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Abstract

For a graph G and even integers b > a > 2, a spanning subgraph F of
G such that a 6 degF (x) 6 b and degF (x) is even for all x ∈ V (F ) is called
an even [a, b]-factor of G. In this paper, we show that a 2-edge-connected
graph G of order n has an even [2, b]-factor if max{degG(x), degG(y)} >

max
{

2n

2+b
, 3
}

for any nonadjacent vertices x and y of G. Moreover, we show
that for b > 3a and a > 2, there exists an infinite family of 2-edge-connected
graphs G of order n with δ(G) > a such that G satisfies the condition
degG(x) + degG(y) > 2an

a+b
for any nonadjacent vertices x and y of G, but

has no even [a, b]-factors. In particular, the infinite family of graphs gives
a counterexample to the conjecture of Matsuda on the existence of an even
[a, b]-factor.
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1. Introduction

In this paper, we consider only finite undirected graphs with no loops and no
multiple edges. For a graph G, we let V (G) and E(G) denote the vertex set and
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the edge set of G, respectively. For a vertex x of G, degG(x) denotes the degree

of x in G. We let δ(G) denote the minimum degree of G. For two integers a and
b with 1 6 a 6 b, a spanning subgraph F of G such that a 6 degF (x) 6 b for all
x ∈ V (F ) is called an [a, b]-factor of G. A [k, k]-factor is usually called a k-factor.
An [a, b]-factor F is said to be a parity [a, b]-factor if degF (x) ≡ a ≡ b (mod 2)
for all x ∈ V (F ). In particular, a parity [a, b]-factor is an even [a, b]-factor if
a ≡ b ≡ 0 (mod 2).

We first introduce some known results on degree conditions for the existence
of an even [2, b]-factor.

Theorem 1 (Kouider and Vestergaard [1]). Let b > 2 be an even integer, and

let G be a 2-edge-connected graph of order n. If δ(G) > max{ 2n
2+b

, 3}, then G has

an even [2, b]-factor.

Theorem 2 (Matsuda [4]). Let b > 2 be an even integer, and let G be a 2-
edge-connected graph of order n. If degG(x) + degG(y) > max{ 4n

2+b
, 5} for any

nonadjacent vertices x and y of G, then G has an even [2, b]-factor.

In this paper, we prove the following theorem, which implies Theorems 1
and 2.

Theorem 3. Let b > 2 be an even integer, and let G be a 2-edge-connected graph

of order n. If

max{degG(x), degG(y)} > max

{

2n

2 + b
, 3

}

(1)

for any nonadjacent vertices x and y of G, then G has an even [2, b]-factor.

Let x and y be nonadjacent vertices of G. Then δ(G) > max{ 2n
2+b

, 3} implies

degG(x)+degG(y) > max{ 4n
2+b

, 5}, and degG(x)+degG(y) > max{ 4n
2+b

, 5} implies

max{degG(x), degG(y)} > max{ 2n
2+b

, 3}. Hence Theorem 3 implies Theorems 1
and 2.

Additionally, we here show that Theorem 3 is stronger than Theorem 2. In
order to show that, we construct an infinite family of graphs as follows: For a
positive integer t and an even integer b > 4, we define the graph G0 obtained

from b
2 cliques K1

t ,K
2
t , . . . ,K

b

2

t of order t and one vertex v0 by joining a vertex v0

to two vertices of Ki
t for each 1 6 i 6 b

2 (a clique means a complete graph), and

let G0 = {G0(b, t) | t ∈ Z
+, b ∈ 2Z+, t > b2+b−6

b−2 }. For each G0 ∈ G0, it is easily

seen that G0 is 2-edge-connected, and that the order of G0 is n = b
2 t+1. By the

definition of G0, we have n > b3+b2−4b−4
2(b−2) . Hence it follows that if b > 4, then

degG0
(x) + degG0

(v0) = |V (K1
t )| − 1 + b = t− 1 + b =

2n− 2

b
− 1 + b <

4n

2 + b
,
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and

max{degG0
(x), degG0

(v0)} = |V (K1
t )| − 1 = t− 1 =

2n− 2

b
− 1 >

2n

2 + b

for any vertex x ∈
(

⋃

16i6 b

2

V (Ki
t)
)

\NG0
(v0). Thus Theorem 3 guarantees the

existence of an even [2, b]-factor in G0, but Theorem 2 does not. Consequently,
Theorem 3 is stronger than Theorem 2.

