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Abstract

A digraph of order n is k-traceable if n ≥ k and each of its induced
subdigraphs of order k is traceable. It is known that if 2 ≤ k ≤ 6, every
k-traceable oriented graph is traceable but for k = 7 and for each k ≥ 9,
there exist k-traceable oriented graphs that are nontraceable. We show that
every 8-traceable oriented graph is traceable.
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1. Introduction and Background

A digraph is traceable if it contains a path that visits every vertex and hamilto-
nian if it contains a cycle that visits every vertex. A digraph is k-traceable if it
has at least k vertices and each of its induced subdigraphs of order k is trace-
able. Obviously, an oriented graph is 2-traceable if and only if it is a nontrivial
tournament. Thus k-traceable oriented graphs may be regarded as generalized
tournaments. It is well-known that every tournament is traceable. The following
theorem shows that k-traceable oriented graphs retain this property for small
values of k.

Theorem 1 [3]. For k = 2, 3, 4, 5, 6, every k-traceable oriented graph is traceable.

However, not all k-traceable oriented graphs are traceable. In particular, we
know the following.
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Theorem 2 [2, 6].

(1) For k = 7 and for every k ≥ 9, there exist k-traceable oriented graphs of
order k + 1 that are nontraceable.

(2) There exist nontraceable k-traceable oriented graphs of order k + 2 for in-
finitely many k.

The following traceability conjecture, called the TC, is considered in [1, 3, 4,
5, 7, 9].

Conjecture 1 (TC). For k ≥ 2, every k-traceable oriented graph of order at least
2k − 1 is traceable.

The next two results were established by means of exhaustive computer
searches.

Theorem 3 [7]. All 8-traceable oriented graphs of order 9, 10 and 11 are trace-
able.

Theorem 3 was used in [1] to prove, by means of an iterative procedure, that
the TC holds for k = 8. In fact, the following slightly stronger result was proved.

Theorem 4 [1]. Every 8-traceable oriented graph of order at least 14 is traceable.

In this paper we prove analytically that all 8-traceable oriented graphs of
order 12 and 13 are also traceable. Hence we conclude that every 8-traceable
oriented graph is traceable.

2. Preliminaries and Auxiliary Results

The set of vertices and the set of arcs of a digraph D are denoted by V (D) and
A(D), respectively, and the order of D is denoted n(D). If D is a digraph and
X ⊂ V (D), then 〈X〉 denotes the subdigraph induced by X in D. If v ∈ V (D),
we denote the sets of out-neighbours and in-neighbours of v by N+(v) and N−(v)
and the cardinalities of these sets by d+(v) and d−(v), respectively. For undefined
concepts we refer the reader to [8].

A digraph is strong (or strongly connected) if for every pair of vertices x, y
in D there is a path from x to y. A maximal strong subdigraph of a digraph D
is called a strong component of D. We say that a strong component is trivial if
has only one vertex. If D is a digraph with h strong components, then its strong
components have an acyclic ordering D1, D2, . . . , Dh such that if there is an arc
from Di to Dj , then i ≤ j. If D is k-traceable for some k ≥ 2, this acyclic ordering
is unique since there is at least one arc from Di to Di+1 for i = 1, 2, . . . , h − 1.
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Throughout this paper we label the strong components of a k-traceable digraph
in accordance with this acyclic ordering.

A digraph D is hypotraceable if n(D) ≥ 3 and D is nontraceable but the
removal of any vertex leaves a traceable digraph. Thus for k ≥ 2 a k-traceable
digraph of order k + 1 is hypotraceable if and only if it is nontraceable.

The following immediate consequence of Theorem 3 plays an important role
in the proof of our main result.

Lemma 5. If D is an 8-traceable oriented graph of order n ≥ 12, then D is also
9-, 10- and 11-traceable.

Lemma 5 implies that if there exists a nontraceable 8-traceable oriented graph
of order 12, then it would be hypotraceable. We observe the following.

Observation 6. A hypotraceable digraph does not have a vertex with in-degree
or out-degree equal to 1.

We shall also use the following properties of hypotraceable digraphs.

