the paths P and Q, we note that the initial vertex of any path in \mathcal{P} is also the terminal vertex of some path in \mathcal{P} and vice versa. Also, by considering the paths P and R, we observe that the fourth vertex of any path in \mathcal{P} is an initial vertex of some path in \mathcal{P} . Hence v_4 , the initial vertex of R, is the terminal vertex of some path in \mathcal{P} and v_6 , the terminal vertex of S, is an initial vertex of some path in \mathcal{P} . Also v_7 , the fourth vertex of R, is the initial vertex of a path in \mathcal{P} and the terminal

vertex of another. Hence no vertex in C has a neighbour in $\{v_1, v_4, v_6, v_7, v_9\}$. But now $\langle \{v_1, v_4, v_6, v_7, v_9\} \cup V(C) \rangle$ is a nontraceable subdigraph of D with 8 vertices, contradicting that D is 8-traceable. Hence D does not contain a 3-cycle.

By Corollary 17, g(G) < 6 and by Lemma 13, D does not contain a 4-cycle. Hence g(D) = 5. Now let X be a 5-cycle in D.

By Claim 1, every vertex in D - V(X) has at least one out-neighbour in D - V(X). Hence D - V(X) contains a cycle.

If D - V(X) contains a 7-cycle, D is obviously traceable.

Now suppose Y is a 6-cycle in D-V(X) and let v be the vertex of $D-(V(X)\cup V(Y))$. Then by Claim 1, v has an in- and an out-neighbour on Y. Hence, since D is nontraceable, v has no neighbour on X. But then by Corollary 11 every vertex in Y is an in-neighbour and an out-neighbour of v contradicting the fact that D is an oriented graph.

Hence we may assume that D-V(X) contains no 6-cycle or 7-cycle. Now suppose Y is a 5-cycle in D-V(X) and let $v_1, v_2 \in V(D)-(V(X) \cup V(Y))$. By Lemma 9(1), $\delta(D) \geq 5$, so we may assume without loss of generality that $d^+(v_1) \geq 3$ and $d^-(v_1) \geq 2$. If v_1, v_2 are nonadjacent, then it follows from Claim 1 that each of v_1 and v_2 has an in-neighbour as well as an out-neighbour on each of X and Y. Thus we may further assume that v_1 has two out-neighbours and an in-neighbour on X. But since D has no 3-, 4- or 6-cycle, this is not possible. Hence we may assume that $v_1v_2 \in A(D)$. But then, by Claim 1, v_1 has an in-neighbour in X and v_2 has an out-neighbour in Y. Hence D is traceable.

Case (ii) D has exactly two strong components. By Lemma 7(2) we may assume that neither D_1 nor D_2 is hamiltonian. Hence by Lemma 14 we may assume without loss of generality that D_1 is a singleton x and D_2 is nonhamiltonian, and $n(D_2) = 11$.

Now suppose D_2 contains a 3-cycle Z. Then since D is 9-traceable, D-V(Z) has a 9-path $P=xv_1v_2\cdots v_8$ and $N^+(v_8)\subseteq V(P)$. By Claim 1, $v_1,v_6\in N^+(v_8)$, so $\langle V(P)\rangle$ contains an 8-cycle Y. By Observation 6, every vertex in Z has an out-neighbour on Y. Hence, since D is nontraceable, no vertex in Z is in $N^+(x)$. Thus by Lemma 9(1), x has at least five out-neighbours on Y and since D is nontraceable, the predecessor of each out-neighbour of x on Y is not an inneighbour of any vertex in Z. Now let $z\in V(Z)$. Then z has at most three inneighbours on Y and thus at most four in-neighbours in D_2 , so $|N^-(z)\cup N^-(x)|\leq 4$, contradicting Lemma 9(2). Hence D has no 3-cycle. By Corollary 17, g(G)<6 and by Lemma 13, D does not contain a 4-cycle. Hence g(D)=5.

Let Z be an induced 5-cycle in D_2 . By Corollary 11, every vertex in D-V(Z) has an out-neighbour in D-V(Z), so D-V(Z) contains a cycle Y.

Suppose Y is a 6-cycle. By Claim 1, every vertex in Z has an out-neighbour in Y and hence every vertex in Z is the initial vertex of a Hamilton path in D_2 . Therefore no vertex on Z is an out-neighbour of x. By Corollary 12, every vertex

of Y is an out-neighbour of x. But, since D_2 is strong, at least one vertex on Y has an out-neighbour on X and hence D is traceable.

