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Abstract

A digraph of order n is k-traceable if n > k and each of its induced
subdigraphs of order k is traceable. It is known that if 2 < k < 6, every
k-traceable oriented graph is traceable but for ¥ = 7 and for each k£ > 9,
there exist k-traceable oriented graphs that are nontraceable. We show that
every 8-traceable oriented graph is traceable.
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1. INTRODUCTION AND BACKGROUND

A digraph is traceable if it contains a path that visits every vertex and hamilto-
nian if it contains a cycle that visits every vertex. A digraph is k-traceable if it
has at least k vertices and each of its induced subdigraphs of order k is trace-
able. Obviously, an oriented graph is 2-traceable if and only if it is a nontrivial
tournament. Thus k-traceable oriented graphs may be regarded as generalized
tournaments. It is well-known that every tournament is traceable. The following
theorem shows that k-traceable oriented graphs retain this property for small
values of k.

Theorem 1 [3]. Fork =2,3,4,5,6, every k-traceable oriented graph is traceable.

However, not all k-traceable oriented graphs are traceable. In particular, we
know the following.
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Theorem 2 [2, 6].

(1) For k = 7 and for every k > 9, there exist k-traceable oriented graphs of
order k + 1 that are nontraceable.

(2) There exist nontraceable k-traceable oriented graphs of order k + 2 for in-
finitely many k.

The following traceability conjecture, called the TC, is considered in [1, 3, 4,
5,7, 9]

Conjecture 1 (TC). Fork > 2, every k-traceable oriented graph of order at least
2k — 1 is traceable.

The next two results were established by means of exhaustive computer
searches.

Theorem 3 [7]. All 8-traceable oriented graphs of order 9, 10 and 11 are trace-
able.

Theorem 3 was used in [1] to prove, by means of an iterative procedure, that
the TC holds for k = 8. In fact, the following slightly stronger result was proved.

Theorem 4 [1]. Every 8-traceable oriented graph of order at least 14 is traceable.

In this paper we prove analytically that all 8-traceable oriented graphs of
order 12 and 13 are also traceable. Hence we conclude that every 8-traceable
oriented graph is traceable.

2. PRELIMINARIES AND AUXILIARY RESULTS

The set of vertices and the set of arcs of a digraph D are denoted by V(D) and
A(D), respectively, and the order of D is denoted n(D). If D is a digraph and
X C V(D), then (X) denotes the subdigraph induced by X in D. If v € V(D),
we denote the sets of out-neighbours and in-neighbours of v by Nt (v) and N~ (v)
and the cardinalities of these sets by d*(v) and d~ (v), respectively. For undefined
concepts we refer the reader to [8].

A digraph is strong (or strongly connected) if for every pair of vertices x,y
in D there is a path from x to y. A maximal strong subdigraph of a digraph D
is called a strong component of D. We say that a strong component is trivial if
has only one vertex. If D is a digraph with h strong components, then its strong
components have an acyclic ordering D1, D3, ..., Dy such that if there is an arc
from D; to Dj, then i < j. If D is k-traceable for some k£ > 2, this acyclic ordering
is unique since there is at least one arc from D; to D;4q for i = 1,2,...,h — 1.
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Throughout this paper we label the strong components of a k-traceable digraph
in accordance with this acyclic ordering.

A digraph D is hypotraceable if n(D) > 3 and D is nontraceable but the
removal of any vertex leaves a traceable digraph. Thus for k£ > 2 a k-traceable
digraph of order k£ + 1 is hypotraceable if and only if it is nontraceable.

The following immediate consequence of Theorem 3 plays an important role
in the proof of our main result.

Lemma 5. If D is an 8-traceable oriented graph of order n > 12, then D is also
9-, 10- and 11-traceable.

Lemma 5 implies that if there exists a nontraceable 8-traceable oriented graph
of order 12, then it would be hypotraceable. We observe the following.

Observation 6. A hypotraceable digraph does not have a vertex with in-degree
or out-degree equal to 1.

We shall also use the following properties of hypotraceable digraphs.

Lemma 7. Let D be be hypotraceable digraph with strong components D1, ..., Dy,.
Then the following hold.

(1) If Dy is a trivial strong component, then t is either 1 or h.
(2) Dy and Dy, are nonhamiltonian.

Proof. (1) Let D; = {w} for some t € {2,...,h — 1}. Now let x € D; and
z € Dy. Then D — z and D — x have Hamilton paths P and @), respectively.
Note that P has a subpath with vertex set Ule V(D;) ending at w, and @ has
a subpath with vertex set U?:t V(D;) starting at w. Hence the concatenation of
P and @ is a Hamilton path of D.

