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Abstract

In this paper we study the problem of interval incidence coloring of subcu-
bic graphs. In [14] the authors proved that the interval incidence 4-coloring
problem is polynomially solvable and the interval incidence 5-coloring prob-
lem is NP-complete, and they asked if χii(G) ≤ 2∆(G) holds for an arbi-
trary graph G. In this paper, we prove that an interval incidence 6-coloring
always exists for any subcubic graph G with ∆(G) = 3.

Keywords: interval incidence coloring, incidence coloring, subcubic graph.

2010 Mathematics Subject Classification: 05C15, 05C85, 05C69.

1. Introduction

In the paper we consider simple nonempty graphs, and we use the standard no-
tation of graph theory. Let G = (V,E) be a simple graph, and let X ⊂ V be
a non-empty set. By NG(X) = {v ∈ V : ∃u∈X{v, u} ∈ E} we mean the open
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neighborhood of X, by G[X] we mean the subgraph of G induced by the set X,
and by G \X we mean the graph G[V \X]. We say that X is a dominating set of
G if V = NG(X)∪X, and we say that X is a total dominating set if V = NG(X).
In what follows we use NG(v) instead of NG({v}). Let degG(v) = |NG(v)| be the
degree of a vertex v ∈ V (G). By n(G),∆(G) and δ(G) we denote the number of
vertices of G, the maximum and the minimum degree of a vertex of G, respectively.
By a subcubic graph G we mean a graph with ∆(G) ≤ 3. By an isolated vertex (in
a graph G) we mean a vertex v ∈ V (G) with degG(v) = 0, and by an isolated edge

(in a graph G) we mean an edge e = {u, v} such that degG(u) = degG(v) = 1.
We say that X ⊂ V (G) is an independent set if each vertex of G[X] is isolated in
G[X]. By a pendant vertex we mean a vertex of degree 1.

For a given graph G = (V,E), we define an incidence as a pair (v, e), where
vertex v ∈ V is one of the endpoints of edge e ∈ E, i.e., v ∈ e. The set of
all incidences of G will be denoted by I(G), thus I(G) = {(v, e) : v ∈ V ∧ e ∈
E ∧ v ∈ e}. We say that two incidences (v, e) and (w, f) are adjacent if one of
the following holds: (1) v = w and e 6= f ; (2) e = f and v 6= w; (3) e = {v, w},
f = {w, u} and v 6= u.

By an incidence coloring of G we mean a function c : I(G) → N such that
c((v, e)) 6= c((w, f)) for any two adjacent incidences (v, e) and (w, f). The inci-

dence coloring number of G, denoted by χi(G), is the smallest number of colors in
an incidence coloring of G. In what follows we use the simplified notation c(v, e)
instead of c((v, e)).

A finite nonempty set A ⊂ N is an interval if it contains all integers between
minA and maxA. For a given incidence coloring c of graph G and v ∈ V (G) let
Ac(v) = {c(v, e) : v ∈ e∧ e ∈ E(G)}. By an interval incidence coloring of a graph
G we mean an incidence coloring c of G such that for each vertex v ∈ V (G) the
set Ac(v) is an interval. By an interval incidence k-coloring we mean an interval
incidence coloring using all colors from the set {1, . . . , k}. The interval incidence

coloring number of G, denoted by χii(G), is the smallest number of colors in an
interval incidence coloring of G.

1.1. Background and previous results

Alon et al. [1] defined the problem of partitioning a graph into the minimal number
of star forests. Brualdi and Massey [3] formulated a model of incidence coloring of
graphs with references to certain models of coloring of graphs, such as strong edge
and vertex coloring of graphs. Guiduli [9] observed that the problem of incidence
coloring of graphs is a special case of the problem of partitioning a symmetric
digraph into directed star forests.

In [3] the authors conjectured that χi(G) ≤ ∆(G) + 2 holds for every graph
G (incidence coloring conjecture, shortly ICC). This conjecture was disproved by
Guiduli in [9] who observed that Paley graphs have incidence coloring number at
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least ∆+Ω(log∆). In fact, he used the crucial result from [1]. For many classes of
graphs it is shown that the incidence coloring number is at most ∆+2, e.g., trees
and cycles [3], complete graphs [3], complete bipartite graphs [3] (proof corrected
in [19]), planar graphs with girth at least 11 or with girth at least 6 and maximum
degree at least 5 [5], partial 2-trees (i.e., K4-minor free graphs) [4], hypercubes
[18], complete k-partite graphs [15].

In [17] the author proved that ICC holds for subcubic graphs. The incidence
4-colorability problem is NP-complete for semicubic graphs (i.e., subcubic graphs
with vertex degrees equal to 1 or 3) [16] and for semicubic bipartite graphs [15].

In this paper we consider a restriction of the problem of incidence coloring
of graphs in which the colors of incidences at a vertex form an interval. Interval
incidence coloring is a new concept arising from a well-studied model of interval
edge-coloring (see, e.g., [2, 6, 8]), which can be applied to the open-shop scheduling
problem [6, 7]. In [11] the authors introduced the concept of interval incidence
coloring that models a message passing flow in networks, and in [12] the authors
studied applications in one-multicast transmission in multifiber WDM networks.

