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1. Introduction

A set S of vertices in a graph G is called a dominating set of G if every vertex
in V (G) \ S is adjacent to some vertex in S. The set S is said to be a total

dominating set of G if every vertex in V (G) is adjacent to some vertex in S. The
domination problem is to determine the minimum cardinality of all dominating

sets in G. Similarly, the total domination problem is the problem of determining
the minimum cardinality of such sets in G. A locating-dominating set in a con-
nected graph G is a dominating set S of G such that for every pair of vertices u
and v in V (G)\S, N(u)∩S 6= N(v)∩S. The minimum cardinality of a locating-
dominating set of G is the locating-domination number γL(G) [6]. A locating-total

dominating set in a connected graph G is a total dominating set S of G such that
for every pair of vertices u and v in V (G)\S, N(u)∩S 6= N(v)∩S. The minimum
cardinality of a locating total-dominating set of G is the locating-total domination

number γLt (G) [6]. Determining if an arbitrary graph has a dominating set and
locating-dominating set of a given size are well-known NP -complete problems
[1, 5].

Total domination plays a role in the problem of placing monitoring devices
in a system in such a way that every site in the system, including the monitors,
is adjacent to a monitor site so that, if a monitor goes down, then an adjacent
monitor can still protect the system. Installing the minimum number of expensive
sensors in the system which will transmit a signal at the detection of faults and
uniquely determine the location of the faults motivates the concept of locating-
dominating sets and locating-total dominating sets [6].

The locating-total domination problem has been discussed for trees [2, 3],
cubic graphs and grid graphs [8], corona and composition of graphs [10], claw-
free cubic graphs [7], and so on.

The paper is organized as follows. In Section 2, we obtain an improved bound
for locating-total domination of regular graphs. Further we prove that the bound
is tight for certain families of regular graphs. In Section 3, we prove that the
locating-total domination problem is NP -complete.

2. Lower Bound for the Locating-Total Domination Number

All graphs considered in this paper are simple and connected.

Let G = (V,E) be a graph and S ⊆ V (G), a dominating set of G. By
the shadow of a vertex u ∈ V (G) on S, we mean the set Su = S ∩ N [u] where
N [u] = N(u)∪{u}. The profile of u ∈ V (G) is defined to be the (dG(u)+1)-tuple
π(u) with entries |Sx| where x ∈ N [u], in ascending order. The share of a vertex
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u ∈ S in S is defined by

γ(u, S) =
∑

x∈N [u]

1

|Sx|
.

When the set S is clear from the context, we refer to γ(u, S) simply as the share
of u and denote it by γ(u).

The following lemma is a powerful tool in obtaining lower bounds on various
flavors of domination numbers. This result was given in [11].

Lemma 2.1 [11]. Let G be a graph of order n and let S be a dominating set

of G. Then
∑

u∈S γ(u) = n.

In what follows, we give an improved lower bound for γLt (G) when G is
regular.

2.1. Improved lower bound for regular graphs

Henning et al. [8] have proved that the locating-total domination number for a
graph G satisfies the inequalities γLt (G) ≥ ⌊log2 n⌋ and γLt (G) ≥ (diameter(G)
+ 1)/2.

In this section, we have obtained an improved lower bound for the locating-
total domination number for regular graphs. For proving the main result, we
need the following.

Lemma 2.2. Let S be a locating-total dominating set of a k-regular graph G of

order n, for some positive integer k ≥ 2. Then γ(u) ≤ k+2
2 , for each u ∈ S.

Proof. Let u ∈ S. Since S is a total dominating set, at least one vertex v in N(u)
belongs to S. Now for any two distinct vertices x and y of N [u] we claim that
|Sx| = |Sy| = 1 is not possible. For, if |Sx| = |Sy| = 1, then N(x)∩S = N(y)∩S,
a contradiction. Therefore |Sx| = 1 for at most one vertex x of N [u]. For all
vertices y 6= x in N [u], |Sy| ≥ 2. Hence for all vertices y 6= x in N [u], 1

|Sy |
≤ 1

2 .

Thus we have γ(u) =
∑

w∈N [u]
1

|Sw| ≤ 1 + k(12) =
k+2
2 .

Theorem 2.3. Let G be a k-regular graph of order n. Then γLt (G) ≥
⌈

2n
k+2

⌉

.

Proof. Let S be a locating-total dominating set of G. By Lemma 2.2, we have
γ(u) ≤ k+2

2 , for all u ∈ S. By Lemma 2.1, n =
∑

u∈S γ(u) ≤ k+2
2 |S| . Therefore

|S| ≥
⌈

2n
k+2

⌉

.