(2) Suppose to the contrary that D; has a Hamilton cycle v; - - - vpv1. Then
D — v, is traceable. Hence D —V(D;) has a Hamilton path P whose initial vertex
has an in-neighbour v; in D;. But then v;41v;42- - - vev1 - - - v; P is a Hamilton path
of D. [

We shall also use the following result of Grétschel and Wakabayashi [10].

Lemma 8 [10]. Every nontrivial strong component of a hypotraceble digraph has
order at least 5.

The proof of our main theorem relies heavily on results proved in the papers
[1, 3, 5, 7] and [9]. In the sequel, results extracted from these papers are stated
without proof.

Lemma 9 [3, 5]. Let 2 < k < n and let D be a k-traceable oriented graph of
order n. Then the following hold.
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(1) d(v) >n—k+1 for every v € V(D).
(2) INT(z)UNT(y)| >n—k+1and [N () UN"(y)| > n—k+ 1 for every
pair of distinct nonadjacent vertices x,y € V(D).

Lemma 10 [3,9]. Let 2 < k < n and let D be a nontraceable k-traceable oriented
graph of order n. Suppose x and y are distinct nonadjacent vertices in D and let

S e {N+($), N~ (x), NT(x) UNT(y), Nf(m)UNf(y)}.
If |S| =n—k+1, then (S) is nontraceable.

We shall often use the following corollary of Lemma 10 in combination with
Lemma 5.

Corollary 11 [3]. Let k > 2 and suppose D is a nontraceable oriented graph
of order n that is j-traceable for j = k,k+1,...,n—1. If x € V(D) such
that d*(z) > 2 (or d=(z) > 2) and P is a path in D — x that contains all the
out-neighbours (or all the in-neighbours) of x, then n(P) >n — k + 2.

We shall also use the next result, which is easily derived from Corollary 11.

Corollary 12. Suppose xz € V(D) such that d*(z) > 2 (or d~(x) > 2) and C is
a t-cycle in D —x such that Nt (z) (or N~ (x)) is contained in C. Ifi consecutive
vertices of C' are not out-neighbours (or in-neighbours) of x, theni < t—n-+k—2.

Another consequence of Corollary 11 is the following.

Lemma 13. Suppose D is an oriented graph of order n > 2k — 4 with at most
two strong components and D is j-traceable for j = k,k+1,...,n—1. If D
contains a t-cycle for some t such that k — 4 <t <n —k, then D is traceable.

Proof. Suppose D is nontraceable and D contains a t-cycle C', with k —4 <t <
n—k. Then k <n—t <n—1,so D is (n—t)-traceable by our assumption. Hence
D — V(C) is traceable. Let P = vy ---v,—; be a Hamilton path of D — V(C).
Since D is nontraceable, D — V' (C) is nonhamitonian, so v,—¢ € N~ (v1). We may
assume that v; is not a source. (If it is, then v,_; is not a sink and we consider it
instead.) If v; has an in-neighbour on C', then D is traceable, so we may assume
that N~ (vy) € V(P). But then N~ (v;) is contained in a path of order at most
n—t—3<n-—k+1 (sincet >k —4). This contradicts Corollary 11. |

Lemma 14 [9]. Let k > 2 and suppose D is a k-traceable oriented graph of order
n. Then any nontrivial strong component of D that is nonhamiltonian has at
least n — k + 5 vertices.

Lemma 15 [5]. Let k > 2 and suppose D is a k-traceable oriented graph of order
n > 2k—3. If D is nontraceable, then D has a nonhamiltonian strong component.
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Lemma 16 [4]. If D is a k-traceable oriented graph with a strong component X
such that g(X) > 6, then the order of D is at most 2k — 4 if k is odd, and at
most 2k — 5 if k is even.

Corollary 17. If D is an 8-traceable oriented graph of order at least 12, then
the girth of every montrivial strong component of D is at most 5.

We also need the following result, which is a special case of Lemma 17 of [1].

Lemma 18. Let D be a k-traceable oriented graph of order 2k — 3 consisting of
three strong components D1, Ds, D3 such that D1 and D3 are singletons. Then D
is traceable if there is a vertez v in Dy such that dp, (v) < k—1 and df, (v) < k—1.

3. THE MAIN RESULT

Theorem 19. FEvery 8-traceable oriented graph of order 12 is traceable.