Lemma 7. Let D be be hypotraceable digraph with strong components D1, . . . , Dh.
Then the following hold.

(1) If Dt is a trivial strong component, then t is either 1 or h.

(2) D1 and Dh are nonhamiltonian.

Proof. (1) Let Dt = {w} for some t ∈ {2, . . . , h − 1}. Now let x ∈ D1 and
z ∈ Dh. Then D − z and D − x have Hamilton paths P and Q, respectively.
Note that P has a subpath with vertex set

⋃t
i=1

V (Di) ending at w, and Q has

a subpath with vertex set
⋃h

i=t V (Di) starting at w. Hence the concatenation of
P and Q is a Hamilton path of D.

(2) Suppose to the contrary that D1 has a Hamilton cycle v1 · · · vℓv1. Then
D−v1 is traceable. Hence D−V (D1) has a Hamilton path P whose initial vertex
has an in-neighbour vi inD1. But then vi+1vi+2 · · · vℓv1 · · · viP is a Hamilton path
of D.

We shall also use the following result of Grötschel and Wakabayashi [10].

Lemma 8 [10]. Every nontrivial strong component of a hypotraceble digraph has
order at least 5.

The proof of our main theorem relies heavily on results proved in the papers
[1, 3, 5, 7] and [9]. In the sequel, results extracted from these papers are stated
without proof.

Lemma 9 [3, 5]. Let 2 ≤ k ≤ n and let D be a k-traceable oriented graph of
order n. Then the following hold.
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(1) d(v) ≥ n− k + 1 for every v ∈ V (D).

(2) |N+(x) ∪ N+(y)| ≥ n − k + 1 and |N−(x) ∪ N−(y)| ≥ n − k + 1 for every
pair of distinct nonadjacent vertices x, y ∈ V (D).

Lemma 10 [3, 9]. Let 2 ≤ k ≤ n and let D be a nontraceable k-traceable oriented
graph of order n. Suppose x and y are distinct nonadjacent vertices in D and let

S ∈
{

N+(x), N−(x), N+(x) ∪N+(y), N−(x) ∪N−(y)
}

.

If |S| = n− k + 1, then 〈S〉 is nontraceable.

We shall often use the following corollary of Lemma 10 in combination with
Lemma 5.

Corollary 11 [3]. Let k ≥ 2 and suppose D is a nontraceable oriented graph
of order n that is j-traceable for j = k, k + 1, . . . , n − 1. If x ∈ V (D) such
that d+(x) ≥ 2 (or d−(x) ≥ 2) and P is a path in D − x that contains all the
out-neighbours (or all the in-neighbours) of x, then n(P ) ≥ n− k + 2.

We shall also use the next result, which is easily derived from Corollary 11.

Corollary 12. Suppose x ∈ V (D) such that d+(x) ≥ 2 (or d−(x) ≥ 2) and C is
a t-cycle in D−x such that N+(x) (or N−(x)) is contained in C. If i consecutive
vertices of C are not out-neighbours (or in-neighbours) of x, then i ≤ t−n+k−2.

Another consequence of Corollary 11 is the following.

Lemma 13. Suppose D is an oriented graph of order n ≥ 2k − 4 with at most
two strong components and D is j-traceable for j = k, k + 1, . . . , n − 1. If D
contains a t-cycle for some t such that k − 4 ≤ t ≤ n− k, then D is traceable.

Proof. Suppose D is nontraceable and D contains a t-cycle C, with k− 4 ≤ t ≤
n−k. Then k ≤ n−t < n−1, so D is (n−t)-traceable by our assumption. Hence
D − V (C) is traceable. Let P = v1 · · · vn−t be a Hamilton path of D − V (C).
Since D is nontraceable, D−V (C) is nonhamitonian, so vn−t 6∈ N−(v1). We may
assume that v1 is not a source. (If it is, then vn−t is not a sink and we consider it
instead.) If v1 has an in-neighbour on C, then D is traceable, so we may assume
that N−(v1) ⊆ V (P ). But then N−(v1) is contained in a path of order at most
n− t− 3 ≤ n− k + 1 (since t ≥ k − 4). This contradicts Corollary 11.