In [13] the authors proved that the problem of interval incidence k-coloring
of bipartite graphs is polynomial for each k ≤ 6 and ∆ ≤ 3, polynomial for k = 5
and ∆ = 4, and NP-complete for k = 6 and ∆ = 4. In [14] the authors proved
certain lower and upper bounds on the interval incidence coloring number, e.g.,
∆(G)+1 ≤ χii(G) ≤ χ(G) ·∆(G) for an arbitrary graph G, and they determined
the exact values of χii for some basic classes of graphs (e.g., complete k-partite
graphs). In [14] the authors also studied the complexity of the interval incidence
coloring problem for subcubic graphs for which they showed that the problem of
deciding whether χii ≤ 4 is easy, and χii ≤ 5 is NP-complete. The problem of
interval incidence 6-coloring of subcubic graphs remained unsolved.

1.2. Main results

Our main result in the paper is Theorem 21 which states χii(G) ≤ 6 for every
subcubic graph G. To prove it, we state and prove Theorem 8: in any subcubic
graph G with δ(G) ≥ 2 there is a maximal induced bipartite subgraph of G
without isolated vertices, or equivalently, G has a total dominating set S such
that G[S] is a bipartite graph.

2. Maximal Induced Bipartite Subgraphs Without Isolated

Vertices

In this section we prove (in Theorem 8) that any subcubic graph G with δ(G) ≥ 2
contains a maximal induced bipartite subgraph without isolated vertices.
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2.1. Introductory properties

By H ⊂ G we mean that H is a subgraph of G. By H ⊏ G we mean that H is
an induced subgraph of G, i.e., H = G[V (H)].

Observation 1. If G1 ⊏ G2 and G2 ⊏ G3, then G1 ⊏ G3.

Observation 2. Let G1 ⊏ G and G2 ⊏ G. If G1 ⊂ G2, then G1 ⊏ G2.

Let B(G) = {H ⊏ G : NG(V (H)) = V (G) ∧ H is bipartite}, i.e., the set of
all induced bipartite subgraphs of a given graph G such that V (H) is a total
dominating set of G. If H ∈ B(G), then V (H) is a total dominating set of G and,
obviously, H has no isolated vertices.

In the following, let G be any graph. Let B̂(G) be the subfamily of B(G)
consisting of all the elements (graphs) in B(G) that are maximal with respect to
the subgraph relation (⊂).

Observation 3. If H ∈ B(G), then there is H ′ ∈ B̂(G) such that H ⊂ H ′.

By Observations 2 and 3 we have

Observation 4. Let H ∈ B(G). Then, H ∈ B̂(G) if and only if for each v ∈
V (G)\V (H) the subgraph G[V (H)∪{v}] is not bipartite.

Observation 5. If H ∈ B(G) \ B̂(G), then there is a vertex v ∈ V (G) \ V (H)
such that G[V (H) ∪ {v}] ∈ B(G).

Since any dominating set S ⊂ V (G) is a total dominating set if and only if
G[S] has no isolated vertices, we have

Observation 6. Let G be an arbitrary graph and let H ⊂ G. Then, H ∈ B̂(G)
if and only if H is a maximal induced bipartite subgraph (of G) without isolated

vertices.

Let G2
3 be the family of subcubic graphs without isolated and pendant vertices,

i.e., each vertex in a graph of this family has degree 2 or 3. Let M2
3 be the

subfamily of G2
3 consisting of all the graphs for which there is no maximal induced

bipartite subgraph without isolated vertices. Let us denote by M the set of
elements in M2

3 that are minimal with respect to the subgraph relation (⊂). By
Observation 6 we have

Observation 7. Let G ∈ G2
3 . Then, G ∈ M2

3 ⇔ B(G) = ∅ ⇔ B̂(G) = ∅.
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2.2. Main Theorem

Theorem 8. Let G be a subcubic graph with δ(G) ≥ 2. Then, G has a maximal

induced bipartite subgraph without isolated vertices.

By Observation 7, Theorem 8 is equivalent to M = ∅. First, we prove some
structural properties of graphs from M.

Lemma 9. Let G ∈ M. Then, G is a connected graph and ∆(G) = 3.

Proof. Let G ∈ M. Let us assume to the contrary that G = G1 ∪G2, where G1

and G2 are disjoint graphs (without common vertices). Since Gi ( G ∈ M and
Gi ∈ G2

3 , we have Gi /∈ M2
3, for i ∈ {1, 2}. Hence, there exist H1 ∈ B̂(G1) and

H2 ∈ B̂(G2). Thus, H1 ∪H2 ∈ B̂(G), a contradiction.
Since every cycle is either a bipartite graph or it becomes a bipartite graph

after deleting an arbitrary vertex, G is not a cycle, which implies ∆(G) = 3.

Lemma 10. Let G ∈ M and let v be a vertex of degree 2 in G. Then, every

neighbor of v in G has degree 3.

Proof. Let G ∈ M. Suppose to the contrary that there are two adjacent vertices
of degree 2. Since G is not a cycle (by Lemma 9), there is a subgraph P of G
with vertex set {v0, . . . , vk+1} and edges {vi, vi+1}, for i ∈ {0, . . . , k}, such that
degG(v0) = degG(vk+1) = 3, and degG(vi) = 2 for i ∈ {1, . . . , k}, where k ≥ 2.

