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Abstract

We consider sequential heuristics methods for the Maximum Independent
Set (MIS) problem. Three classical algorithms, VO [11], MIN [12], or MAX
[6], are revisited. We combine Algorithm MIN with the α-redundant vertex
technique [3]. Induced forbidden subgraph sets, under which the algorithms
give maximum independent sets, are described. The Caro-Wei bound [4, 14]
is verified and performance of the algorithms on some special graphs is con-
sidered.
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1. Introduction

In a simple graph G, a set of vertices is independent (or stable) if no two ver-
tices in this set are adjacent. The cardinality of a maximum size independent set
in G is called the independence number of G and denoted by α(G). The prob-
lem of determining an independent set of maximum cardinality finds important
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applications in various fields, some examples are computer vision and pattern
recognition. It is well-known that the problem is generally NP-hard. Hence, ex-
act algorithms for even with some hundred-vertex graphs are impractical. In this
sense, heuristic algorithms are good candidates.

Sequential heuristics methods generate a maximal independent set through
repeated addition of a vertex into an independent set or repeated deletion of a
vertex from the original graph. Borowiecki et al. [2] called the two strategies
best-in and worst-out strategies, respectively. Decisions on which vertex to be
added in or moved out next are based on certain indicators associated with can-
didate vertices. For example, a possible best-in heuristic constructs a maximal
independent set by repeatedly adding in a vertex that has the smallest degree
among candidate vertices. In this case, the indicator is the degree of a vertex. On
the other hand, a possible worst-out heuristic can start with the whole vertex set
V and then repeatedly remove a vertex out of V until V becomes independent.

Three well known heuristic algorithms are Vertex Order (VO) [11], MIN [12],
and MAX [6]. Algorithm MAX follows worst-out strategy using degree indicator,
i.e., it repeatedly removes maximum degree vertices until every remaining vertex
is of degree zero, i.e., they compose an independent set. MIN and VO follow best-
in strategy with the same indicator, i.e., they repeatedly choose the minimum
degree vertices and add them to the being constructed independent set if no
conflict occurs.

Moreover, while MIN and MAX update the indicators every time when a
vertex is added in or moved out, we call this approach as new strategy, VO does
not, but follows so-called old strategy.

Based on the three above algorithms, one can think about a greedy heuristic
method based on old worst-out strategy working like first order the vertex set of
a graph G in decreasing degree order. Then the algorithm proceeds through the
list, adds a vertex to the being constructed independent set if it has no neighbor
in the remaining graph and removes it from G. The process was repeated until
the list is empty. However, a deeper analysis shows that actually this algorithm
and Algorithm VO produce the same maximal independent set for every graph.

All three above algorithms give a maximal independent set in polynomial
time. However, under some restrictions, these maximal independent sets become
maximum. We investigate on these conditions for algorithms in Section 4.

Some others useful techniques for solving the problem are transformation
methods. In this paper, we consider α-redundant vertex deletion. We call a
vertex u ∈ V (G) α-redundant for G if α(G) = α(G − u) [3]. We can repeat the
deletion of vertices until we got a simple (enough) graph, i.e., a graph that we
already have efficient algorithm for solving the problem.

The advantage of graph transformation methods is that they can lead to a
maximum independent set. However, graph transformation methods can only
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work (well) under some restrictions, say they need some special structures to be
contained in the graph. More on this technique can be found in [8]. In Section
3, we combine the strength of MIN algorithm and this method.

Let us introduce some notations which will be used throughout this paper.
We consider only finite undirected, simple graphs G = (V (G), E(G)). For u, v ∈
V (G), we denote u ∼ v if uv ∈ E(G) and u ≁ v if uv /∈ E(G). Let NG(x) be
the neighbourhood of a vertex x ∈ V (G), NG[x] = NG(x) ∪ {x} be the closed

neighbourhood of x, and degG(x) = |NG(x)| be the degree of x in G. For a vertex
x and a vertex subset or an induced subgraph U , we denote NU (x) := NG(x)∩U ,
similarly for NU [x], and degU (x). We also denote NG(U) =

⋃
u∈U NG(u)\U and

for a set W ⊂ V (G), let NU (W ) = NG(W ) ∩ U . If no confusion arises, we write
N(.), N [.], and deg(.) instead of NG(.), NG[.], and degG(.), respectively, for short.
Let δ(G) = minu∈V (G) |N(u)|.