Lemma 14 [9]. Let k ≥ 2 and suppose D is a k-traceable oriented graph of order
n. Then any nontrivial strong component of D that is nonhamiltonian has at
least n− k + 5 vertices.

Lemma 15 [5]. Let k ≥ 2 and suppose D is a k-traceable oriented graph of order
n ≥ 2k−3. If D is nontraceable, then D has a nonhamiltonian strong component.
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Lemma 16 [4]. If D is a k-traceable oriented graph with a strong component X
such that g(X) ≥ 6, then the order of D is at most 2k − 4 if k is odd, and at
most 2k − 5 if k is even.

Corollary 17. If D is an 8-traceable oriented graph of order at least 12, then
the girth of every nontrivial strong component of D is at most 5.

We also need the following result, which is a special case of Lemma 17 of [1].

Lemma 18. Let D be a k-traceable oriented graph of order 2k − 3 consisting of
three strong components D1, D2, D3 such that D1 and D3 are singletons. Then D
is traceable if there is a vertex v in D2 such that d−D2

(v) < k−1 and d+D2
(v) < k−1.

3. The Main Result

Theorem 19. Every 8-traceable oriented graph of order 12 is traceable.

Proof. Suppose, to the contrary, that D is a nontraceable 8-traceable oriented
graph of order 12. By Lemma 5, D is also 9-, 10- and 11-traceable and thus
hypotraceable.

We note that Corollary 11 implies the following.

Claim 1. If v is a vertex in V (D), then any path in D − v that contains all the
in-neighbours (or all the out-neigbhours) of v has order at least 6.

We distinguish three cases.

Case (i) D is strong. First, suppose D contains a 3-cycle C. Since D is
9-traceable, D−V (C) has a Hamilton path, say P = v1 · · · v9. First observe that
since D is nontraceable, D − V (C) is nonhamiltonian, and hence v9v1 /∈ A(D).
Also, no vertex in C is an in-neighbour of the initial vertex of any Hamilton path
in D − V (C) and similarly, no vertex in C is an out-neighbour of the terminal
vertex of any Hamilton path of D−V (C). Hence N−(v1) ⊆ {v3, . . . , v8}. Since D
is hypotraceable, it follows from Observation 6 that d−(v1) ≥ 2. Hence, by Corol-
lary 11, v3, v8 ∈ N−(v1). Similarly, v2, v7 ∈ N+(v9). But now Q = v9v2v3v4v5
v6v7v8v1, R = v4v5v6v7v8v9v2v3v1 and S = v9v7v8v1v2v3v4v5v6 are also Hamilton
paths in D − V (C).

Let P be the set of all Hamilton paths in D−V (C). By considering the paths
P and Q, we note that the initial vertex of any path in P is also the terminal
vertex of some path in P and vice versa. Also, by considering the paths P and
R, we observe that the fourth vertex of any path in P is an initial vertex of some
path in P. Hence v4, the initial vertex of R, is the terminal vertex of some path
in P and v6, the terminal vertex of S, is an initial vertex of some path in P. Also
v7, the fourth vertex of R, is the initial vertex of a path in P and the terminal
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vertex of another. Hence no vertex in C has a neighbour in {v1, v4, v6, v7, v9}.
But now 〈{v1, v4, v6, v7, v9} ∪ V (C)〉 is a nontraceable subdigraph of D with 8
vertices, contradicting that D is 8-traceable. Hence D does not contain a 3-cycle.

By Corollary 17, g(G) < 6 and by Lemma 13, D does not contain a 4-cycle.
Hence g(D) = 5. Now let X be a 5-cycle in D.

By Claim 1, every vertex in D − V (X) has at least one out-neighbour in
D − V (X). Hence D − V (X) contains a cycle.

If D − V (X) contains a 7-cycle, D is obviously traceable.

Now suppose Y is a 6-cycle in D − V (X) and let v be the vertex of D −
(V (X) ∪ V (Y )). Then by Claim 1, v has an in- and an out-neighbour on Y .
Hence, since D is nontraceable, v has no neighbour on X. But then by Corollary
11 every vertex in Y is an in-neighbour and an out-neighbour of v contradicting
the fact that D is an oriented graph.