Proof. Suppose, to the contrary, that D is a nontraceable 8-traceable oriented
graph of order 12. By Lemma 5, D is also 9-, 10- and 11-traceable and thus
hypotraceable.

We note that Corollary 11 implies the following.

Claim 1. If v is a vertex in V (D), then any path in D — v that contains all the
in-neighbours (or all the out-neigbhours) of v has order at least 6.

We distinguish three cases.

Case (i) D is strong. First, suppose D contains a 3-cycle C. Since D is
9-traceable, D — V(C) has a Hamilton path, say P = v; - - - vg. First observe that
since D is nontraceable, D — V(C) is nonhamiltonian, and hence vgv; ¢ A(D).
Also, no vertex in C'is an in-neighbour of the initial vertex of any Hamilton path
in D — V(C) and similarly, no vertex in C' is an out-neighbour of the terminal
vertex of any Hamilton path of D—V(C). Hence N~ (v1) C {vs,...,vs}. Since D
is hypotraceable, it follows from Observation 6 that d~(v1) > 2. Hence, by Corol-
lary 11, vs,vg € N~ (v1). Similarly, vo,v7 € NT(vg). But now Q = vgvavzvavs
VU7V, R = 1405060708903 v1 and S = vgurvg1U2U3V4V5vg are also Hamilton
paths in D — V(C).

Let P be the set of all Hamilton paths in D —V (C'). By considering the paths
P and @), we note that the initial vertex of any path in P is also the terminal
vertex of some path in P and vice versa. Also, by considering the paths P and
R, we observe that the fourth vertex of any path in P is an initial vertex of some
path in P. Hence vy, the initial vertex of R, is the terminal vertex of some path
in P and vg, the terminal vertex of S, is an initial vertex of some path in P. Also
v7, the fourth vertex of R, is the initial vertex of a path in P and the terminal
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vertex of another. Hence no vertex in C' has a neighbour in {v1,v4, vg, v7,v9}.
But now ({v1,v4,v6,v7,v9} U V(C)) is a nontraceable subdigraph of D with 8
vertices, contradicting that D is 8-traceable. Hence D does not contain a 3-cycle.

By Corollary 17, g(G) < 6 and by Lemma 13, D does not contain a 4-cycle.
Hence g(D) = 5. Now let X be a 5-cycle in D.

By Claim 1, every vertex in D — V(X) has at least one out-neighbour in
D — V(X). Hence D — V(X) contains a cycle.

If D — V(X) contains a 7-cycle, D is obviously traceable.

Now suppose Y is a 6-cycle in D — V(X) and let v be the vertex of D —
(V(X)UV(Y)). Then by Claim 1, v has an in- and an out-neighbour on Y.
Hence, since D is nontraceable, v has no neighbour on X. But then by Corollary
11 every vertex in Y is an in-neighbour and an out-neighbour of v contradicting
the fact that D is an oriented graph.

Hence we may assume that D — V' (X) contains no 6-cycle or 7-cycle. Now
suppose Y is a 5-cycle in D — V(X)) and let vi,v3 € V(D) — (V(X) UV (Y)).
By Lemma 9(1), §(D) > 5, so we may assume without loss of generality that
d*(v1) >3 and d~(v1) > 2. If vy, vy are nonadjacent, then it follows from Claim
1 that each of v; and vy has an in-neighbour as well as an out-neighbour on each
of X and Y. Thus we may further assume that v; has two out-neighbours and
an in-neighbour on X. But since D has no 3-, 4- or 6-cycle, this is not possible.
Hence we may assume that vive € A(D). But then, by Claim 1, v; has an
in-neighbour in X and vy has an out-neighbour in Y. Hence D is traceable.

Case (ii) D has ezxactly two strong components. By Lemma 7(2) we may as-
sume that neither D; nor D5 is hamiltonian. Hence by Lemma 14 we may assume
without loss of generality that D; is a singleton x and Dy is nonhamiltonian, and

Now suppose Dj contains a 3-cycle Z. Then since D is 9-traceable, D —V(Z)
has a 9-path P = zvivy -+ -vg and N*(vg) C V(P). By Claim 1, vy, v6 € N T (vg),
so (V(P)) contains an 8-cycle Y. By Observation 6, every vertex in Z has an
out-neighbour on Y. Hence, since D is nontraceable, no vertex in Z is in N*(z).
Thus by Lemma 9(1), = has at least five out-neighbours on Y and since D is
nontraceable, the predecessor of each out-neighbour of x on Y is not an in-
neighbour of any vertex in Z. Now let z € V(Z). Then z has at most three in-
neighbours on Y and thus at most four in-neighbours in Dy, so [N7(2)UN " (z)| <
4, contradicting Lemma 9(2). Hence D has no 3-cycle. By Corollary 17, g(G) < 6
and by Lemma 13, D does not contain a 4-cycle. Hence g(D) = 5.