For a set U ⊂ V (G), we denote G[U ] as the induced subgraph of G on U and
G− U := G[V (G)\U ]. For short, we write G− v for G− {v}.

If F1, F2, . . . , Fk are graphs, then we say that G is {F1, F2, . . . , Fk}-free if
G does not contain a copy of any of the graphs F1, F2, . . . , Fk as an induced
subgraph.

As usual, we denote Km,n as a complete bipartite graph with cardinalities of
the two parts m and n, respectively, and Pn as a chordless path having n vertices.
For a K1,m, the vertex of degree m is called the center-vertex while the m others
vertices are called leaves.

2. Caro-Wei Bound

Given a graph G, we denote kMIN (G), kMAX(G), and kV O(G) the smallest car-
dinalities of the maximal independent sets obtained by the MIN, MAX, and VO
algorithms, respectively. Caro [4] and Wei [14] independently used MIN algo-
rithm to discover a lower bound on α(G) in terms of the degree sequence of G,
i.e.:

α(G) ≥ kMIN (G) ≥
∑

v∈V (G)

1

deg(v) + 1
.

As they observed, the above bound is sharp, i.e., we have the equality if G is
a union of disjoint cliques. Griggs [6] also showed that Algorithm MAX can be
used to prove the Caro-Wei bound. Surprisingly, the VO algorithm also can be
employed to obtain this bound as shown in the following observation.

Proposition 1.

kV O(G) ≥
∑

v∈V (G)

1

deg(v) + 1
.
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Proof. The proof mimics the similar proofs for Algorithms MIN [14] and MAX
[6].

We consider the VO algorithm. Let (ui), i = 1, 2, . . . , kV O, be the (ordered)
vertices added in the resulting maximal independent set. Let H1 := G and
Hi+1 := Hi − NHi

[ui], for i = 1, 2, . . . , kV O. It is obvious that each vertex v
belongs to NHi

[ui] for some ui. Moreover, if v ∈ NHi
[ui], then v appears after

ui in the list generated by the algorithm, i.e., degHi
(ui) ≤ degG(ui) ≤ degG(v).

Hence,

kV O(G) =

kV O∑

i=1

degHi
(ui) + 1

degHi
(ui) + 1

≥

kV O∑

i=1

∑

v∈NHi
[ui]

1

deg(v) + 1
=

∑

v∈V (G)

1

deg(v) + 1
.

We refer the readers to the result of Borowiecki et al. [2] about a Caro-Wei-
like bound using potential function of vertices, a generalization of degree.

3. MIN and α-Redundance

Now, we describe a modified version of Algorithm MIN (see Algorithm 1) based
on α-redundant vertex method. Clearly, a vertex u is α-redundant if there exists
some maximum independent set not containing u. Based on this, Gerber and
Lozin [5] obtained the following result which can be derived by Lemma 1 of [5].

Lemma 2 [5]. Given a graph G containing an induced K1,m, {u, v1, v2, . . . , vm},
where u is the center vertex (i.e., the vertex of degree m). If there exist no vertices

u1, u2, . . . , um such that {u, u1, u2, . . . , um} is an independent set and ui ∼ vi for
i = 1, 2, . . . ,m, then u is an α-redundant vertex for G.

It leads to the following consequence.

Corollary 3. Given a graph G = (V,E), a vertex u of G, and vertices v1, v2 ∈
N(u) such that v1 ≁ v2. If there exist no vertices u1, u2 such that {u, u1, u2} is

independent and {u, u1, u2, v1, v2} induces a K2,3 or a banner or a P5, then u is

α-redundant.