In order to prove Theorem 3, we actually prove the following two theorems,
which are obtained from Theorem 3 by dividing it into two cases on the order n
of a graph G.

Theorem 4. Let b > 2 be an even integer, and let G be a 2-edge-connected graph

of order n. If n > b+ 3 and

max{degG(x), degG(y)} >
2n

2 + b
(2)

for any nonadjacent vertices x and y of G, then G has an even [2, b]-factor.

Theorem 5. Let b > 2 be an even integer, and let G be a 2-edge-connected graph

of order n. If n 6 b+ 2 and

max{degG(x), degG(y)} > 3(3)

for any nonadjacent vertices x and y of G, then G has an even [2, b]-factor.

Combining these, we can obtain Theorem 3.
In the rest of this section, we discuss extending “an even [2, b]-factor” in The-

orem 3 to “an even [a, b]-factor” briefly. In 2005, Matsuda [4] posed the following
conjecture as a natural generalization of Theorem 2.

Conjecture 6 (Matsuda [4]). Let 2 6 a 6 b be even integers, and let G be

a 2-edge-connected graph of order n > 2a + b + a2−3a
b

− 2. If δ(G) > a and

degG(x) + degG(y) >
2an
a+b

for any nonadjacent vertices x and y of G, then G has

an even [a, b]-factor.

In 2004, Kouider and Vestergaard constructed an infinite family of k-conne-
cted graphs G∗ of order n with δ(G∗) > an

a+b
having no even [a, b]-factors such

that b > 3a2, k 6 a − 1 and k is odd (see Example 3 in [2]). If n is sufficiently
large and k > 3, then the graph G∗ satisfies the hypothesis of Conjecture 6.
Thus G∗ is a kind of counterexamples in the case where b > 3a2. Nevertheless,
Conjecture 6 was open when b 6 3a2.

In this paper, we also prove that Conjecture 6 does not hold even when
3a 6 b 6 3a2. Furthermore, we prove that the similar degree condition to (1)
(i.e., max{degG(x), degG(y)} > an

a+b
) does not guarantee the existence of an even

[a, b]-factor even when the difference of a and b is not so large.
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Proposition 7. Let 4 6 a 6 b be even integers. Then the following assertions

hold:

(i) For b > 3a, there exists an infinite family of 2-edge-connected graphs G of

order n with δ(G) > a such that G satisfies degG(x) + degG(y) > 2an
a+b

for

any nonadjacent vertices x and y of G, but has no [a, b]-factors.

(ii) For b > a, there exists an infinite family of 2-edge-connected graphs G of

order n with δ(G) > a such that G satisfies max{degG(x), degG(y)} > an
a+b

for any nonadjacent vertices x and y of G, but has no [a, b]-factors.

Although Conjecture 6 is not true in the case where b > 3a by Proposition 7,
the case where 3a > b > a is still open.

The organization of the paper is as follows. In Section 2, Proposition 7 is
described in detail. We introduce preliminaries used in our proofs of Theorems 4
and 5 in Section 3, and we show the sharpness of Theorems 4 and 5 in Section 4.
In Section 5, we prove Theorems 4 and 5.

2. Construction of Graphs Without Even [a, b]-Factors

In this section, we mention in more detail on Proposition 7. We here construct an
infinite family, which gives a new counterexample to the conjecture of Matsuda.

Construction of the family G∗. For an integer t and even integers a and b such
that t > a+ 2 and b > a > 4, we construct a graph G∗(a, b, t) as follows: Recall
that a clique means a complete graph. Let C0, C1

t , C
2
t be three disjoint cliques

of order 2, t and t, respectively. Let V (C0) = {x, y}, and let u1, u2, . . . , ua−1

(resp., v1, v2, . . . , va−1) be distinct a− 1 vertices of C1
t (resp., C2

t ). We define the
graph G∗(a, b, t) obtained from C0, C1

t and C2
t by adding xv1, xui, yu1 and yvi

for 2 6 i 6 a− 1 (see Figure 1), and let G∗ = {G∗(a, b, t) | t > a+ 2, b > a > 4}.
For each G∗ ∈ G∗, it is easy to check the following:

(i) δ(G∗) = a (= degG∗(x) = degG∗(y)),

(ii) the order of G∗ is n > 2a+ b+ a2−3a
b

− 2 if t is large enough,

(iii) G∗ is 2-edge-connected from a > 4.