Suppose v0 6= vk+1. Since G′ = G \ {v1, . . . , vk} ⊏ G ∈ M and G′ ∈ G2
3 ,

we have G′ /∈ M2
3. Hence, there exists H ′ ∈ B̂(G′), and H ′

⊏ G by Observation
1. If v0 ∈ V (H ′), then let H = G[V (H ′) ∪ {v1, . . . , vk−1}], otherwise, let H =
G[V (H ′)∪{v1, . . . , vk}]. In both cases, H ⊏ G, H is a bipartite graph, and V (H)
is a total dominating set, i.e., H ∈ B(G). By Observation 7 we get a contradiction.

Suppose v0 = vk+1. Since degG(v0) = 3, there is c ∈ NG(v0) \ {v1, vk}. If
degG(c) = 3, then let G′ = G \ {v0, . . . , vk}. If degG(c) = 2, then let G′ =
G \ {v0, . . . , vk, c}. In both cases, G′

⊏ G and G 6= G′ ∈ G2
3 . Hence, there is H ′ ∈

B̂(G′). Let H = G[V (H ′)∪ {v0, . . . , vk−1}]. Thus, H ∈ B(G), a contradiction.

Lemma 11. If G ∈ G2
3 contains G0 as a subgraph (see Figure 1), where vertices

v2, v3 ∈ V (G0) are of degree 2 in G, then G /∈ M.

Figure 1. The subgraph G0 of a graph G.
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Proof. Suppose to the contrary that G ∈ M. Suppose G0 ⊂ G. The other po-
ssible edges in G are marked by the dotted lines (in Figure 1).

By degG(v2) = degG(v3) = 2, from Lemma 10 we have degG(v1) = degG(v4)
= 3. Since G′ = G \ {v3} ∈ G2

3 \M2
3, there is H ′ ∈ B̂(G′). Hence, v1 ∈ V (H ′) or

v4 ∈ V (H ′). Thus, H ′ ∈ B(G), a contradiction.

Lemma 12. Let G ∈ M and let v be a vertex of degree 3 in G. Then, at most

one neighbor of v has degree 2.

Proof. Let G ∈ M and let NG(v) = {x, y, z}. Suppose to the contrary that
at least two vertices from NG(v) have degree 2. Let degG(x) = degG(y) = 2.
Let {vx} = NG(x) \ {v} and {vy} = NG(y) \ {v}. By Lemma 10, degG(vx) =
degG(vy) = 3.

Suppose degG(z) = 2. Let {vz} = NG(z) \ {v}. By Lemma 10, degG(vz) = 3.
If any two of the vertices vx, vy, vz are equal, then by Lemma 11 (i.e., because
G0 ⊏ G) we get a contradiction. Hence, vertices vx, vy, vz are different. Since
G′ = G \ {x, y, z, v} ∈ G2

3 \M2
3 , there is H ′ ∈ B̂(G′). Thus, G[V (H ′) ∪ {v, x}] ∈

B(G), a contradiction.
Suppose degG(z) = 3. If vx = vy, then by Lemma 11 we get a contradiction.

Hence, vx 6= vy. Suppose z = vx (the case z = vy can be treated analogously).
Since Gx = G \ {x} ∈ G2

3 \ M2
3, there is Hx ∈ B̂(Gx). Since Hx is maximal in

B(G), we have v ∈ V (Hx) or z ∈ V (Hx). Thus, Hx ∈ B(G), a contradiction.
Then, vertices vx, vy, z are different. Since G′ = G \ {x, y, v} ∈ G2

3 \ M2
3, there

is H ′ ∈ B̂(G′). If z ∈ V (H ′), then let A = V (H ′) ∪ {v}. If z /∈ V (H ′), then let
A = V (H ′) ∪ {v, x}. In both cases, G[A] ∈ B(G), a contradiction.

Let G be any subcubic graph. We say that H ⊂ G is a Q-cycle (of G) if:

(q1) for each v ∈ V (H), degG(v) = 3, and

(q2) H ⊏ G and H is isomorphic to a cycle, i.e., H is an induced cycle, and

(q3) for each vertex v ∈ V (G) \ V (H), |NG(v) ∩ V (H)| ≤ 1.

Lemma 13. Let G ∈ M. Let v ∈ V (G) have all neighbors of degree 3. Then,

for each x ∈ NG(v) there is a Q-cycle Cx such that x ∈ V (Cx), v /∈ V (Cx) and

NG(v) ∩ V (Cx) = {x}.

Proof. Let G ∈ M and let v ∈ V (G) be a vertex with all neighbors of degree 3.
Since G′ = G \ {v} ∈ G2

3 \M
2
3, there is H ′ ∈ B̂(G′). Hence, NG(v) ∩ V (H ′) = ∅.