By this corollary, we introduce the following notation. Given a graph G and
a vertex u of G, let us say that u enjoy property P for G if there exist vertices
v1, v2 ∈ N(u) such that v1 ≁ v2 and there exist no vertices u1, u2 such that
{u, u1, u2} is independent and {u, u1, u2, v1, v2} induces a K2,3 or a banner or a
P5. Then Corollary 3 states that: Given a graph G and a vertex u of G, if u
enjoys property P for G then u is α-redundant for G.

Remind that if the neighborhood of u contains no non-edge, then u is a
simplicial vertex [13] and we know that u belongs to some maximum independent
set, i.e., we can add u to the being constructed independent set.
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Algorithm 1 MMIN(G)

Input: A graph G
Output: A maximal independent set of G.
1: I := ∅; i := 1; Hi := G;
2: while V (Hi) 6= ∅ do

3: Choose u ∈ V (Hi) such that degHi
(u) = δ(Hi);

4: if u enjoys property P then

5: Hi+1 := Hi − u; i := i+ 1;
6: end if

7: I := I ∪ {u}; i := i+ 1; Hi := Hi−1 −NHi−1
[u];

8: end while

9: return I

Consider an arbitrary graphG, and let n = |V (G)|. The algorithm repeatedly
chooses a minimum degree vertex u, then it checks and removes u if it enjoys
property P. We can find a minimum degree vertex of G in time O(n2). Moreover,
for a vertex u, we can check if it is simplicial in time O(n2) (Step 4). Given
that (v1, u, v2) induces a P3, we can check if there exist vertices u1, u2 such that
{u, u1, u2, v1, v2} induces a K2,3, a banner, or a P5 in time O(n2). For each u,
such a test can be performed in time at most O(n2). Clearly, Algorithm MMIN
gives a maximal independent set. Hence, we have the following result.

Theorem 4. For a graph G = (V,E), Algorithm MMIN gives a maximal inde-

pendent set in time O(n5), where n = |V (G)|.

It is worth to notify that in [9], we did the same for Algorithm MAX and
obtain Algorithm MMAX. Say, after choosing a vertex of maximum degree u,
before removing it, we look for an α-redundant vertex in the neighborhood of u
and remove such vertex instead of u.

4. Forbidden Induced Subgraphs

In this section, we describe sufficient conditions for heuristic algorithms men-
tioned in the above sections. Mahadev and Reed [11] characterized a graph class,
for which a maximum independent set can be obtained by Algorithm VO. Ha-
rant et al. [7] and Zverovich [15] obtained the similar results for Algorithm MIN.
In [9], we obtained the forbidden subgraphs for Algorithms MAX and MMAX.
These results are summarized in the following theorem.
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Theorem 5 [7, 9, 11, 15]. Let (see Figure 1)

F1 = {F1, F2, F3, F4, F5, F6},

F2 = {F1, F3, F5, F6, F7, F8, F9, F10, F11, F12, F13},

F3 = {F1, F4, F5, F6, F7, F14, F15, F16, F17, F18, F19, F20, F21, F22, F23, F24},

F4 = {F4, F15, F19, F20, F21, F24, F25, F26, F27}, and

F5 = {F1, F5, F7, F8, F14, F15, F18, F20, F21, F24, F37, F38, F39}.

Then Algorithm VO always generates a maximum independent set for F1-free

graphs, analogously, Algorithm MIN for F2-free and F3-free, Algorithm MAX for

F4-free, and Algorithm MMAX for F5-free.

The following result describes a forbidden subgraph set for Algorithm MMIN.

Theorem 6. Algorithm MMIN always gives us a maximum independent set for

F6-free graphs, where

F6 = {F1, F7, F14, F15, F20, F24, F28, F29, F30, F31, F32, F33, F34, F35, F36}.

Proof. We basically follow the idea used in [15] with replacing the MIN algorithm
by MMIN algorithm.

Let G be an F6-free connected graph. Suppose that the algorithm fails for G
and G is a minimal graph (inclusive sense) with respect to this property. Then
there exists some u0 ∈ V (G) such that

1. u0 is of minimum degree in G,

2. u0 does not enjoy property P for G, and

3. u0 does not belong to any maximum independent set of G.