Let Z be an induced 5-cycle in Dy. By Corollary 11, every vertex in D—V (Z)
has an out-neighbour in D — V(Z), so D — V(Z) contains a cycle Y.

Suppose Y is a 6-cycle. By Claim 1, every vertex in Z has an out-neighbour
in Y and hence every vertex in Z is the initial vertex of a Hamilton path in D.
Therefore no vertex on Z is an out-neighbour of z. By Corollary 12, every vertex
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of Y is an out-neighbour of z. But, since D> is strong, at least one vertex on Y
has an out-neighbour on X and hence D is traceable.

Therefore we may assume that Y is a 5-cycle. Hence neither Dy — V(Z) nor
Dy — V(Y) has a 6-cycle. Let v be the vertex in V(Dy) — (V(Z) UV (Y)). If
v & NT(z), then by Lemma 9(2), d~ (v) > 5, so v has at least three in-neighbours
in at least one of Z and Y, say Y. However, Claim 1 implies that v also has an
out-neighbour in Y, and then Dy — V(Z) has a 6-cycle. This contradiction shows
that zv € A(D). But v has an out-neighbour in Y and every vertex in ¥ has at
least one out-neighbour in X, so D is traceable.

Case (iii) D has at least three strong components. By Lemma 7(2) and Lemma
14, each of Dy and Dy, is either a singleton or has order at least 9. Since n = 12
it follows from Lemma 7(1) that D; and Dj, are both singletons. By Lemma 7(1)
and Lemma 8, either h = 4 and n(D3) = n(D3) =5, or h = 3 and n(D3) = 10.

Suppose the former. Let D; = x and let S be a set of vertices in D such that
|S| =8 and {x UV (D3)} C S. Since D is 8-traceable, (S) has a Hamilton path
with subpath zv; - - vs where v; € V(Ds), i = 1,...,5. Note that (D — {x, vy,
vg,v3}) has order 8 and therefore has a Hamilton path @ with initial arc vqvs.
But then zvivv3@ is a Hamilton path in D — a contradiction.

Now suppose h = 3 and n(D3) = 10. Let x and z be the vertices in D; and
D3 respectively. Note that if zz € A(D), then D — xz is also a nontraceable
8-traceable oriented graph of order 12. Hence we may assume that xz ¢ A(D).

Claim 2. Letv € V(Dz3). Ifv is not a neighbour of z, then d~(v) > 6. Similarly,
if v is not a neighbour of z, then d*(v) > 6.

Proof. Suppose v ¢ N(z). Since d~(x) = 0, Lemma 9(2) implies that d~ (v) > 5.
Suppose d~(v) = 5. Let B = V(D3) — {vU N~ (v)}. Then |B| = 4. Since D is
8-traceable, the oriented graph (V (D) — B) has a Hamilton path zujususususvz
where N~ (v) = {u1,...,us}. Also (BU{x,u1,v,z}) has a Hamilton path @ and,
since w; is the only in-neighbour of v in this oriented graph, u;v € A(Q). But
then the path obtained by replacing the arc ujv with the path ujususzuqusv is
a Hamilton path of D. This proves that d~(v) > 6 and, similarly, d*(v) > 6 if
v ¢ N(z). This proves Claim 2. O

Claim 3. Dy is nonhamiltonian.

Proof. Suppose to the contrary that vivs---wvigv1 is a Hamilton cycle in Ds.
Let v; € NT(x) for some i € {1,...,10}. Then by Claim 2, v; € N~ (z) and
hence, since D is nontraceable, v;11 ¢ NT(z). Since D — z is traceable, we
may assume, without loss of generality, that v; € N~ (z). Hence it follows by
induction that v; ¢ Nt (x) for i = 2,...,10, contradicting that d*(z) > 5. This
proves Claim 3. ([l
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Since D is hypotraceable, we may assume that P = vivs - - - v192z is a Hamilton
path in D — z. It follows from Claim 2 that every vertex in Dy is adjacent to at
least one of x and z. In particular, v € NT(x), so v1 € N~ (z). Let vy be the
last in-neighbour of v; on P. By Claim 3, ¢ # 10 and hence it follows from Claim
1 that £ € {8,9}. Let C = vy -+ - vpvy.