Let x ∈ NG(v) and let NG(x) = {a, b, v}. Since H ′ is bipartite and maximal
in B(G), we have that a and b belong to the same connected component of H ′,
and the length of each path in H ′ from a to b is odd. Let P ⊂ H ′ be a path
joining x1 = a and xs−1 = b (s is odd), with vertex set {x1, . . . , xs−1} and
edges {xi, xi+1}, for i ∈ {1, . . . , s− 2}. Let x0 = x and let Cx be the graph with
V (Cx) = V (P )∪{x0}, and E(Cx) = E(P )∪{{xs−1, x0}, {x0, x1}}. Since P ⊂ H ′,
we have NG(v) ∩ V (Cx) = {x}, and v /∈ V (Cx).
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Claim 14. For each i ∈ {1, . . . , s− 1}, the following properties are satisfied:

(p1) degG(xi) = 3,

(p2) NG(xi) = {ai, x(i−1) mod s, x(i+1) mod s}, where ai ∈ V (H ′) \ V (Cx),

(p3) NG(ai) ∩ V (H ′) = {xi}.

Proof. We proceed by induction on i. Suppose i = 1. Let X = V (H ′) \ {xi} ∪
{x, v}. Hence, G[X] is bipartite. If degG(xi) = 2 or NG(ai) ∩ V (H ′) 6= {xi},
then G[X] ∈ B(G), a contradiction. If ai /∈ V (H ′) \ V (Cx), then ai /∈ V (H ′)
or ai ∈ V (Cx). If ai /∈ V (H ′), then NG(ai) ∩ V (H ′) 6= {xi} (otherwise H ′ is
not maximal in B(G)), a contradiction. If ai ∈ V (Cx), then G[X] ∈ B(G), a
contradiction.

Suppose the properties (p1), (p2), (p3) hold for 1, . . . , i − 1 (2 ≤ i ≤ s − 1).
Hence, each path joining x1 and xs−1 in H ′ contains x1, . . . , xi. Let X = V (H ′) \
{xi} ∪ {x, v}. Hence, G[X] is bipartite. The rest of the proof of properties
(p1), (p2), (p3) for i is literally the same as in the case i = 1.

We show that Cx is a Q-cycle. Since degG(x) = 3, by (p1) we have (q1). Since
v /∈ V (Cx) and ai /∈ V (Cx) (by (p2)), for i ∈ {1, . . . , s − 1}, we have that Cx is
an induced cycle of G. Since ai ∈ V (H ′) (by (p2)), we have ai 6= v. Thus, by (p3)
we get |NG(ai) ∩ V (Cx)| ≤ 1, for i ∈ {1, . . . , s− 1}.

We say that H is a Q2-cycle (of G) if H is a Q-cycle of G, and it holds

(q4) for each v ∈ NG(V (H)) \ V (H), degG(v) = 2.

Lemma 15. Let G ∈ M and let C be a Q-cycle of G. Then, C is a Q2-cycle.

Proof. Let G ∈ M. Let C be a Q-cycle of G with the vertex set {x0, . . . , xs−1},
and edges {x0, x1}, . . . , {xs−2, xs−1}, {xs−1, x0}. Let S = {0, . . . , s − 1}. Let
{ai} = NG(xi) \ V (C), for i ∈ S. If degG(ai) = 2, then let {bi} = NG(ai) \ {xi}.
Hence, bi /∈ V (C). By Lemma 10 we have degG(bi) = 3. Let G′ = G \ (V (C) ∪
{ai : degG(ai) = 2 ∧ i ∈ S}). Since G′ ∈ G2

3 \M
2
3, there is H ′ ∈ B̂(G′).

Suppose to the contrary that C is not a Q2-cycle, i.e., there exists r ∈ S
such that degG(ar) = 3. Let f : V (G′) → {0, 1} be the characteristic function of
V (H ′), i.e., f(u) = 1 if and only if u ∈ V (H ′). Let us consider two cases.

(i) For each i ∈ S: degG(ai) = 2 ⇒ f(bi) = 0 and degG(ai) = 3 ⇒ f(ai) = 0.

(ii) For some t ∈ S: degG(at) = 2 ∧ f(bt) = 1 or degG(at) = 3 ∧ f(at) = 1.

We construct a function f̃ : V (G) → {0, 1} such that f̃(u) = f(u) for each
u ∈ V (G′). Let u ∈ V (G) \ V (G′). We define f̃(u) depending on cases (i), (ii).

(i) Let f̃(xr) = 0 and let f̃(xj) = 1, for each j ∈ S \ {r}. For each j ∈ S, if
degG(aj) = 2, then f̃(aj) = 1,
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(ii) Take any t ∈ S, if exists, such that degG(at) = 2∧f(bt) = 1 and let f̃(at) = 1.
Then, for each j ∈ S, j 6= t, if degG(aj) = 2, then f̃(aj) = 1 − f(bj). Next,
for each j ∈ S, if degG(aj) = 2 ∧ f(bj) = 0, then f̃(xj) = 1. Finally, for
each j ∈ S, if degG(aj) = 3 or degG(aj) = 2 ∧ f(bj) = 1, then f̃(xj) =
1− f̃(a(j+1) mod s).

Let H = G[{u ∈ V (G) : f̃(u) = 1}]. In the case (i), xr /∈ V (H) ∩ V (C).
Hence, H is a bipartite graph. For each u ∈ V (G) \ V (G′), u 6= xr, we have
that u ∈ V (H). Thus, V (H) is a total dominating set of G and H ∈ B(G), a
contradiction.