Claim 7. Every maximum independent set of G contains N(u0).

Proof. If the statement does not hold, then there is a maximum independent set
I of G and a vertex v ∈ N(u0)\I. Let G

′ = G−v. Then clearly, I is independent
in G′. Hence, α(G′) ≥ |I| = α(G). So, α(G′) = α(G), i.e., every maximum
independent set of G′ is a maximum independent set of G.

We show that u0 does not enjoy property P for G′. Then by the minimality
of G, u0 belongs to some maximum independent set J of G′ which is also a
maximum independent set of G, a contradiction.

To show that u0 does not enjoy property P for G′, we have to show that
for arbitrary vertices v1, v2 ∈ NG′(u0) ⊆ NG(u0) such that (v1, u0, v2) induces a
P3, there exist vertices u1, u2 in G′ such that {u0, u1, u2, v1, v2} induces a P5 or
a banner or a K2,3. Since u0 does not enjoy property P for G, for such v1, v2,
there exist vertices u1, u2 ∈ V (G) such that {u0, u1, u2, v1, v2} induces a K2,3 or
a banner or a P5 in G. Note that, such u1, u2 /∈ NG(u0), hence, u1, u2 ∈ V (G′).
Thus, u0 does not enjoy property P for G′.
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Figure 1. Forbidden induced subgraphs for some heuristic greedy algorithms.
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Let S be a maximum independent set of G and T = V (G)\S. Then u0 ∈ T and
NG(u0) ⊆ S.

Claim 8. Let u ∈ T be at distance two from u0. Then |NS(u)| ≥ 2

Proof. Since the distance between u0 and u is two, there exists some w ∈
NS(u0) ∩ NS(u). If the statement is not true, then S′ = (S\{w}) ∪ {u} is a
maximum independent set of G and N(u0) * S′, a contradiction to Claim 7.

Claim 9. There exist vertices u1, u2 ∈ T and v1, v2 ∈ S such that {v1, v2, u0, u1,
u2} induces a K2,3.

Proof. Since u0 does not belong to any maximum independent set, u0 is not
simplicial, and thus there exist vertices v1, v2 ∈ N(u0) such that (v1, u0, v2) in-
duces a P3. Because u0 does not enjoy property P for G, there exists some u1,
u2 such that {u0, u1, u2, v1, v2} induces a K2,3 or a banner or a P5. By symmetry,
we only have to consider the two following cases.

Case 1. {u0, u1, u2, v1, v2} induces a P5 and u1 ∼ v1, u2 ∼ v2. Since both
u1, u2 are of distance two from u0, by Claim 8, |NS(u1)|, |NS(u2)| ≥ 2. Consider
the two following subcases.

1.1. There exists some v3 ∈ NS(u1) ∩ NS(u2). We have v3 ≁ u0, otherwise
{u0, u1, u2, v1, v2, v3} induces an F15, a contradiction. Since (S\{v1, v2, v3}) ∪
{u0, u1, u2} is not independent, there exists some v4 ∈ S\{v1, v2, v3} such that
v4 is adjacent to at least one of vertices u0, u1, u2. Now, {u0, u1, u2, v1, v2, v3, v4}
induces an F7 or an F14 or an F15 depending on whether v4 is adjacent to exactly
one vertex or two or three vertices of {u0, u1, u2}, a contradiction.

1.2. NS(u1) ∩NS(u2) = ∅. Then there exists some v3 ∈ NS(u1)\N(u2) and
v4 ∈ NS(u2)\N(u1). We have v3 ≁ u0 (similarly, v4 ≁ u0), otherwise {u0, u1,
u2, v1, v2, v3} induces an F14, a contradiction. Now, {v3, u1, v1, u, v2, v4} induces
an F1, a contradiction.