C1
t C2

t

C0

u2 v2v1

x y

u1ua−1 va−1

Figure 1. The graph G∗(a, b, t).
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Lemma 8. Let 4 6 a 6 b be even integers. Then the following assertions hold:

(i) For b > 3a, every graph G∗ ∈ G∗ satisfies degG∗(x) + degG∗(y) > 2an
a+b

for

any nonadjacent vertices x and y of G∗.

(ii) For b > a, every graph G∗ ∈ G∗ satisfies max{degG∗(x), degG∗(y)} > an
a+b

for any nonadjacent vertices x and y of G∗.

Proof. (i) Let G∗ ∈ G∗. By the construction of G∗, the following two facts hold:

(F1) Vertices having the minimum degree are only x and y, and G∗[{x, y}] is a
clique;

(F2) Vertices having the second smallest degree belong to V (C1
t ) \NG∗(V (C0))

or to V (C2
t ) \NG∗(V (C0)), each of which is nonadjacent to x and y.

In view of (F1) and (F2), it suffices to check the degree condition only for two
vertices w ∈ V (C1

t ) \ NG∗(V (C0)) and z ∈ V (C0). By b > 3a and a > 4, we
obtain

degG∗(w) + degG∗(z) = t− 1 + a > t+ 3 =
n

2
+ 2 >

2an

a+ b
.

(ii) Let G∗ ∈ G∗. Similarly to the proof of (i), it suffices to check the degree
condition only for two vertices w ∈ V (C1

t ) \ NG∗(V (C0)) and z ∈ V (C0). By
b > a > 4, we get

max{degG∗(w), degG∗(z)} = t− 1 =
n

2
− 2 >

an

a+ b
.

Lemma 9. Every graph G∗ ∈ G∗ has no even [a, b]-factors.

Proof. Suppose that G∗ ∈ G∗ has an even [a, b]-factor F . Since degG∗(x) = a =
degG∗(y), we obtain degF (x) = a = degF (y). Also, since |V (C1

t )∩NF (V (C0))| =
a−1 is odd, F [V (C1

t )] is a graph having odd number of vertices with odd degree.
This is a contradiction.

By Lemmas 8, 9 and the construction of G∗, Proposition 7 can be proved if t is
large enough.

3. Preliminaries

In this section, we give notation and lemmas used in our proofs of Theorems 4
and 5.

Our notation is standard possibly except the following. Let G be a graph. For
a vertex x of G, NG(x) denotes the set of vertices adjacent to x in G; degG(x) =
|NG(x)|. For A ⊆ V (G), we let NG(A) denote the union of NG(x) as x ranges
over A. For A,B ⊆ V (G) with A ∩ B = ∅, eG(A,B) denotes the number of
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those edges of G which join a vertex in A and a vertex in B. For A ⊆ V (G), the
subgraph of G induced by A is denoted by G[A], and G−A denotes the subgraph
G[V (G)−A]. A vertex set A is called independent if G[A] has no edges.

In our proofs of Theorems 4 and 5, we depend on the following lemma, which
is a special case of the parity (g, f)-factor theorem of Lovász [3] (for this necessary
and sufficient criterion, an alternative proof was given by Tutte [5]).

Lemma 10 (Lovász [3]). Let b > 2 be an even integer, and let G be a graph.

Then G has an even [2, b]-factor if and only if

θG(S, T ) := b|S|+
∑

y∈T

(degG−S(y)− 2)− hG(S, T )

= b|S|+
∑

y∈T

(degG(y)− 2)− eG(S, T )− hG(S, T ) > 0

for all disjoint subsets S and T of V (G), where hG(S, T ) is the number of compo-

nents C of G−S−T such that eG(V (C), T ) ≡ 1 (mod 2), and such a component

C is briefly called an odd component of G− S − T .