In case (ii), if there is no t ∈ S such that degG(at) = 2 ∧ f(bt) = 1, then,
by assumption, there is t ∈ S such that degG(at) = 3 ∧ f(at) = 1, so finally
f̃(at) = 1 for some t ∈ S. Hence, there is p ∈ S such that f̃(xp) = 0. Thus,
V (C) \ V (H) 6= ∅.

Let us remind that for each i ∈ S \ {t}, if degG(ai) = 2 and f̃(ai) = 1, then
f(bi) = 0. Let X = {i ∈ S : degG(ai) = 3 ∧ f̃(ai) = 1} ∪ {t}. Suppose that
for some two i, j ∈ X, there is a path in H between ai and aj with successive
vertices xi, x(i+1) mod s, . . . , xj . Hence, f̃(xi) = f̃(x(i+1) mod s) = · · · = f̃(xj) = 1,

which implies that f̃(a(i+1) mod s) = 0, f̃(a(i+2) mod s) = 0, . . . , f̃(aj) = 0, a con-
tradiction. Thus, H is a bipartite graph.

For every j ∈ S we have NG(aj) ∩ V (H) 6= ∅, and f̃(aj) = 1 or f̃(aj) =
0∧ f̃(x(j−1) mod s) = 1. Hence, we get NG(xj)∩V (H) 6= ∅. Thus, V (H) is a total
dominating set and H ∈ B(G), a contradiction.

By Lemmas 10, 12, 13 and Lemma 15, and by the definition of Q2-cycle we
have the following corollary.

Corollary 16. Let G ∈ M and v ∈ V (G). The following properties are satisfied:

(i) degG(v) = 2 if and only if vertex v has all neighbors of degree 3,

(ii) degG(v) = 3 if and only if exactly one neighbor of v has degree 2,

(iii) if degG(v) = 3, then there is exactly one Q2-cycle containing v,

(iv) if degG(v) = 2, then vertex v has two neighbors from disjoint Q2-cycles.

By Corollary 16 we have the next corollary.

Corollary 17. Let G ∈ M. The graph G satisfies the following properties:

(i) there is an integer q ≥ 1 such that V (G) = D ∪
⋃q

i=1 V (Ci), where for each

i ∈ {1, . . . , q} the graph Ci is a Q2-cycle and D is the set of all vertices of

degree 2,

(ii) E(G) = {{u, v} : ∃i∈{1,...,q}({u, v} ∈ E(Ci) ∨ (u ∈ V (Ci) ∧ v ∈ D))}.

Proof of Theorem 8. Suppose to the contrary that G ∈ M.
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By Corollary 17, there is q ≥ 1 such that V (G) = D ∪
⋃q

i=1 V (Ci), where for
each i ∈ {1, . . . , q} the graph Ci is a Q2-cycle and D is the set of all vertices of
degree 2, and

E(G) = {{u, v} : ∃i∈{1,...,q}({u, v} ∈ E(Ci) ∨ (u ∈ V (Ci) ∧ v ∈ D))}.

Let Q = (D ∪
⋃q

i=1{ci}, EQ), where for each i ∈ {1, . . . , q} vertex ci corresponds
to the cycle Ci and

EQ = {{v, ci} : i ∈ {1, . . . , q} ∧ v ∈ D ∧ ∃x∈V (Ci){v, x} ∈ E(G)}.

By Corollary 16 and Corollary 17 we have that Q is a simple bipartite graph with
partitions D and C =

⋃q
i=1{ci}. Obviously, for all vertices v ∈ D and c ∈ C we

have that degQ(v) = 2 < degQ(c). Thus, by Hall’s Marriage Theorem [10] there
is a matching S in Q covering all vertices from partition C.

Let

S′ = {{v, x} ∈ E(G) : v ∈ D ∧ ∃i∈{1,...,q}{v, ci} ∈ S ∧ x ∈ V (Ci)}

and let

V ′ =

{

x ∈

q
⋃

i=1

V (Ci) : ∃e∈S′x ∈ e

}

.

Let H = G[V (G) \ (D ∪ V ′)]. For each i ∈ {1, . . . , q} there is x such that {x}
= V (Ci) ∩ V ′ and NG(x) ∩ V (H) 6= ∅. If y ∈ V (Ci) and x 6= y, then NG(y)∩
V (H) 6= ∅. Hence, H is an induced bipartite graph without isolated vertices. Since
for each v ∈ D at most one neighbor of v belongs to V ′, we have NG(v)∩V (H) 6= ∅.
Thus, NG(V (H)) = V (G) and H ∈ B(G), a contradiction.

3. Interval Incidence 6-Coloring of Subcubic Graphs

In this section we prove our main result, i.e., Theorem 21, which states χii(G) ≤
2∆(G) for each subcubic graph G. By Theorem 8 we have the following lemma.

Lemma 18. Let G be a connected graph and G ∈ G2
3 . Let H ∈ B̂(G) and let

A,B ⊂ V (H) be any partition of V (H), such that A and B are disjoint indepen-

dent sets and A∪B = V (H). Then, A and B are disjoint independent dominating

sets, and the graph G[V (G) \ V (H)] has only isolated vertices and isolated edges.