Remark 1. For a given k, there exists an integer n, n large, such that
⌈

2n
k+2

⌉

>

⌊log2 n⌋. Such a pair of numbers is denoted by n(k). Thus our bound obtained
in Theorem 2.3 is better than the bound obtained by Henning et al. [8].
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In the sequel we prove that the lower bound obtained in Theorem 2.3 is sharp
for extended cycle-of-ladders and circulant networks. Without loss of generality
we refer to the vertices in these graphs by their labels.

2.2. γL

t
of extended cycle-of-ladder ECL(2l, s)

In [4], Fang introduced a network called cycle-of-ladder and proved that it is a
spanning subgraph of the hypercube network, thereby proving that hypercube
network is bipancyclic. In this section, we derive a new network from cycle-of-
ladder and call it the extended cycle-of-ladder network.

(a) (b)

(c)

Figure 1. Illustrates the proof of Proposition 2.

Definition [9]. The n-ladder graph L of length n is defined as P2×Pn+1, where
Pn+1 is a path on n+ 1 vertices, n ≥ 1.

The graph obtained via this definition has the advantage of looking like a
ladder having two rails and n+ 1 rungs between them. The length of the ladder
is defined as n.

Definition [4]. A cycle-of-ladder is a graph containing a cycle Cb of length 2l
called the bone cycle and l ladders L1, L2, . . . , Ll with Rb(1), Rb(2), . . . , Rb(l) as
the bottom rungs such that Rb(i)’s are respectively the alternate edges in Cb,
1 ≤ i ≤ l. We denote the cycle-of-ladder as CL(2l, s), where l and s represent
the number of ladders and the length of each ladder, respectively.

For convenience we label the vertices of Li as l
i
j,1 and lij,2 where 0 ≤ j ≤ s and

1 ≤ i ≤ l in CL(2l, s). Figure 2(a) illustrates (l10,1, l
1
0,2, l

2
0,1, l

2
0,2, l

3
0,1, l

3
0,2, l

4
0,1, l

4
0,2,

l10,1) as the bone cycle and the edges (l10,1, l
1
0,2), (l

2
0,1, l

2
0,2), (l

3
0,1, l

3
0,2), (l

4
0,1, l

4
0,2) as

Rb(1), Rb(2), Rb(3) and Rb(4), respectively.

We add l number of edges to CL(2l, s) to obtain a 3-regular graph and call
it the extended cycle-of-ladder ECL(2l, s).

Definition. The extended cycle-of-ladder ECL(2l, s) is obtained from CL(2l, s)
by adding edges between lis,2 and li+1

s,1 , where 1 ≤ i ≤ l − 1, and between lls,2 and

l1s,1.

Proposition 2. Let G be an extended cycle-of-ladder ECL(2l, s) with l ≡ 0
(mod 2) and s ≡ 4 (mod 5). Then γLt (ECL(2l, s)) = 4l(s+ 1)/5.
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Proof. Label the vertices of L(i) as lij,1 and lij,2 where 0 ≤ j ≤ s and 1 ≤ i ≤ l
in ECL(2l, s). See Figure 2(b). Since s ≡ 4 (mod 5), s + 1 is a multiple of 5.
We have s + 1 rungs in each ladder Li, 1 ≤ i ≤ l. Partition the s + 1 rungs
into sets P1, P2, . . . , P(s+1)/5 of five consecutive rungs beginning from the bottom
rung in each ladder. Let S contain the vertices in the second and fourth rungs of

each partition. In other words, S =
⋃

1≤i≤⌈s/5⌉

⋃

1≤j≤l/2

{

l2j−1
5i−4,1, l

2j−1
5i−2,1, l

2j−1
5i−4,2,

l2j−1
5i−2,2, l

2j
5i−4,1, l

2j
5i−2,1, l

2j
5i−4,2, l

2j
5i−2,2

}

. We claim that S is a minimum locating-

total dominating set of ECL(2l, s). Clearly S is a total dominating set. We
have only to prove that S is a locating-total dominating set of ECL(2l, s). Let
u, v ∈ V \ S. If u and v are in different ladders, then N(u) ∩ S 6= N(v) ∩ S.
Suppose u and v are in the same ladder, say L. Suppose N(u) ∩ S = N(v) ∩ S.
If |N(u) ∩ S| = |N(v) ∩ S| = 3, then u, v and the three vertices adjacent to both
u and v induce a subgraph shown in Figure 1(a), which is not possible by the
definition of extended cycle-of-ladder. If |N(u) ∩ S| = |N(v) ∩ S| = 2, then u, v
and the two vertices adjacent to both u and v induce a subgraph shown in Figure
1(b), which is not possible by the choice of S. Now |N(u) ∩ S| = |N(v) ∩ S| = 1
is not possible (see Figure 1(c)), since at least one of u, v has two vertices of
S adjacent to it, contradicting N(u) ∩ S = N(v) ∩ S. Thus S is a locating-
total dominating set in ECL(2l, s). Now |S| = 8(⌈s/5⌉)(l/2) = 4l(s + 1)/5. By
Theorem 2.3, γLt (ECL(2l, s)) = 4l(s+ 1)/5.