In addition to the above lemma, we use the following two lemmas in our
proofs. Since they are well-known, we omit the proofs (see [4] in detail).

Lemma 11. Let G be a graph, and let S and T be disjoint subsets of V (G). Then
the following assertion hold:

θG(S, T ) ≡ 0 (mod 2).

Lemma 12. Let b > 2 be an even integer, and let G be a 2-edge-connected graph.

Let S and T be disjoint subsets of V (G) for which θG(S, T ) 6 −2. Then the foll-

owing assertions holds:

(i) 2|T | > b|S|+ 2,

(ii) |T | > 2.

For a graph G satisfying the hypothesis in Theorem 3, we show the following
lemma.

Lemma 13. Let b > 2 be an even integer, and let G be a 2-edge-connected graph

of order n such that max{degG(x), degG(y)} > max{ 2n
2+b

, 3} for any nonadjacent

vertices x and y of G. Assume that there exist disjoint subsets S and T of V (G)
satisfying θG(S, T ) 6 −2. Choose such subsets S and T so that |T | is as small as

possible. Then the following assertions hold:

(i) T is an independent set of G,

(ii)
∑

y∈T degG(y) > 3|T | − 1.
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Proof. To prove (i), let T ′ = T − {v} for any v ∈ T . Then T ′ 6= ∅ by
Lemma 12(ii). By the choice of T and Lemma 11, we have θG(S, T

′) > 0
and θG(S, T ) 6 −2. Thus, by subtracting these inequalities, 2 6 θG(S, T

′) −
θG(S, T ) 6 − degG−S(v) + 2 + hG(S, T )− hG(S, T

′), which implies degG−S(v) 6
hG(S, T ) − hG(S, T

′). This inequality together with eG(v, V (G) − S − T ) >

hG(S, T )−hG(S, T
′) yields degG[T ](v) = degG−S(v)−eG({v}, V (G)−S−T ) 6 0,

which means that T is an independent subset of V (G). Thus, (i) holds.
Suppose that there exist two vertices x, y ∈ T satisfying degG(x) = degG(y)

= 2. Then, in the case where n > b + 3, by (i) and the condition of Theorem
4, we have 2 = max{degG(x), degG(y)} > 2n

2+b
, which contradicts n > b + 3.

In the case where n 6 b + 2, by (i) and the condition of Theorem 5, we have
2 = max{degG(x), degG(y)} > 3, a contradiction. In either case, we obtain a
contradiction. Hence T has at most one vertex t with degG(t) = 2. Consequently,
we have

∑

y∈T degG(y) > 3(|T | − 1) + 2 = 3|T | − 1. Thus, (ii) holds.

4. Sharpness of Theorems 4 and 5

In this section, we discuss the sharpness of Theorems 4 and 5. In Theorems 4 and
5, the degree conditions (2) and (3) are best possible. Moreover, the hypothesis
“2-edge-connected” cannot be dropped. For Theorem 4, the lower bound of the
order (i.e., “b+ 3”) is sharp. Although our result is a generalization of Theorem
2, the examples in [4] are applicable to Theorems 4 and 5 as they stand. Here
we include them for the convenience of the reader.

Example 1. The degree condition (2) is best possible in the sense that we cannot
replace 2n

2+b
with 2n−2

2+b
(noting that 2n−1

2+b
cannot be an integer, and thus an integer

a > 2n
2+b

if and only if a > 2n−1
2+b

). To check it, we construct an infinite family of
2-edge-connected graphs G1 of order sufficiently large n without even [2, b]-factors
such that the degree condition of G1 is a little smaller than 2n

2+b
as follows: For a

positive integer t and an even integer b > 2, let K2t (resp., (bt+1)K1) be a clique
of order 2t (resp., bt+1 cliques of order 1). We define the graph G1(b, t) obtained
by joining K2t and (bt + 1)K1, and let G1 = {G1(b, t) | t ∈ Z

+, b > 2 is even}.
For each G1 ∈ G1, the order of G1 is n = (2+ b)t+1 and G1 is 2-edge-connected.
Also, it follows that

2n

2 + b
> max{degG1

(x), degG1
(y)} = 2t =

2n

2 + b
−

2

2 + b
>

2n

2 + b
− 1

for any nonadjacent vertices x, y ∈ V ((bt + 1)K1). However, G1 has no [2, b]-
factors as b|V (K2t)| < 2|V ((bt+ 1)K1)|.