Hence we may assume that D − V (X) contains no 6-cycle or 7-cycle. Now
suppose Y is a 5-cycle in D − V (X) and let v1, v2 ∈ V (D) − (V (X) ∪ V (Y )).
By Lemma 9(1), δ(D) ≥ 5, so we may assume without loss of generality that
d+(v1) ≥ 3 and d−(v1) ≥ 2. If v1, v2 are nonadjacent, then it follows from Claim
1 that each of v1 and v2 has an in-neighbour as well as an out-neighbour on each
of X and Y . Thus we may further assume that v1 has two out-neighbours and
an in-neighbour on X. But since D has no 3-, 4- or 6-cycle, this is not possible.
Hence we may assume that v1v2 ∈ A(D). But then, by Claim 1, v1 has an
in-neighbour in X and v2 has an out-neighbour in Y . Hence D is traceable.

Case (ii) D has exactly two strong components. By Lemma 7(2) we may as-
sume that neither D1 nor D2 is hamiltonian. Hence by Lemma 14 we may assume
without loss of generality that D1 is a singleton x and D2 is nonhamiltonian, and
n(D2) = 11.

Now suppose D2 contains a 3-cycle Z. Then since D is 9-traceable, D−V (Z)
has a 9-path P = xv1v2 · · · v8 and N+(v8) ⊆ V (P ). By Claim 1, v1, v6 ∈ N+(v8),
so 〈V (P )〉 contains an 8-cycle Y . By Observation 6, every vertex in Z has an
out-neighbour on Y . Hence, since D is nontraceable, no vertex in Z is in N+(x).
Thus by Lemma 9(1), x has at least five out-neighbours on Y and since D is
nontraceable, the predecessor of each out-neighbour of x on Y is not an in-
neighbour of any vertex in Z. Now let z ∈ V (Z). Then z has at most three in-
neighbours on Y and thus at most four in-neighbours inD2, so |N

−(z)∪N−(x)| ≤
4, contradicting Lemma 9(2). Hence D has no 3-cycle. By Corollary 17, g(G) < 6
and by Lemma 13, D does not contain a 4-cycle. Hence g(D) = 5.

Let Z be an induced 5-cycle in D2. By Corollary 11, every vertex in D−V (Z)
has an out-neighbour in D − V (Z), so D − V (Z) contains a cycle Y .

Suppose Y is a 6-cycle. By Claim 1, every vertex in Z has an out-neighbour
in Y and hence every vertex in Z is the initial vertex of a Hamilton path in D2.
Therefore no vertex on Z is an out-neighbour of x. By Corollary 12, every vertex
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of Y is an out-neighbour of x. But, since D2 is strong, at least one vertex on Y
has an out-neighbour on X and hence D is traceable.

Therefore we may assume that Y is a 5-cycle. Hence neither D2 − V (Z) nor
D2 − V (Y ) has a 6-cycle. Let v be the vertex in V (D2) − (V (Z) ∪ V (Y )). If
v 6∈ N+(x), then by Lemma 9(2), d−(v) ≥ 5, so v has at least three in-neighbours
in at least one of Z and Y , say Y . However, Claim 1 implies that v also has an
out-neighbour in Y , and then D2−V (Z) has a 6-cycle. This contradiction shows
that xv ∈ A(D). But v has an out-neighbour in Y and every vertex in Y has at
least one out-neighbour in X, so D is traceable.

Case (iii)D has at least three strong components. By Lemma 7(2) and Lemma
14, each of D1 and Dh is either a singleton or has order at least 9. Since n = 12
it follows from Lemma 7(1) that D1 and Dh are both singletons. By Lemma 7(1)
and Lemma 8, either h = 4 and n(D2) = n(D3) = 5, or h = 3 and n(D2) = 10.