Therefore we may assume that Y is a 5-cycle. Hence neither $D_2 - V(Z)$ nor $D_2 - V(Y)$ has a 6-cycle. Let v be the vertex in $V(D_2) - (V(Z) \cup V(Y))$. If $v \notin N^+(x)$, then by Lemma 9(2), $d^-(v) \geq 5$, so v has at least three in-neighbours in at least one of Z and Y, say Y. However, Claim 1 implies that v also has an out-neighbour in Y, and then $D_2 - V(Z)$ has a 6-cycle. This contradiction shows that $xv \in A(D)$. But v has an out-neighbour in Y and every vertex in Y has at least one out-neighbour in X, so D is traceable.

Case (iii) D has at least three strong components. By Lemma 7(2) and Lemma 14, each of D_1 and D_h is either a singleton or has order at least 9. Since n = 12 it follows from Lemma 7(1) that D_1 and D_h are both singletons. By Lemma 7(1) and Lemma 8, either h = 4 and $n(D_2) = n(D_3) = 5$, or h = 3 and $n(D_2) = 10$.

Suppose the former. Let $D_1=x$ and let S be a set of vertices in D such that |S|=8 and $\{x\cup V(D_2)\}\subset S$. Since D is 8-traceable, $\langle S\rangle$ has a Hamilton path with subpath $xv_1\cdots v_5$ where $v_i\in V(D_2),\ i=1,\ldots,5$. Note that $\langle D-\{x,v_1,v_2,v_3\}\rangle$ has order 8 and therefore has a Hamilton path Q with initial arc v_4v_5 . But then $xv_1v_2v_3Q$ is a Hamilton path in D— a contradiction.

Now suppose h = 3 and $n(D_2) = 10$. Let x and z be the vertices in D_1 and D_3 respectively. Note that if $xz \in A(D)$, then D - xz is also a nontraceable 8-traceable oriented graph of order 12. Hence we may assume that $xz \notin A(D)$.

Claim 2. Let $v \in V(D_2)$. If v is not a neighbour of x, then $d^-(v) \ge 6$. Similarly, if v is not a neighbour of z, then $d^+(v) \ge 6$.

Proof. Suppose $v \notin N(x)$. Since $d^-(x) = 0$, Lemma 9(2) implies that $d^-(v) \geq 5$. Suppose $d^-(v) = 5$. Let $B = V(D_2) - \{v \cup N^-(v)\}$. Then |B| = 4. Since D is 8-traceable, the oriented graph $\langle V(D) - B \rangle$ has a Hamilton path $xu_1u_2u_3u_4u_5vz$ where $N^-(v) = \{u_1, \ldots, u_5\}$. Also $\langle B \cup \{x, u_1, v, z\} \rangle$ has a Hamilton path Q and, since u_1 is the only in-neighbour of v in this oriented graph, $u_1v \in A(Q)$. But then the path obtained by replacing the arc u_1v with the path $u_1u_2u_3u_4u_5v$ is a Hamilton path of D. This proves that $d^-(v) \geq 6$ and, similarly, $d^+(v) \geq 6$ if $v \notin N(z)$. This proves Claim 2.

Claim 3. D_2 is nonhamiltonian.

Proof. Suppose to the contrary that $v_1v_2\cdots v_{10}v_1$ is a Hamilton cycle in D_2 . Let $v_i \notin N^+(x)$ for some $i \in \{1,\ldots,10\}$. Then by Claim 2, $v_i \in N^-(z)$ and hence, since D is nontraceable, $v_{i+1} \notin N^+(x)$. Since D-x is traceable, we may assume, without loss of generality, that $v_1 \in N^-(z)$. Hence it follows by induction that $v_i \notin N^+(x)$ for $i=2,\ldots,10$, contradicting that $d^+(x) \geq 5$. This proves Claim 3.

Since D is hypotraceable, we may assume that $P = v_1 v_2 \cdots v_{10} z$ is a Hamilton path in D - x. It follows from Claim 2 that every vertex in D_2 is adjacent to at least one of x and z. In particular, $v_1 \notin N^+(x)$, so $v_1 \in N^-(z)$. Let v_ℓ be the last in-neighbour of v_1 on P. By Claim 3, $\ell \neq 10$ and hence it follows from Claim 1 that $\ell \in \{8,9\}$. Let $C = v_1 \cdots v_\ell v_1$.