Example 2. The condition “2-edge-connected” in Theorem 4 cannot be deleted
for b > 6. To check it, we construct an infinite family of connected graphs G2
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of order sufficiently large n without even [2, b]-factors such that G2 satisfies the
condition max{degG2

(x), degG2
(y)} > 2n

2+b
for any nonadjacent vertices x, y ∈

V (G2), but is not 2-edge-connected as follows: For a positive integer t and an
even integer b > 6, we define the graph G2(t) obtained from two cliques K1

t ,K
2
t

and one vertex v0 by joining a vertex v0 to a vertex of K1
t and to a vertex of K2

t ,
and let G2 = {G2(t) | t ∈ Z

+}. For each G2 ∈ G2, G2 is not 2-edge-connected.
Also, the order ofG2 is n = 2t+1, and it follows that max{degG2

(u), degG2
(v0)} =

degG2
(u) = t− 1 = n−3

2 > 2n
2+b

for any vertex u ∈ (V (K1
t ) \NG2

(v0)) ∪ (V (K2
t ) \

NG2
(v0)) for b > 6. However, G2 has no even [2, b]-factors. In fact, putting

S = ∅ and T = {v0} in Lemma 10, we can check that both K1
t and K2

t are odd
components of G− S − T , and thus θG2

(∅, {v0}) = degG2
(v0)− 2− 2 = −2 < 0.

Example 3. The lower bound of order n > b + 3 in Theorem 4 is sharp for
b > 4. To check it, we construct an infinite family of 2-edge-connected graphs G3

of order n = b+ 2 without even [2, b]-factors such that G3 satisfies the condition
max{degG3

(x), degG3
(y)} > 2n

2+b
for any nonadjacent vertices x and y of G3 as

follows: For an even integer b > 4, we define the graph G3(b) obtained from two
vertices v1, v2 and a path Pb of order b by joining each vi to two endvertices of Pb,
and let G3 = {G3(b) | b > 4 is even}. For each G3 ∈ G3, G3 is 2-edge-connected.
Also, the order of G3 is n = b+2, and it follows that max{degG3

(v1), degG3
(v2)} =

2 = 2n
2+b

. However, it is clear that G3 has no [2, b]-factors. Note that G3 also
shows that the degree condition (3) in Theorem 5 is best possible in the sense
that we cannot replace 3 with 2.

5. Proof of Theorems 4 and 5

In this section, we prove Theorems 4 and 5. Suppose that a graph G satisfies the
hypothesis of Theorems 4 or 5. By Lemmas 10 and 11, it suffices to show that
there exist no disjoint subsets S and T of V (G) for which

θG(S, T ) 6 −2.(4)

5.1. Proof of Theorem 4

Let b > 2 be an even integer, and let G be a 2-edge-connected graph of order
n > b + 3 such that max{degG(x), degG(y)} > 2n

2+b
for any nonadjacent vertices

x and y of G. By way of contradiction, suppose that G does not have an even
[2, b]-factor. Then by Lemmas 10 and 11, there exist disjoint subsets S and T of
G satisfying (4). We choose such S and T so that |T | is as small as possible.

Let t1, t2, . . . , t|T | be the vertices of T . Note that |T | > 2 by Lemma 12(ii).
Without loss of generality, we may assume that degG(t1) 6 degG(t2) 6 · · · 6
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degG(t|T |). By Lemma 13(i), T = {t1, t2, . . . , t|T |} is an independent set of G.
Consequently, by the condition of Theorem 4, we have

max{degG(t1), degG(ti)} = degG(ti) >
2n

2 + b

for each 2 6 i 6 |T |. By this inequality, we obtain

∑

y∈T

degG(y) =
∑

y∈T\{t1}

degG(y) + degG(t1) > (|T | − 1)
2n

2 + b
+ degG(t1).(5)

We divide the proof into two cases on the cardinality of |T |.