(a) (b)

Figure 2. (a) CL(8, 4).

(b) Vertices in a locating-total dominating set of ECL(8, 9) are circled.
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2.3. γL

t
of circulant graph G(n,±{1, 2})

Definition [12]. The undirected circulant graph G(n,±S), where S ⊆ {1, 2,
. . . , j}, 1 ≤ j ≤ ⌊n/2⌋, the vertex set V = {0, 1, . . . , n − 1} and the edge set
E = {(i, k) : |k − i| ≡ s(mod n), s ∈ S}.

For brevity, we use the label 0, 1, 2, . . . , n− 1 as 1, 2, . . . , n in G(n,±S).

Proposition 3. Let G be a circulant graph G(n,±{1, 2}) where n ≥ 7. Then
γLt (G(n,±{1, 2})) = ⌈n/3⌉ if n ≡ 0, 1, 2, 4 (mod 6).

Proof. Label the vertices of G(n,±{1, 2}) from 1 to n, sequentially with clock-
wise sense. We begin with the case when n ≡ 0 (mod 6), where all labels are
taken modulo n. Let S =

⋃

1≤k≤n/6{n − 6k + 3, n − 6k + 1}, 1 ≤ k ≤ n/6. We
claim that S is a locating-total dominating set of G(n,±{1, 2}). Let NV \S(S)

denote the set of all neighborhood in V \ S of members of S. For 1 ≤ k ≤ n/6,
it is easy to see that NV \S(S) = N(S) ∩ V \ S = V \ S.

Moreover (n−6k+3, n−6k+1) is an edge in G(n,±{1, 2}). Therefore S is a
total dominating set in G(n,±{1, 2}). We have only to show that S is a locating-
total dominating set. For 1 ≤ k ≤ n/6, N(n−6k+2)∩S = {n−6k+3, n−6k+1},
N(n−6k+4)∩S = {n−6k+3}, N(n−6k+5)∩S = {n−6k+3, n−6k+7} and
N(n−6k+6)∩S = {n−6k+7}, which are all distinct. Now |S| = 2(n/6) = ⌈n/3⌉.
See Figure 3(a). By Theorem 2.3, γLt (G(n,±{1, 2})) = 2n/(k+2) = 2n/(4+2) =
n/3, when n ≡ 0 (mod 6).

When n ≡ 1, 2 (mod 6), S =
⋃

1≤k≤n/6{n − 6k + 3, n − 6k + 1} ∪ {1}, 1 ≤
k ≤ ⌊n/6⌋; and when n ≡ 4 (mod 6), S =

⋃

1≤k≤n/6{n−6k+3, n−6k+1}∪{1, 3},
1 ≤ k ≤ ⌊n/6⌋ are respectively the minimum locating-total dominating sets in
G(n,±{1, 2}). Thus by Theorem 2.3, γLt (G(n,±{1, 2})) = ⌈n/2⌉, when n ≡ 0, 1,
2, 4 (mod 6). See Figure 3(b).

1

2

3

4

5

6

7

8

9

10

11

12

(a)

1

2

3

5

6

7

8

9

10

11

12

13

4

(b)

Figure 3. (a) Vertices in a locating-total dominating set of G(12,±{1, 2}) and

(b) vertices in a locating-total dominating set of G(13,±{1, 2}) are circled.
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3. Locating-Total Domination Problem is NP -Complete

The locating-domination problem and locating-total domination problem are not
equivalent. In other words, it is not possible to derive a minimum locating-
dominating set from a minimum locating-total dominating set and vice-versa. For
example, consider the graph G shown in Figure 4. In G the minimum locating-
dominating set T = {2, 5, 7} and hence γL(G) = 3 (see Figure 4(a)). Now, in G
the minimum locating-total dominating set S = {2, 3, 7, 8} and hence γLt (G) = 4
(see Figure 4(b)). Locating-domination problem is NP -complete [1]. In this
section we prove locating-total domination problem is NP -complete.

(a)

G :
1

2 3

4 5

6 87 9

G :
1

2 3

4 5

6 87 9

(b)

Figure 4. (a) Vertices in a locating-dominating set of G are circled.

(b) Vertices in a locating-total dominating set of G are circled.

Theorem 3.1. The following decision problem is NP-complete:

Name: locating-total dominating set (LTDS).
Instance: a connected graph G = (V,E) and an integer k ≤ |V |.
Question: is there a locating-total dominating set S ⊆ V of size at most k?