First we show that $xv_{\ell+1} \in A(D)$. Suppose to the contrary that $xv_{\ell+1} \notin A(D)$. Then it follows from Claim 2 that $v_{\ell+1}$ has at least six in-neighbours on C. If v_j is any in-neighbour of $v_{\ell+1}$ on C, then $v_{j+1} \notin N^+(x)$, since otherwise $xv_{j+1} \cdots v_{\ell}v_1 \cdots v_j v_{\ell+1} \cdots v_{10}z$ is a Hamilton path of D. Hence there are at least six vertices on C that are not out-neighbours of x. But this contradicts the fact that x has at least five out-neighbours in D_2 . Hence $xv_{\ell+1} \in A(D)$.

Since D_2 is strong and $\ell \in \{8,9\}$, v_{10} has at least one out-neighbour on C. By Claim 3, v_1 is not an out-neighbour of v_{10} . Also, v_2 is not an out-neighbour of v_{10} otherwise $xv_{\ell+1}\cdots v_{10}v_2v_3\cdots v_\ell v_1z$ is a Hamilton path in D. Thus the out-neighbours of v_{10} in D_2 lie on the path $Q = v_3v_4\cdots v_8$. Note that by Claim 2, there is at most one vertex on $v_3\cdots v_\ell$ that is not an in-neighbour of v_1 . Let v_j and v_{j+r} , $r\geq 0$ be the first and last out-neighbours of v_{10} on Q. Since either v_{j+r} or v_{j+r+1} is an in-neighbour of v_1 , it follows that $v_jv_{j+1}\cdots v_{j+r}v_1z$ or $v_jv_{j+1}\cdots v_{j+r}v_{j+r+1}v_1z$ is a path in $D-v_{10}$ that contains all the out-neighbours of v_{10} . Hence it follows from Claim 1 that $r\geq 2$ and hence v_{10} has at least two nonconsecutive out-neighbours on Q.

Hence v_7 and v_8 cannot be the only out-neighbours of v_{10} and we may therefore assume that v_j is an out-neighbour of v_{10} for some $j \in \{3, \ldots, 6\}$. Then $v_{j-1}z \notin A(D)$ otherwise $xv_{\ell+1} \cdots v_{10}v_j \cdots v_\ell v_1 \cdots v_{j-1}z$ is a Hamilton path in D. Hence by Claim 2, v_{j-1} has at least six out-neighbours in D_2 . Since $v_{j-1} \in \{v_2, v_3, v_4, v_5\}$, v_{j-1} has at most three out-neighbours on the path $v_1 \cdots v_{j-3}$ and therefore at least two out-neighbours on the path $v_{j+1} \cdots v_{10}$.

Now suppose $\ell=8$. Then by Claim 2, $N^-(v_1)=\{v_3,\ldots,v_8\}$. In this case v_{j-1} has at least one out-neighbour v_i on the path $v_{j+1}\cdots v_9$, for $j\in\{3,\ldots,6\}$. Then v_{i-1} lies on the path $v_j\cdots v_8$, for $j\in\{3,\ldots,6\}$ and hence $v_{i-1}v_1\in A(D)$. But now $v_{10}v_jv_{j+1}\cdots v_{i-1}v_1v_2\cdots v_{j-1}v_i\cdots v_{10}$ is a Hamilton cycle in D_2 , contradicting Claim 3.

Finally suppose $\ell=9$. If v_{10} is an out-neighbour of v_{j-1} , then $v_{j-1}v_{10}v_j\cdots v_9$ $v_1\cdots v_{j-1}$ is a Hamilton cycle in D_2 . Hence $v_{j-1}v_{10}\notin A(D)$. It therefore follows that v_{j-1} has at least two out-neighbours on the path $v_{j+1}\cdots v_9$. By Claim 2, at most one of the vertices on the path $v_j\cdots v_8$ is not an in-neighbour of v_1 . Hence v_{j-1} has an out-neighbour v_i on $v_{j+1}\cdots v_9$ such that v_{i-1} is an in-neighbour of v_1 . In this case $v_{10}v_jv_{j+1}\cdots v_{i-1}v_1v_2\cdots v_{j-1}v_iv_{i+1}\cdots v_{10}$ is a Hamilton cycle in D, again contradicting Claim 3.

Theorem 20. Every 8-traceable oriented graph of order 13 is traceable.

Proof. Suppose D is a nontraceable 8-traceable oriented graph of order 13. Then by Lemma 5 and Theorem 19, D is also 9-, 10-, 11- and 12-traceable.

By Lemmas 14 and 15, D has a nonhamiltonian strong component of order at least 10. Hence it follows from Lemma 8 and Lemma 7(1) that we only need to consider the following three cases.