Case 2. {u0, u1, u2, v1, v2} induces a banner and u2 ≁ v1. Since u2 is of dis-
tance two from u0, there exists some v3 ∈ NS(u2)\{v2}. Then {v1, v3, u0, u1, u2}
induces an F14 or an F15, a contradiction, or a K2,3, depending on whether v3 is
adjacent to none, one, or two vertices among {u0, u1}.

Claim 10. There exist no vertices u1, u2 ∈ T and v1, v2, v3, v4 ∈ S such that {u0,
u1, u2, v1, v2, v3, v4} induces a K3,4.

Proof. By contradiction, suppose that there exist vertices u1, u2 ∈ T and v1, v2,
v3, v4 ∈ S such that {u0, u1, u2, v1, v2, v3, v4} induces a K3,4. Let H be a max-
imal induced complete bipartite subgraph of G with parts A and B such that
{v1, v2, v3, v4} ⊆ A ⊆ S and {u0, u1, u2} ⊆ B ⊆ T . Consider the two following
cases.
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Case 1. |B| < |A|. Since deg(u0) ≤ deg(v1), there exists some t ∈ N(v1)\
(N(u0) ∪B). This also implies t ∈ T . Consider the two following subcases.

1.1. t is adjacent to every vertex of A. Then t is adjacent to some ui ∈ B,
otherwise we have a contradiction with the maximality of H. Without loss of
generality, suppose that t ∼ u1. Then {u0, u1, u2, t, v1, v2, v3, v4} induces an F29

or an F28 depending on whether t ∼ u2 or not, a contradiction.

1.2. t is non-adjacent to some vertex of A. Without loss of generality, assume
that t ≁ v2. Then we show that more generally t ≁ vj for every vj ∈ A\{v1}.
Indeed, by contradiction suppose that t ∼ vj for some vj ∈ A\{v1, v2}. Then
t ∼ uk for every uk ∈ B\{u0}, otherwise {u0, uk, t, v1, v2, vj} induces an F20,
a contradiction. Now, {u0, u1, u2, t, v1, v2, vj} induces an F30, a contradiction.
Then the assertion is shown.

It follows that {u0, u1, u2, t, v1, v2, v3, v4} induces a graph containing one of
the following graphs F24, F31, or F32 as an induced subgraph depending on the
adjacency between t and {u1, u2}, a contradiction.

Case 2. |B| ≥ |A| ≥ 4, i.e., there exists some u3 ∈ B\{u0, u1, u2}. Since
S′ = (S\A) ∪ B is not independent (otherwise S′ is a maximum independent
set containing u0, a contradiction), there exists some w ∈ S\A such that w is
adjacent to at least one vertex of B, assume that w ∼ uj . Note that w cannot
be adjacent to all ui belonging to B because of the maximality of H. Assume
that w ≁ uk for some uk ∈ B. If w is adjacent to some vertex ul ∈ B\{uj , uk},
then {uj , uk, ul, w, v1, v2} induces an F20, a contradiction. If w is non-adjacent
to any vertex of B but uj , then V (H) ∪ {w} induces a graph containing F24 as
an induced subgraph, a contradiction.

Now, by Claim 9, let u1, u2 ∈ T and v1, v2 ∈ S be such that {v1, v2, u0, u1, u2}
induces a K2,3. Let A = NS({u0, u1, u2}). Since |(S\A) ∪ {u0, u1, u2}| < |S|
(otherwise we have a maximum independent set containing u0, a contradiction),
|A| ≥ 4. Moreover, since (S\{v1, v2}) ∪ {ui, uj} is not independent for every two
vertices ui, uj of u0, u1, u2 (otherwise we have a maximum independent set not
containing all neighbors of u0, a contradiction with Claim 7), there exist vertices
v3, v4 ∈ NS({u0, u1, u2})\{v1, v2} such that |N{u0,u1,u2}({v3, v4})| ≥ 2. By Claim
10, |N{u0,u1,u2}(v3)| or |N{u0,u1,u2}(v4)| is smaller than three.

If N{u0,u1,u2}(v3) = 2 (similarly for the case |N{u0,u1,u2}(v4)| = 2), then {u0,
u1, u2, v1, v2, v3} induces an F20, a contradiction.