Proof. Let v ∈ V (G) \ V (H). If NG(v) ∩ V (H) ⊂ A or NG(v) ∩ V (H) ⊂ B,
then G[V (H) ∪ {v}] is a bipartite graph, a contradiction. Thus, NG(v) ∩ A 6= ∅
and NG(v) ∩ B 6= ∅. Let v ∈ A (v ∈ B). Since H is an induced graph without
isolated vertices, we have v ∈ NG(B) (v ∈ NG(A)). Hence, A and B are disjoint
independent dominating sets.
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Since G is subcubic and |NG(v)∩V (H)| ≥ 2 for any v ∈ V (G)\V (H), graph
G[V (G) \ V (H)] has only isolated vertices and isolated edges.

Lemma 19. Let G be a subcubic non-bipartite graph with ∆(G) = 3. Then,

there is a vertex coloring c : V (G) → {1, 2, 3, 4} such that for each v ∈ V (G) the

following properties hold:

(i) if degG(v) = 1, then c(v) ∈ {1, 4},

(ii) if degG(v) ≥ 2 and c(v) 6= p, then ap(v) ≥ 1, for p ∈ {1, 4},

(iii) ai(v) ≤ |c(v)− i|, for i ∈ {1, 2, 3, 4},

where ai(v) = |{w ∈ NG(v) : c(w) = i}|, for i ∈ {1, 2, 3, 4}.

Proof. If δ(G) = 1, then we successively remove pendant vertices from graph
G, until there is no pendant vertex. Let us denote the resulting graph by G′.
Obviously, δ(G′) ≥ 2. Let us observe that we cut off all trees attached to G.

By Theorem 8 we have B̂(G′) 6= ∅. Let H be any element of B̂(G′) with the
largest possible number of vertices.

Let A,B ⊂ V (H) be any two partite sets of V (H), i.e., A and B are disjoint
independent sets and A ∪ B = V (H). By Lemma 18, A and B are disjoint
independent dominating sets of G′, and the graph G[V (G′) \ V (H)] has only
isolated vertices and isolated edges. Let Ii ⊂ V (G′)\V (H) be the set of all vertices
of degree i in G′, for i ∈ {2, 3}. Let us define the partition I3 = IA3 ∪ IB3 ∪ I23 :

• IA3 = {v ∈ I3 : |NG′(v) ∩A| = 2 ∧ |NG′(v) ∩B| = 1},

• IB3 = {v ∈ I3 : |NG′(v) ∩A| = 1 ∧ |NG′(v) ∩B| = 2},

• I23 = {v ∈ I3 : |NG′(v) ∩A| = 1 ∧ |NG′(v) ∩B| = 1}.

Note that I2, I
A
3 , I

B
3 are independent sets in G′, each vertex v ∈ I23 belongs to an

isolated edge in G′[I23 ], and each vertex from I2 has neighbors from A and B.

Let us define a coloring c : V (G) → {1, 2, 3, 4} in the following steps.

(C1) If v ∈ A, then c(v) = 1, and if v ∈ B, then c(v) = 4.

(C2) If v ∈ IB3 , then c(v) = 2, and if v ∈ IA3 , then c(v) = 3.

(C3) For each successive v ∈ I2 we assign a color following the algorithm: if c(v)
is not determined, then let {u} = NG′(v) ∩ A. If there is x ∈ NG′(u) such
that c(x) = 2, then let c(v) = 3. Otherwise, for each vertex x ∈ NG′(u)
either c(x) ∈ {3, 4} or c(x) is not determined, and then let c(v) = 2.

(C4) For each successive {v, w} ∈ E(G′[I23 ]) we assign colors to both v and w
following the algorithm: if c(v) and c(w) are not determined, then let {u} =
NG′(v) ∩ A. If there is x ∈ NG′(u) such that c(x) = 2, then let c(v) = 3
and c(w) = 2. Otherwise, for each vertex x ∈ NG′(u) either c(x) ∈ {3, 4}
or c(x) is not determined, and then let c(v) = 2 and c(w) = 3.

(C5) For each v ∈ V (G′) such that degG′(v) < degG(v), there is a tree Tv such
that V (Tv) ⊂ V (G) \V (G′) and let {w} = V (Tv)∩NG(v). Let d : V (Tv) →
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{a, b} be a 2-coloring of Tv such that d(w) = a. Suppose c(v) ≤ 2. For each
u ∈ V (Tv), if d(u) = a, then let c(u) = 4, and if d(u) = b, then let c(u) = 1.
Suppose c(v) ≥ 3. For each u ∈ V (Tv), if d(u) = a, then let c(u) = 1, and
if d(u) = b, then let c(u) = 4.

In step (C1) we colored V (H) = A∪B with colors 1 and 4, in steps (C2)–(C4)
we colored vertices from I2 ∪ I3 with colors 2 or 3, and in step (C5) we colored
vertices from V (G) \ V (G′) with colors 1 or 4. Since vertices colored with an
arbitrary color form an independent set, c is a vertex 4-coloring of G.

Let v ∈ V (G) and let degG(v) = 1. Then, v ∈ V (G) \ V (G′) and, by (C5),
c(v) ∈ {1, 4}. Thus, we get the property (i). Let degG(v) ≥ 2. If v ∈ V (G)\V (G′),
then, by (C5), the property (ii) holds. Let v ∈ V (G′). Since A and B are disjoint
independent dominating sets of G′, the property (ii) holds.