First we show that xvyi 1 € A(D). Suppose to the contrary that xvy,q ¢
A(D). Then it follows from Claim 2 that v,y; has at least six in-neighbours on
C. If v; is any in-neighbour of veyq on C, then vj41 ¢ N7T(z), since otherwise
TVj41 -+ VUL - - - VjUp41 - - - V102 is @ Hamilton path of D. Hence there are at least
six vertices on C that are not out-neighbours of . But this contradicts the fact
that x has at least five out-neighbours in Ds. Hence zvsyq € A(D).

Since Do is strong and ¢ € {8,9}, vio has at least one out-neighbour on C.
By Claim 3, v; is not an out-neighbour of vig. Also, vs is not an out-neighbour
of v1g otherwise xwvyiq---v19vvs - - - vpv12 is a Hamilton path in D. Thus the
out-neighbours of v1g in D lie on the path QQ = vsvy - - - vg. Note that by Claim
2, there is at most one vertex on vs - -- vy that is not an in-neighbour of v;. Let
v; and vjy,, > 0 be the first and last out-neighbours of vy on @. Since
either vjy, or vj1,41 is an in-neighbour of v, it follows that v;v;11 - --vj4,v12 or
VjUjq1 -+ VjyrVjrr41012 is a path in D —vyg that contains all the out-neighbours
of v19. Hence it follows from Claim 1 that r > 2 and hence v1g has at least two
nonconsecutive out-neighbours on Q.

Hence vy and vg cannot be the only out-neighbours of v1g and we may there-
fore assume that v; is an out-neighbour of vig for some j € {3,...,6}. Then
vj—1z ¢ A(D) otherwise zvpyy---vigvj- -1 - --vj—12 is a Hamilton path in
D. Hence by Claim 2, vj_; has at least six out-neighbours in Dj. Since v;_; €
{v2,v3,v4,v5}, vj_1 has at most three out-neigbhours on the path v - --v;_3 and
therefore at least two out-neighbours on the path v; 1 ---v10.

Now suppose ¢ = 8. Then by Claim 2, N~ (v1) = {vs,...,vg}. In this case
vj—1 has at least one out-neighbour v; on the path v,y --- vy, for j € {3,...,6}.
Then v;_; lies on the path v; - --vg, for j € {3,...,6} and hence v;_1v1 € A(D).
But now v1gv;vj41 -+ - vi—10102 - - - V15 - - - V10 is a Hamilton cycle in Dy, contra-
dicting Claim 3.

Finally suppose £ = 9. If v1g is an out-neighbour of v;_1, then v;_jv10v; - - - vg
v1---v;j—1 is a Hamilton cycle in Dy. Hence vj_jvig ¢ A(D). It therefore follows
that v;_1 has at least two out-neighbours on the path v;11---vg. By Claim 2, at
most one of the vertices on the path v; - --vg is not an in-neighbour of v;. Hence
v;j—1 has an out-neighbour v; on v;11---vg such that v;_; is an in-neighbour of
v1. In this case vigvjvj41 - Vi—1V1V2 - - - V;_10;Vi41 - - V10 1S a Hamilton cycle in
D, again contradicting Claim 3. [

Theorem 20. Every 8-traceable oriented graph of order 13 is traceable.
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Proof. Suppose D is a nontraceable 8-traceable oriented graph of order 13. Then
by Lemma 5 and Theorem 19, D is also 9-, 10-, 11- and 12-traceable.

By Lemmas 14 and 15, D has a nonhamiltonian strong component of order
at least 10. Hence it follows from Lemma 8 and Lemma 7(1) that we only need
to consider the following three cases.

Case (1) D has three strong components. In this case we can assume that
Dy =z and D3 = z and n(D3) = 11. Let P = vjvy - --v112 be a Hamilton path
in D —z. By Lemma 18 we may assume that either dp, (v) > 7 or dBQ (v) > 7 for
every v € V(D3). If v ¢ N(x), then it follows from Lemma 9(2) that d~(v) > 6.
Then d*(v) < 12— 6 = 6 and hence d~(v) > 7. Similarly d*(v) > 7 for every
vertex v ¢ Np (2). Hence, dp, (v1) > 7. Let v, be the last in-neighbour of vy
on P. Since Dy is nonhamiltonian, ¢ € {9,10}. Let C' = vy ---vpv;. By Lemma
9(1), « has at least four out-neighbours on C. If v; is any out-neighbour of z
on C, vj_1 is not in N~ (vg41), since otherwise xv; - - - vgv1 - - - Vj_1VgVp41 - - - V112
is a Hamilton path of D. Hence there are at least four vertices on C that are
not in-neighbours of vyy1. Since vy is not an in-neighbour of itself, vyy1 has at
most six in-neighbours in Dy and therefore by Lemma 9(2) we may assume that
xvp41 € A(D) and that N$2 (vgr1) > 7.