If |N{u0,u1,u2}(v3)| = 1 and |N{u0,u1,u2}(v4)| = 3 (or vice versa), then {u0, u1,
u2, v1, v2, v3} induces an F24, a contradiction.

The remaining case is |N{u0,u1,u2}(v3)| = |N{u0,u1,u2}(v4)| = 1. Without loss
of generality, we assume that v3 is adjacent to u1 but neither to u0 nor u2. Since
deg(u0) ≤ deg(v3), there exists some u3 ∈ N(v3)\N(u0).

If u3 ≁ u1, then {u0, u1, u3, v1, v2, v3} induces an F14 or an F15 or an F20
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depending on the adjacency between u3 and {v1, v2}, a contradiction. Then let
us assume that u3 ∼ u1.

If u3 is adjacent to u2 and not adjacent to v1, v2, then {u0, u1, u2, u3, v1, v2}
induces an F20, a contradiction.

If u3 is adjacent to u2 and adjacent to exactly one of v1, v2, then {u0, u1, u2, u3,
v1, v2, v3} induces an F33, a contradiction.

If u3 is adjacent to u2, v1, v2, then {u0, u1, u2, u3, v1, v2, v3} induces an F34, a
contradiction.

If u3 ≁ u2 and u3 is adjacent to exactly one vertex of v1, v2, then {u0, u2, u3,
v1, v2, v3} induces an F14, a contradiction.

If u3 is not adjacent to v1, v2, u2, then {u0, u1, u2, u3, v1, v2, v3} induces an
F35, a contradiction.

If u3 ≁ u2 and u3 is adjacent to v1, v2, then {u0, u1, u2, u3, v1, v2, v3} induces
an F36, a contradiction.

5. Comparison

The following results are obvious.

Proposition 11.

• F7 contains F2, and F8, . . . , F13 contain F4.

• F14, . . . , F24, F26, F27 contain F3.

• F28, F29 contain F8, and F30, . . . , F36 contain F21.

Proposition 12.

• Every F1-free graph is F2-free and F3-free.

• Every F2-free graph and every F3-free graph is F6-free.

Some observations from the above results are:

• MIN performs better than VO, and

• MMIN performs better than MIN,

all in forbidden induced subgraphs set sense. Now, we compare the greedy heuris-
tic algorithms by considering their performances on some special graphs. Given
two graphs G1, G2, let G1 + G2 denote the disjoint union of G1 and G2, i.e.,
V (G1+G2) = V (G1)∪V (G2) and E(G1+G2) = E(G1)∪E(G2), and let G1∨G2

denote the graph obtained from G1+G2 by adding edges from each vertex of G1

to each vertex of G2.

Proposition 13. For every integer p, there exist graphs G such that

kMMIN (G)− kMIN (G) > p.

Proof. Let G := (Kp+3+Kp+3)∨Kp+3. Then kMIN (G) = 2 while kMMIN (G) =
p+ 3 = α(G).
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6. Discussion

So far, there are not many results about polynomial time solution for the MIS
problem in some subclasses of P7-free graphs, except for (P7,banner)-free graphs
[1], and (P7,K1,m)-free graphs [10]. Our results for Algorithm MMIN can be
considered as a contribution in subclasses of P7-free graph. Remind that the
complexity of the problem for the class of P7-free graphs is still an open question.

Our results in this direction also follow the approach of Mahadev and Reed
[11], Harant et al. [7], Zverovich [15], and Lê et al. [9]. Moreover, our forbidden
induced subgraph set for Algorithm MMIN covers the two sets for Algorithm
MIN in [7] and [15].

Besides, greedy heuristic methods can be easily implemented and they also
have low complexity compared with augmenting methods used by Alekseev and
Lozin [1] and Lozin and Milanič [10].

Our combined methods also suggest that we can combine other (condition-
ally) exact methods with greedy methods to obtain interesting algorithms, espe-
cially in choosing the next vertex in general by best-in or worst-out strategies.
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