Since c is a proper coloring of G, there is ac(v)(v) = 0 for each v ∈ V (G).
Let v ∈ V (G)\V (G′). By step (C5), c(v) ∈ {1, 4}. If c(v) = 1, then a2(v) = 0,

a3(v) ≤ 1 and a4(v) ≤ 3. If c(v) = 4, then a3(v) = 0, a2(v) ≤ 1 and a1(v) ≤ 3.
Let v ∈ V (G′) \V (H). If v ∈ IA3 , then c(v) = 3, a1(v) = 2, a2(v) = 0, a4(v) =

1. If v ∈ IB3 , then c(v) = 2, a1(v) = 1, a3(v) = 0, a4(v) = 2. If v ∈ I2, then c(v) ∈
{2, 3}. If degG′(v) = degG(v), then a1(v) = a4(v) = 1, and a2(v) = a3(v) = 0. If
degG′(v) < degG(v), then if c(v) = 2, then a1(v) = 1, a2(v) = a3(v) = 0, a4(v) =
2, and if c(v) = 3, then a1(v) = 2, a2(v) = a3(v) = 0, a4(v) = 1. If v ∈ I23 , then
c(v) ∈ {2, 3}. If c(v) = 2, then a1(v) = a3(v) = a4(v) = 1. If c(v) = 3, then
a1(v) = a2(v) = a4(v) = 1.

Let v ∈ A ∪ B. Since A and B are disjoint dominating sets of G′ and
H ∈ B̂(G′), it suffices to prove that if c(v) = 1, then a2(v) ≤ 1, and if c(v) = 4,
then a3(v) ≤ 1.

Suppose to the contrary that c(v) = 1 and a2(v) = 2 for some v ∈ A. The
case c(v) = 4 and a3(v) = 2, for some v ∈ B, is analogous. Let x, y ∈ NG′(v) such
that c(x) = c(y) = 2. Since B is a dominating set of G′, there is w ∈ NG′(v) ∩B
with c(w) = 4. By the definition of coloring c, we have v, x, y, w ∈ V (G′) and
v, w ∈ V (H).

Since c(x) = c(y) = 2, we have a1(x) = a1(y) = 1, a3(x) ≤ 1, a3(y) ≤ 1,
1 ≤ a4(x) ≤ 2 and 1 ≤ a4(y) ≤ 2. Let us consider the following cases:

• x /∈ NG′(w) and y /∈ NG′(w). If edge {v, w} is isolated in H, then let
W = V (H) ∪ {x, y}. Otherwise, let W = V (H) ∪ {x, y} \ {v}.

• x ∈ NG′(w) or y ∈ NG′(w). Let W = V (H) ∪ {x, y} \ {v}.

In both cases, the graph G′[W ] ∈ B(G′) and |V (G′[W ])| > |V (H)|, a contradic-
tion. Thus, the coloring c satisfies the property (iii).

Proposition 20. [14] For any graph G, ∆(G) + 1 ≤ χii(G) ≤ χ(G) ·∆(G).

We prove that an interval incidence 6-coloring always exists for any subcubic
graph G with ∆(G) = 3.
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Theorem 21. Let G be a subcubic graph. Then, χii(G) ≤ 2∆(G).

Proof. If G is a subcubic bipartite graph, then by Proposition 20 we have
χii(G) ≤ 2∆(G). If ∆(G) = 2, then one can easily construct an interval incidence
4-coloring. Thus, χii(G) ≤ 2∆(G). Let G be a subcubic non-bipartite graph
with ∆(G) = 3. By Lemma 19, there is a vertex coloring c : V (G) → {1, 2, 3, 4}
satisfying the properties (i), (ii), (iii) from Lemma 19.

We construct an incidence coloring f : I(G) → {1, 2, 3, 4, 5, 6} in three steps.
In the first step, using the coloring c, we define the interval Af (v) for each

vertex v ∈ V (G), as follows. If degG(v) = 2 and c(v) ∈ {2, 3}, then let Af (v) =
{3, 4}. If c(v) = 4 and degG(v) = 1, then Af (v) = {6}. If c(v) = 4 and
degG(v) = 2, then Af (v) = {5, 6}. In the other cases, let Af (v) = {c(v), . . . , c(v)+
degG(v)− 1}. Thus, by Lemma 19 (i)–(iii) we get

(a1) if degG(v) = 1, then c(v) ∈ {1, 4} and Af (v) = {c(v)},

(a2) if degG(v) = 2, then if c(v) ∈ {1, 3}, then Af (v) = {c(v), c(v) + 1} and if
c(v) ∈ {2, 4}, then Af (v) = {c(v) + 1, c(v) + 2},

(a3) if degG(v) = 3, then Af (v) = {c(v), c(v) + 1, c(v) + 2}.

In the second step, for each v ∈ V (G), we construct a sequence Lf (v) (i.e., a
linear ordered set) from elements of NG(v), as follows (see Figure 2).

(l1) Suppose degG(v) = 1. If NG(v) = {x}, then let Lf (v) = (x).

(l2) Suppose degG(v) = 2. Let NG(v) = {x, y}, where c(x) ≤ c(y). Then,
– if c(v) ∈ {1, 4}, then let Lf (v) = (x, y),

– if c(v) ∈ {2, 3}, then let Lf (v) = (y, x).