Suppose the former. Let D1 = x and let S be a set of vertices in D such that
|S| = 8 and {x ∪ V (D2)} ⊂ S. Since D is 8-traceable, 〈S〉 has a Hamilton path
with subpath xv1 · · · v5 where vi ∈ V (D2), i = 1, . . . , 5. Note that 〈D − {x, v1,
v2, v3}〉 has order 8 and therefore has a Hamilton path Q with initial arc v4v5.
But then xv1v2v3Q is a Hamilton path in D — a contradiction.

Now suppose h = 3 and n(D2) = 10. Let x and z be the vertices in D1 and
D3 respectively. Note that if xz ∈ A(D), then D − xz is also a nontraceable
8-traceable oriented graph of order 12. Hence we may assume that xz /∈ A(D).

Claim 2. Let v ∈ V (D2). If v is not a neighbour of x, then d−(v) ≥ 6. Similarly,
if v is not a neighbour of z, then d+(v) ≥ 6.

Proof. Suppose v /∈ N(x). Since d−(x) = 0, Lemma 9(2) implies that d−(v) ≥ 5.
Suppose d−(v) = 5. Let B = V (D2) − {v ∪ N−(v)}. Then |B| = 4. Since D is
8-traceable, the oriented graph 〈V (D)−B〉 has a Hamilton path xu1u2u3u4u5vz
where N−(v) = {u1, . . . , u5}. Also 〈B∪{x, u1, v, z}〉 has a Hamilton path Q and,
since u1 is the only in-neighbour of v in this oriented graph, u1v ∈ A(Q). But
then the path obtained by replacing the arc u1v with the path u1u2u3u4u5v is
a Hamilton path of D. This proves that d−(v) ≥ 6 and, similarly, d+(v) ≥ 6 if
v /∈ N(z). This proves Claim 2. �

Claim 3. D2 is nonhamiltonian.

Proof. Suppose to the contrary that v1v2 · · · v10v1 is a Hamilton cycle in D2.
Let vi 6∈ N+(x) for some i ∈ {1, . . . , 10}. Then by Claim 2, vi ∈ N−(z) and
hence, since D is nontraceable, vi+1 6∈ N+(x). Since D − x is traceable, we
may assume, without loss of generality, that v1 ∈ N−(z). Hence it follows by
induction that vi 6∈ N+(x) for i = 2, . . . , 10, contradicting that d+(x) ≥ 5. This
proves Claim 3. �
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SinceD is hypotraceable, we may assume that P = v1v2 · · · v10z is a Hamilton
path in D − x. It follows from Claim 2 that every vertex in D2 is adjacent to at
least one of x and z. In particular, v1 6∈ N+(x), so v1 ∈ N−(z). Let vℓ be the
last in-neighbour of v1 on P . By Claim 3, ℓ 6= 10 and hence it follows from Claim
1 that ℓ ∈ {8, 9}. Let C = v1 · · · vℓv1.

First we show that xvℓ+1 ∈ A(D). Suppose to the contrary that xvℓ+1 /∈
A(D). Then it follows from Claim 2 that vℓ+1 has at least six in-neighbours on
C. If vj is any in-neighbour of vℓ+1 on C, then vj+1 /∈ N+(x), since otherwise
xvj+1 · · · vℓv1 · · · vjvℓ+1 · · · v10z is a Hamilton path of D. Hence there are at least
six vertices on C that are not out-neighbours of x. But this contradicts the fact
that x has at least five out-neighbours in D2. Hence xvℓ+1 ∈ A(D).

Since D2 is strong and ℓ ∈ {8, 9}, v10 has at least one out-neighbour on C.
By Claim 3, v1 is not an out-neighbour of v10. Also, v2 is not an out-neighbour
of v10 otherwise xvℓ+1 · · · v10v2v3 · · · vℓv1z is a Hamilton path in D. Thus the
out-neighbours of v10 in D2 lie on the path Q = v3v4 · · · v8. Note that by Claim
2, there is at most one vertex on v3 · · · vℓ that is not an in-neighbour of v1. Let
vj and vj+r, r ≥ 0 be the first and last out-neighbours of v10 on Q. Since
either vj+r or vj+r+1 is an in-neighbour of v1, it follows that vjvj+1 · · · vj+rv1z or
vjvj+1 · · · vj+rvj+r+1v1z is a path in D− v10 that contains all the out-neighbours
of v10. Hence it follows from Claim 1 that r ≥ 2 and hence v10 has at least two
nonconsecutive out-neighbours on Q.