Case 1. |T | > b+ 1.

Claim 14. |S| 6 2n
2+b

− 1.

Proof. Suppose that |S| > 2n
2+b

−1, i.e., 2n−(2+b)|S| < 2+b. Since the both sides
of this inequality are even, 2n− (2+ b)|S| 6 b holds. By n > |S|+ |T |+hG(S, T ),
this implies

2|T | − b|S| 6 2(n− |S| − hG(S, T ))− b|S|

= 2n− (2 + b)|S| − 2hG(S, T ) 6 b− 2hG(S, T ).

Thus, it follows from (4) and 2|T | − b|S| 6 b− 2hG(S, T ) that

∑

y∈T

degG−S(y) 6 2|T | − b|S|+ hG(S, T )− 2

6 b− 2hG(S, T ) + hG(S, T )− 2 6 b− 2.

Since |T | > b + 1, there exist at least two vertices x and y of T such that
degG−S(x) = degG−S(y) = 0. Therefore by the condition of Theorem 4, we have

|S| > max{degG(x), degG(y)} >
2n

2 + b
.(6)

On the other hand, by Lemma 12(i) and n > |S| + |T | + hG(S, T ), we have

2(n−|S|−hG(S, T )) > 2|T | > b|S|+2, which implies |S| 6 2(n−hG(S,T )−1))
2+b

< 2n
2+b

.
This contradicts (6). �

By (4), (5), Claim 14, eG(S, T ) 6 |S||T |, hG(S, T ) 6 n − |S| − |T | and
b+ 1− |T | 6 0 (by the assumption of Case 1), we obtain

−2 > θG(S, T )

> b|S|+ (|T | − 1) ·
2n

2 + b
+ degG(t1)− |S||T | − 2|T | − (n− |S| − |T |)
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= (b+ 1− |T |)|S|+

(

2n

2 + b
− 1

)

|T |+ degG(t1)−
2n

2 + b
− n

> (b+ 1− |T |)

(

2n

2 + b
− 1

)

+

(

2n

2 + b
− 1

)

|T |+ degG(t1)−
2n

2 + b
− n

= b

(

2n

2 + b
− 1

)

+ degG(t1)− 1− n,

which implies degG(t1) 6
(2−b)n
2+b

+ b− 1. If b > 4, then by n > b+ 2,

degG(t1) 6
n

2 + b
(2− b) + b− 1 < 2− b+ b− 1 = 1,

i.e., degG(t1) = 0, which means that t1 is an isolated vertex. If b = 2, then
degG(t1) 6 1 holds. In either case, we get a contradiction because G is 2-edge-
connected.

Case 2. |T | 6 b. By Lemma 12(i), we have |S| < 2|T |
b

6 2, which means that
|S| = 0 or |S| = 1.

Let h1 (resp., h2) be the number of odd components C of G − S − T such
that eG(V (C), T ) = 1 (the number of odd components C of G− S − T such that
eG(V (C), T ) 6= 1, i.e., eG(V (C), T ) > 3). Then hG(S, T ) = h1 + h2.

Claim 15. |S| = 1.

Proof. Suppose that |S| = 0, i.e., S = ∅. Since G is 2-edge-connected, we obtain
h1 = 0. Then hG(∅, T ) = h2 holds. Hence it follows from (4) and

∑

y∈T degG(y) >
3h2 that

−2 > θG(∅, T ) =
∑

y∈T

degG(y)− 2|T | − hG(∅, T )

> 3h2 − 2|T | − h2 = 2h2 − 2|T |,

implying |T | > h2 + 1. By this inequality, (4) and Lemma 13(ii), we have

−2 > θG(∅, T ) =
∑

y∈T

degG(y)− 2|T | − hG(∅, T )

> (3|T | − 1)− 2|T | − h2 = |T | − h2 − 1 > 0.

This is a contradiction. �

Since
∑

y∈T degG−S(y) > h1 + 3h2 and hG(S, T ) = h1 + h2, it follows from
Claim 15 and (4) that

−2 > θG(S, T ) > b+ (h1 + 3h2)− 2|T | − (h1 + h2) = 2h2 − 2|T |+ b,

that is,

|T | > h2 +
b+ 2

2
.(7)
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Claim 16. h1 >
b+4
2 .