Case (i) D has three strong components. In this case we can assume that $D_1=x$ and $D_3=z$ and $n(D_2)=11$. Let $P=v_1v_2\cdots v_{11}z$ be a Hamilton path in D-x. By Lemma 18 we may assume that either $d_{D_2}^-(v)\geq 7$ or $d_{D_2}^+(v)\geq 7$ for every $v\in V(D_2)$. If $v\notin N(x)$, then it follows from Lemma 9(2) that $d^-(v)\geq 6$. Then $d^+(v)\leq 12-6=6$ and hence $d^-(v)\geq 7$. Similarly $d^+(v)\geq 7$ for every vertex $v\notin N_{D_2}^-(z)$. Hence, $d_{D_2}^-(v_1)\geq 7$. Let v_ℓ be the last in-neighbour of v_1 on P. Since D_2 is nonhamiltonian, $\ell\in\{9,10\}$. Let $C=v_1\cdots v_\ell v_1$. By Lemma 9(1), x has at least four out-neighbours on C. If v_j is any out-neighbour of x on C, v_{j-1} is not in $N^-(v_{\ell+1})$, since otherwise $xv_j\cdots v_\ell v_1\cdots v_{j-1}v_\ell v_{\ell+1}\cdots v_{11}z$ is a Hamilton path of D. Hence there are at least four vertices on C that are not in-neighbours of $v_{\ell+1}$. Since $v_{\ell+1}$ is not an in-neighbour of itself, $v_{\ell+1}$ has at most six in-neighbours in D_2 and therefore by Lemma 9(2) we may assume that $xv_{\ell+1}\in A(D)$ and that $N_{D_2}^+(v_{\ell+1})\geq 7$.

Suppose $\ell = 9$. If $v_j \in N_C^+(v_{10})$, then v_{j-1} is not an in-neighbour of v_{11} otherwise $xv_{10}v_j \cdots v_9v_1 \cdots v_{j-1}v_{11}z$ is a Hamilton path of D. Hence there are at least six vertices on C that are not in-neighbours of v_{11} and therefore $d_{D_2}^-(v_{11}) < 7$ and hence by Lemma 18, $N_C^+(v_{11}) \geq 7$. But for each out-neighbour v_j of v_{11} in D_2, v_{j-1} is not an in-neighbour of z since otherwise $xv_{10}v_{11}v_j \cdots v_9v_1 \cdots v_{j-1}z$ is a Hamilton path of D. Hence $|N_{D_2}^-(z)| \leq 4$, contradicting Lemma 9(1).

Now suppose $\ell=10$. Then v_{11} has at least seven out-neighbours in D_2 . If v_j is an out-neighbour of v_{11} , then v_{j-1} is not an in-neighbour of z, since otherwise $xv_{11}v_j\cdots v_{10}v_1\cdots v_{j-1}z$ is a Hamilton path of D. Again we have that $|N_{D_2}^-(z)| \leq 4$, which contradicts Lemma 9(2). This proves Case (i).

In Cases (ii) and (iii) it follows from Lemma 12 that D does not contain a 4-cycle or a 5-cycle and so by Corollary 17, D has a 3-cycle. Hence, for the remainder of the proof let $W = w_1 w_2 w_3 w_1$ be a 3-cycle in D. Since D is 10-traceable, D - V(W) has a Hamilton path $P = v_1 \cdots v_{10}$.

Case (ii) D has two strong components. In this case we may assume one strong component is trivial and the other has order 12. Hence, either v_1 is a source or v_{10} is a sink. Assume the former. Since D is nontraceable, $N^+(v_{10}) \subseteq \{v_2, \ldots, v_8\}$. It therefore follows from Corollary 11 that $v_2, v_8 \in N^+(v_{10})$. Now let C denote the 9-cycle $v_2v_3\cdots v_{10}v_2$. From Observation 6, every vertex on W has an out-neighbour on C. Suppose w_1 is an out-neighbour of v_1 . Then $v_1w_1w_2w_3$ followed by an out-neighbour of w_3 on C and the remainder of the vertices of C is a Hamilton path of D. Hence, $N^+(v_1) \subseteq C$ and by Lemma 9(1),

 $|N_C^+(v_1)| \ge 6$. Now for each out-neighbour of v_1 on C, its predecessor on C is not an in-neighbour of any vertex of W, since otherwise D is traceable. But then $|N^-(w_1) \cup N^-(v_1)| \le 4$, contradicting Lemma 9(2).