Hence v7 and v8 cannot be the only out-neighbours of v10 and we may there-
fore assume that vj is an out-neighbour of v10 for some j ∈ {3, . . . , 6}. Then
vj−1z /∈ A(D) otherwise xvℓ+1 · · · v10vj · · · vℓv1 · · · vj−1z is a Hamilton path in
D. Hence by Claim 2, vj−1 has at least six out-neighbours in D2. Since vj−1 ∈
{v2, v3, v4, v5}, vj−1 has at most three out-neigbhours on the path v1 · · · vj−3 and
therefore at least two out-neighbours on the path vj+1 · · · v10.

Now suppose ℓ = 8. Then by Claim 2, N−(v1) = {v3, . . . , v8}. In this case
vj−1 has at least one out-neighbour vi on the path vj+1 · · · v9, for j ∈ {3, . . . , 6}.
Then vi−1 lies on the path vj · · · v8, for j ∈ {3, . . . , 6} and hence vi−1v1 ∈ A(D).
But now v10vjvj+1 · · · vi−1v1v2 · · · vj−1vi · · · v10 is a Hamilton cycle in D2, contra-
dicting Claim 3.

Finally suppose ℓ = 9. If v10 is an out-neighbour of vj−1, then vj−1v10vj · · · v9
v1 · · · vj−1 is a Hamilton cycle in D2. Hence vj−1v10 /∈ A(D). It therefore follows
that vj−1 has at least two out-neighbours on the path vj+1 · · · v9. By Claim 2, at
most one of the vertices on the path vj · · · v8 is not an in-neighbour of v1. Hence
vj−1 has an out-neighbour vi on vj+1 · · · v9 such that vi−1 is an in-neighbour of
v1. In this case v10vjvj+1 · · · vi−1v1v2 · · · vj−1vivi+1 · · · v10 is a Hamilton cycle in
D, again contradicting Claim 3.

Theorem 20. Every 8-traceable oriented graph of order 13 is traceable.
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Proof. SupposeD is a nontraceable 8-traceable oriented graph of order 13. Then
by Lemma 5 and Theorem 19, D is also 9-, 10-, 11- and 12-traceable.

By Lemmas 14 and 15, D has a nonhamiltonian strong component of order
at least 10. Hence it follows from Lemma 8 and Lemma 7(1) that we only need
to consider the following three cases.

Case (i) D has three strong components. In this case we can assume that
D1 = x and D3 = z and n(D2) = 11. Let P = v1v2 · · · v11z be a Hamilton path
in D−x. By Lemma 18 we may assume that either d−D2

(v) ≥ 7 or d+D2
(v) ≥ 7 for

every v ∈ V (D2). If v /∈ N(x), then it follows from Lemma 9(2) that d−(v) ≥ 6.
Then d+(v) ≤ 12 − 6 = 6 and hence d−(v) ≥ 7. Similarly d+(v) ≥ 7 for every
vertex v /∈ N−

D2
(z). Hence, d−D2

(v1) ≥ 7. Let vℓ be the last in-neighbour of v1
on P . Since D2 is nonhamiltonian, ℓ ∈ {9, 10}. Let C = v1 · · · vℓv1. By Lemma
9(1), x has at least four out-neighbours on C. If vj is any out-neighbour of x
on C, vj−1 is not in N−(vℓ+1), since otherwise xvj · · · vℓv1 · · · vj−1vℓvℓ+1 · · · v11z
is a Hamilton path of D. Hence there are at least four vertices on C that are
not in-neighbours of vℓ+1. Since vℓ+1 is not an in-neighbour of itself, vℓ+1 has at
most six in-neighbours in D2 and therefore by Lemma 9(2) we may assume that
xvℓ+1 ∈ A(D) and that N+

D2
(vℓ+1) ≥ 7.