Proof. By (4), (7), Lemma 13(ii), Claim 15, eG(S, T ) 6 |S||T | 6 b and hG(S, T )
= h1 + h2,we obtain

−2 > θG(S, T ) > b+ (3|T | − 1)− b− 2|T | − (h1 + h2)

> |T | − h1 − h2 − 1 >
b+ 2

2
− h1 − 1,

which implies h1 >
b+4
2 , as desired. �

For each 1 6 i 6 h1, let C ′
i be the odd components of G − S − T such

that eG(V (C ′
i, T ) = 1. Without loss of generality, we may assume that |C ′

1| 6
|C ′

2| 6 · · · 6 |C ′
h1
|. Note that there exist at least two components C ′

1 and C ′
2

by Claim 16. For two vertices u1 ∈ V (C ′
1) and u2 ∈ V (C ′

2), it follows from the
definition of C ′

i, Claim 15 and the condition of Theorem 4 that

2n

2 + b
6 max{degG(u1), degG(u2)}

6 max{|C ′
1| − 1 + eG(u1, S ∪ T ), |C ′

2| − 1 + eG(u2, S ∪ T )}

6 max{|C ′
1|+ 1, |C ′

2|+ 1} = |C ′
2|+ 1,

that is, |C ′
2| >

2n
2+b

− 1. Hence, we have

h1
∑

i=1

|C ′
i| > |C ′

1|+ (h1 − 1)

(

2n

2 + b
− 1

)

.

It follows from this inequality, (7) and Claim 16 that

n > |S|+ |T |+ |C ′
1|+ (h1 − 1)

(

2n

2 + b
− 1

)

> 1 + h2 +
b+ 2

2
+ |C ′

1|+
b+ 2

2

(

2n

2 + b
− 1

)

> n,

which is a contradiction. Consequently, this completes the proof of Theorem 4.

5.2. Proof of Theorem 5

Let b > 2 be an even integer, and let G be a 2-edge-connected graph of order
n 6 b + 2 such that max{degG(x), degG(y)} > 3 for any nonadjacent vertices
x and y of G. By way of contradiction, suppose that G does not have an even
[2, b]-factor. Then by Lemmas 10 and 11, there exist disjoint subsets S and T of
G satisfying (4). We choose such S and T so that |T | is as small as possible.
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By Lemma 12(i), |T | > b|S|
2 + 1. If |S| > 2, then we obtain n > |S| + |T | >

|S| +
(

b|S|
2 + 1

)

> b + 3, which contradicts that n 6 b + 2. Hence we have that

|S| = 0 or |S| = 1.

Claim 17. |S| = 1.

Proof. Suppose that |S| = 0, i.e., S = ∅. Since G is 2-edge-connected, all of the
odd components C of G− T satisfy eG(V (C), T ) > 3. By (4),

−2 > θG(∅, T ) =
∑

y∈T

degG(x)− 2|T | − hG(∅, T )

> 3hG(∅, T )− 2|T | − hG(∅, T ) = 2hG(∅, T )− 2|T |,

implying

|T | > hG(∅, T ) + 1.(8)

Then it follows from (4), (8) and Lemma 13(ii) that

−2 > θG(∅, T ) =
∑

y∈T

degG(y)− 2|T | − hG(∅, T )

> (3|T | − 1)− 2|T | − hG(∅, T ) = |T | − hG(∅, T )− 1 > 0.

This is a contradiction. �

By (4), Lemma 13(ii), Claim 17 and eG(S, T ) 6 |T |, we have

hG(S, T ) > b+
∑

y∈T

degG(y)− eG(S, T )− 2|T |+ 2

> b+ (3|T | − 1)− |T | − 2|T |+ 2 = b+ 1.

Therefore by the above inequality and Lemma 12(ii), we obtain n > |S| + |T | +
hG(S, T ) > 1+2+(b+1) > b+4, which contradicts the assumption that n 6 b+2.
This completes the proof of Theorem 5.
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