(l3) Suppose degG(v) = 3. Let NG(v) = {x, y, z}, where c(x) ≤ c(y) ≤ c(z).
Then,
– if c(v) ∈ {1, 4}, then let Lf (v) = (x, y, z),

– if c(v) = 2, then let Lf (v) = (y, z, x),

– if c(v) = 3, then let Lf (v) = (z, x, y).

By vi we mean the i-th element of the sequence Lf (v), i.e., Lf (v) = (v1, . . .).
In the final step, for each vertex v, we define the incidence coloring f as

follows: f(v, {v, vi}) = minAf (v) + i− 1, for i ∈ {1, . . . , degG(v)}.

In Figure 2 the white vertex is the vertex v, and the list above is Lf (v). By
Lemma 19 (i)–(iii), the set of all possible values of c of a vertex is as given in the
curly brackets below the vertex. The colors of incidences at the white vertex (i.e.,
v) are given at the edges adjacent to v.

Obviously, all the incidences at vertex v are colored with different colors from
Af (v). Observe that the set of colors Af (v) is an interval of integers.

We prove that the coloring f is an incidence coloring. It is enough to prove
that for each vertex v ∈ V (G) and each vertex w ∈ NG(v) we have f(v, {v, w}) /∈
Af (w), or, equivalently, f(v, {v, w}) < minAf (w) or f(v, {v, w}) > maxAf (w).
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Figure 2. Interval coloring of incidences at the white vertex v, according to its degree
and the values of c at the neighbors x, y, z of v. The set of possible values of c of a vertex
is given in the curly brackets below the vertex. The list Lf (v) is given above the white
vertex v.

Suppose that c(v) = 1. Then, Af (v) ⊂ {1, 2, 3} and minAf (v) = 1. By
the construction of Lf (v) we have: if degG(v) ≥ 1, then c(v1) ∈ {2, 3, 4}, and if
degG(v) = 2, then c(v2) = 4, and if degG(v) = 3, then c(v2) ∈ {3, 4} and c(v3) = 4
(see Figure 2). Hence, for each i ∈ {1, . . . , degG(v)} we have f(v, {v, vi}) =
minAf (v) + i− 1 < i+ 1 ≤ minAf (vi).

Suppose that c(v) = 2. Then, Af (v) ⊂ {2, 3, 4}. Let degG(v) = 3. Hence,
minAf (v) = 2, and c(v1) ∈ {3, 4} and c(v2) = 4∧c(v3) = 1. Thus, f(v, {v, vi}) =
minAf (v) + i− 1 = i+1 < i+2 ≤ minAf (vi), for i ∈ {1, 2}, and f(v, {v, v3}) =
minAf (v) + 2 = 4 > 3 ≥ maxAf (v3). Let degG(v) = 2. Hence, minAf (v) = 3,
and c(v1) = 4 and c(v2) = 1. Thus, f(v, {v, v1}) = minAf (v) = 3 < 4 ≤
minAf (v1) and f(v, {v, v2}) = 4 > 3 ≥ maxAf (v2).

Suppose that c(v) = 3. Then, Af (v) ⊂ {3, 4, 5} and minAf (v) = 3. Let
degG(v) = 3. Hence, c(v1) = 4 and c(v2) = 1 and c(v3) ∈ {1, 2}. Thus,
f(v, {v, v1}) = minAf (v) = 3 < 4 ≤ minAf (v1), and f(v, {v, vi}) = minAf (v) +
i− 1 > i+1 ≥ maxAf (vi), for i ∈ {2, 3}. Let degG(v) = 2. Hence, c(v1) = 4 and
c(v2) = 1. Thus, f(v, {v, v1}) = 3 < 4 ≤ minAf (v1) and f(v, {v, v2}) = 4 > 3 ≥
maxAf (v2).

Suppose that c(v) = 4. Then, Af (v) ⊂ {4, 5, 6}. Let degG(v) = 3. Hence,
c(v1) = 1 and c(v2) ∈ {1, 2} and c(v3) ∈ {1, 2, 3} and c(v2) ≤ c(v3). Thus,
f(v, {v, vi}) = minAf (v)+i−1 ≥ i+3 > i+2 ≥ maxAf (vi), for each i ∈ {1, 2, 3}.
Let degG(v) = 2. Hence, c(v1) = 1 and c(v2) ∈ {1, 2, 3}, and Af (v) = {5, 6}.
Thus, f(v, {v, v1}) = 5 > maxAf (v1) and f(v, {v, v2}) = 6 > maxAf (v2). Let
degG(v) = 1. Hence, c(v1) ∈ {1, 2, 3}. Thus, f(v, {v, v1}) = 6 > 5 ≥ maxAf (v1).

In all the cases we proved that f(v, {v, vi}) /∈ Af (vi) for each vi ∈ NG(v).
Thus, f is an interval incidence 6-coloring of G.
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4. Summary

In this paper we proved that for any subcubic graph G, χii(G) ≤ 2∆(G). In
[14] we proved that the upper bound of 2∆(G) on χii(G) holds for each complete
k-partite graph G and this bound is valid for other classes of graphs. Thus, we
state the following

Conjecture 22 [Interval Incidence Coloring Conjecture (IICC)]. For any graph

G, χii(G) ≤ 2∆(G).
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