Suppose ℓ = 9. If vj ∈ N+

C (v10), then vj−1 is not an in-neighbour of v11
otherwise xv10vj · · · v9v1 · · · vj−1v11z is a Hamilton path of D. Hence there are at
least six vertices on C that are not in-neighbours of v11 and therefore d−D2

(v11) < 7

and hence by Lemma 18, N+

C (v11) ≥ 7. But for each out-neighbour vj of v11 in
D2, vj−1 is not an in-neighbour of z since otherwise xv10v11vj · · · v9v1 · · · vj−1z is
a Hamilton path of D. Hence |N−

D2
(z)| ≤ 4, contradicting Lemma 9(1).

Now suppose ℓ = 10. Then v11 has at least seven out-neighbours in D2.
If vj is an out-neighbour of v11, then vj−1 is not an in-neighbour of z, since
otherwise xv11vj · · · v10v1 · · · vj−1z is a Hamilton path of D. Again we have that
|N−

D2
(z)| ≤ 4, which contradicts Lemma 9(2). This proves Case (i).

In Cases (ii) and (iii) it follows from Lemma 12 that D does not contain
a 4-cycle or a 5-cycle and so by Corollary 17, D has a 3-cycle. Hence, for the
remainder of the proof let W = w1w2w3w1 be a 3-cycle in D. Since D is 10-
traceable, D − V (W ) has a Hamilton path P = v1 · · · v10.

Case (ii) D has two strong components. In this case we may assume one
strong component is trivial and the other has order 12. Hence, either v1 is a
source or v10 is a sink. Assume the former. Since D is nontraceable, N+(v10) ⊆
{v2, . . . , v8}. It therefore follows from Corollary 11 that v2, v8 ∈ N+(v10). Now
let C denote the 9-cycle v2v3 · · · v10v2. From Observation 6, every vertex on
W has an out-neighbour on C. Suppose w1 is an out-neighbour of v1. Then
v1w1w2w3 followed by an out-neighbour of w3 on C and the remainder of the
vertices of C is a Hamilton path of D. Hence, N+(v1) ⊆ C and by Lemma 9(1),
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|N+

C (v1)| ≥ 6. Now for each out-neighbour of v1 on C, its predecessor on C is
not an in-neighbour of any vertex of W , since otherwise D is traceable. But then
|N−(w1) ∪N−(v1)| ≤ 4, contradicting Lemma 9(2).

Case (iii) D is strong. Note that D − V (W ) is nonhamiltonian, since oth-
erwise D would be traceable. Hence v10 /∈ N−(v1) and therefore by Corollary
11, v3, v9 ∈ N−(v1) and v2, v8 ∈ N+(v10). But now Q = v10v2v3v4v5v6v7v8v9v1,
R = v4v5v6v7v8v9v10v2 v3v1 and S = v10v8v9v1v2v3v4v5v6v7 are also Hamilton
paths in D − V (W ).

Let P be the set of all Hamilton paths in D − V (W ). By considering the
paths P and Q, we note that for any path in P with initial vertex vi and terminal
vertex vj , there is a path in P with initial vertex vj and terminal vertex vi. Hence,
since D − V (W ) is nonhamiltonian, v1 and v10 are nonadjacent.

Applying this observation to the paths R and S it follows that v1 and v4 are
nonadjacent and v7 and v10 are nonadjacent.

By considering the paths P and R, we observe that for any path P ∈ P, there
is a path in P whose initial vertex is the fourth vertex of P and whose terminal
vertex is the first vertex of P . Hence by our previous observation, the first and
fourth vertices of any path in P are nonadjacent.

Similarly, by considering the paths P and S, we observe that for any path
in P ∈ P, there is a path in P whose initial vertex is the terminal vertex of P
and whose terminal vertex is the seventh vertex of P . Hence the seventh and
terminal vertices of any path in P are nonadjacent.

By applying these observations to the paths Q and R it follows that v4 and
v10 are nonadjacent, v1 and v7 are nonadjacent, and v4 and v7 are nonadjacent.

Thus {v1, v4, v7, v10} is an independent set and therefore, for any wi ∈ V (W ),
the set {wi, v1, v4, v7, v10} is an independent set of order 5 contradicting the fact
that D is 8-traceable.
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