Suppose £ = 9. If v; € Néf(vlo), then v;_; is not an in-neighbour of vy
otherwise xv1gv; - - - v9v1 - - - vj_1v112 is a Hamilton path of D. Hence there are at
least six vertices on C' that are not in-neighbours of v11 and therefore dl_)2 (v11) <7
and hence by Lemma 18, Ng(vn) > 7. But for each out-neighbour v; of vyy in
Dy, vj_1 is not an in-neighbour of z since otherwise xvigv11v; - - - vgv1 - - - vj_12 is
a Hamilton path of D. Hence |Np, (2)| <4, contradicting Lemma 9(1).

Now suppose ¢ = 10. Then v;; has at least seven out-neighbours in Ds.
If v; is an out-neighbour of v11, then v;_; is not an in-neighbour of z, since
otherwise zvi1v; - - - v1gv1 - - - vj—12 is a Hamilton path of D. Again we have that
|Np,(2)| <4, which contradicts Lemma 9(2). This proves Case (i).

In Cases (ii) and (iii) it follows from Lemma 12 that D does not contain
a 4-cycle or a 5-cycle and so by Corollary 17, D has a 3-cycle. Hence, for the
remainder of the proof let W = wjwswsw; be a 3-cycle in D. Since D is 10-
traceable, D — V(W) has a Hamilton path P = vy - - - v1p.

Case (ii) D has two strong components. In this case we may assume one
strong component is trivial and the other has order 12. Hence, either vy is a
source or vyg is a sink. Assume the former. Since D is nontraceable, Nt (v1g) C
{va,...,vs}. It therefore follows from Corollary 11 that ve,vs € N*(v19). Now
let C' denote the 9-cycle vovs - --vigve. From Observation 6, every vertex on
W has an out-neighbour on C'. Suppose w; is an out-neighbour of v;. Then
viwiwews followed by an out-neighbour of ws on C' and the remainder of the
vertices of C' is a Hamilton path of D. Hence, N*(v1) C C and by Lemma 9(1),
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INZ (v1)] > 6. Now for each out-neighbour of vy on C, its predecessor on C' is
not an in-neighbour of any vertex of W, since otherwise D is traceable. But then
N~ (wy) UN"(v1)| < 4, contradicting Lemma 9(2).

Case (iii) D is strong. Note that D — V(W) is nonhamiltonian, since oth-
erwise D would be traceable. Hence vig ¢ N~ (v1) and therefore by Corollary
11, v3,v9 € N~ (v1) and ve,vg € NT(v1g). But now Q = v19v203040506V7V8V9V1
R = v4v5v607080901002 v3v1 and S = v19UgVgU1 U2U3V4V5VgV7 are also Hamilton
paths in D — V().

Let P be the set of all Hamilton paths in D — V(W). By considering the
paths P and @, we note that for any path in P with initial vertex v; and terminal
vertex vj, there is a path in P with initial vertex v; and terminal vertex v;. Hence,
since D — V(W) is nonhamiltonian, v; and vy are nonadjacent.

Applying this observation to the paths R and S it follows that v; and vy are
nonadjacent and v7 and vyg are nonadjacent.

By considering the paths P and R, we observe that for any path P € P, there
is a path in P whose initial vertex is the fourth vertex of P and whose terminal
vertex is the first vertex of P. Hence by our previous observation, the first and
fourth vertices of any path in P are nonadjacent.

Similarly, by considering the paths P and S, we observe that for any path
in P € P, there is a path in P whose initial vertex is the terminal vertex of P
and whose terminal vertex is the seventh vertex of P. Hence the seventh and
terminal vertices of any path in P are nonadjacent.

By applying these observations to the paths @ and R it follows that v4 and
v10 are nonadjacent, v; and vy are nonadjacent, and v4 and v7 are nonadjacent.

Thus {v1, v4, v7,v10} is an independent set and therefore, for any w; € V (W),
the set {w;,v1,v4,v7,v10} is an independent set of order 5 contradicting the fact
that D is 8-traceable. [
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