Case (iii) D is strong. Note that D-V(W) is nonhamiltonian, since otherwise D would be traceable. Hence $v_{10} \notin N^-(v_1)$ and therefore by Corollary 11, $v_3, v_9 \in N^-(v_1)$ and $v_2, v_8 \in N^+(v_{10})$. But now $Q = v_{10}v_2v_3v_4v_5v_6v_7v_8v_9v_1$, $R = v_4v_5v_6v_7v_8v_9v_{10}v_2$ v_3v_1 and $S = v_{10}v_8v_9v_1v_2v_3v_4v_5v_6v_7$ are also Hamilton paths in D-V(W).

Let \mathcal{P} be the set of all Hamilton paths in D - V(W). By considering the paths P and Q, we note that for any path in \mathcal{P} with initial vertex v_i and terminal vertex v_j , there is a path in \mathcal{P} with initial vertex v_j and terminal vertex v_i . Hence, since D - V(W) is nonhamiltonian, v_1 and v_{10} are nonadjacent.

Applying this observation to the paths R and S it follows that v_1 and v_4 are nonadjacent and v_7 and v_{10} are nonadjacent.

By considering the paths P and R, we observe that for any path $P \in \mathcal{P}$, there is a path in \mathcal{P} whose initial vertex is the fourth vertex of P and whose terminal vertex is the first vertex of P. Hence by our previous observation, the first and fourth vertices of any path in \mathcal{P} are nonadjacent.

Similarly, by considering the paths P and S, we observe that for any path in $P \in \mathcal{P}$, there is a path in \mathcal{P} whose initial vertex is the terminal vertex of P and whose terminal vertex is the seventh vertex of P. Hence the seventh and terminal vertices of any path in \mathcal{P} are nonadjacent.

By applying these observations to the paths Q and R it follows that v_4 and v_{10} are nonadjacent, v_1 and v_7 are nonadjacent, and v_4 and v_7 are nonadjacent.

Thus $\{v_1, v_4, v_7, v_{10}\}$ is an independent set and therefore, for any $w_i \in V(W)$, the set $\{w_i, v_1, v_4, v_7, v_{10}\}$ is an independent set of order 5 contradicting the fact that D is 8-traceable.

Acknowledgement

The author would like to thank Marietjie Frick and Alewyn Burger for valuable discussions on this topic.

References

- S.A. van Aardt, A.P. Burger, J.E. Dunbar, M. Frick, J.M. Harris and J.E. Singleton, An iterative approach to the Traceabiltiy Conjecture for Oriented Graphs, Electron. J. Combin. 201 (2013) #P59.
- [2] S.A. van Aardt, A.P. Burger, M. Frick, B. Llano and R. Zuazua, Infinite families of 2-hypohamiltonian/2-hypotraceable oriented graphs, Graphs Combin. 30 (2014) 783–800.
 doi:0.1007/s00373-013-1312-1

- [3] S.A. van Aardt, J.E. Dunbar, M. Frick, P. Katrenič, M.H. Nielsen and O.R. Oellermann, Traceability of k-traceable oriented graphs, Discrete Math. 310 (2010) 1325–1333. doi:10.1016/j.disc.2009.12.022
- [4] S.A. van Aardt, J.E. Dunbar, M. Frick and M.H. Nielsen, Cycles in k-traceable oriented graphs, Discrete Math. 311 (2011) 2085–2094. doi:10.1016/j.disc.2011.05.032
- [5] S.A. van Aardt, J.E. Dunbar, M. Frick, M.H. Nielsen and O.R. Oellermann, A traceability conjecture for oriented graphs, Electron. J. Combin. 15 (2008) #R150.
- [6] S.A. van Aardt, M. Frick, P. Katrenič and M.H. Nielsen, The order of hypotraceable oriented graphs, Discrete Math. 11 (2011) 1273–1280. doi:10.1016/j.disc.2011.03.009
- [7] A.P. Burger, Computational results on the traceability of oriented graphs of small order, Electron. J. Combin. **20** (2013) #P23.
- [8] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Second Ed. (Springer-Verlag, London, 2009). doi:10.1007/978-1-84800-998-1
- [9] M. Frick and P. Katrenič, Progress on the traceability conjecture, Discrete Math. Theor. Comput. Sci. 10 (2008) 105–114.
- [10] M. Grötschel and Y. Wakabayashi, *Constructions of hypotraceable digraphs*, in: Mathematical Programming, R.W. Cottle, M.L. Kelmanson and B. Korte (Ed(s)), (Elsevier Science Publishers B.V., 1984).

Received 6 January 2016 Revised 10 August 2016 Accepted 10 August 2016