Proof. We polynomially reduce 3-SAT to LTDS. We consider any instance of
3-SAT , C = {C1, C2, . . . , Cm} over the set of variables X = {x1, x2, . . . , xn}.
For each variable xi of X, we construct the graph Gxi

= (Vxi
, Exi

) with Vxi
=

{ai, bi, ci, di, ei, xi, xi} and Exi
= {aixi, aixi, aici, bici, cixi, cixi, dixi, dixi, diei},

1 ≤ i ≤ n.
Next for each clause Cj = {uj,1, uj,2, uj,3}, we construct the graph GCj

=
(VCj

, ECj
), with VCj

= {αj , βj , γj , µj} and ECj
= {αjβj , βjγj , γjµj , γjηj , µjηj},

1 ≤ j ≤ m.
Finally, given formula F = C1 ∧C2 ∧ · · · ∧Cm we construct G = (V,E) with

V =

( n
⋃

i=1

Vxi

)

∪

( n
⋃

i=1

VCj

)

,

E =

( n
⋃

i=1

Exi

)

∪

( n
⋃

i=1

ECj

)

∪

( n
⋃

i=1

{αjuj,1, αjuj,2, αjuj,3}

)

.
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We set k = 3n+2m; we see that |V | = 7n+5m and |E| = 9n+8m. See Figure 5
with n = 3 and m = 2. In Figure 5, F = C1∧C2, where C1 = (u1,1∨u1,2∨u1,3) =
(x1 ∨ x2 ∨ x3) and C2 = (u2,1 ∨ u2,2 ∨ u2,3) = (x1 ∨ x2 ∨ x3).

Figure 5. Graph of formula F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

(i) If F is satisfied, we can construct a locating-total dominating set S ⊆ V ,
of size k, as follows. For all j and i where 1 ≤ j ≤ m, 1 ≤ i ≤ n, let S contain
γj , µj , ci, di, and whichever of xi and xi that has been set True. The set S thus
constructed has size 3n+ 2m = k. Clearly S is a total dominating set of G. We
have only to show that S is a locating-total dominating set. Without loss of gene-
rality, assume that xi ∈ S; then N(ai)∩S = {ci, xi}, N(bi)∩S = {ci}, N(xi)∩S =
{ci, di}, N(ei)∩S = {di}; moreover, N(βj)∩S = {γj}, N(ηj)∩S = {γj , µj} and
using the assumption that each clause contains at least one true literal, at least
one vertex of type xi or xi will be in N(αj) ∩ S.

(ii) Now we assume that there is a subset S of V , of size at most k, which is
a locating-total dominating set. It is clear that for all j, either {γj , µj} ∈ S or
{γj , ηj} ∈ S. Suppose not. If {βj , γj} ∈ S, then N(µj) ∩ S = {γj} = N(ηj) ∩ S
and, if {αj , βj} ∈ S, then µj and ηj are not dominated and, if {µj , ηj} ∈ S, then
βj is not dominated. Thus in all cases, either {γj , µj} ∈ S or {γj , ηj} ∈ S and αj

must be dominated by another vertex.
Let us now consider the sets S ∩ Vxi

; we claim that at least three elements
in Vxi

are necessary to make N(u)∩ S 6= N(v)∩ S for all u and v in Vxi
\ S, and

that, moreover, if we manage with exactly three, then exactly one of xi belongs
to S. Indeed, suppose first that xi or xi are in S. Then since two more elements
are necessary in Vxi

to locate bi and ei, either |S ∩ Vxi
| ≥ 4 or |S ∩ Vxi

| = 3
and exactly one of xi and xi belongs to S. Suppose next that neither xi nor xi
are in S. Then, in order to locate and separate ai, bi and ci, and di and ei, at
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least three elements in Vxi
\ {xi, xi} are necessary. Now if {ai, ci, di} ⊂ S, then

N(xi) ∩ S = N(xi) ∩ S = {ai, ci, di}; this implies that xi or xi is located by a
vertex of type α. This however contradicts the assumption on the size of |S|,
since already 3n+ 2m other vertices necessarily belong to S.

Now, we know that S contains exactly k elements; in particular, exactly two
vertices belong to VCj

and exactly three vertices are in Vxi
, with exactly one of

xi and xi in S.
Thus, setting xi = True if S ∩{xi, xi} = {xi} and xi = False if S ∩{xi, xi} =

{xi} is a valid truth assignment for the variables of X. Now in order to locate
αj at least one vertex of type xi or xi must be in S, corresponding to one of the
three literals in the clause Cj . This means that Cj contains at least one true
literal and it holds for all j. Hence we have a truth assignment which satisfies F .

We end the paper with the followings problems.

Problem 1. Can Theorem 3.1 be improved for bipartite graphs and chordal
graphs?

Problem 2. Can improved bounds for locating-total domination number be ob-
tained for interval graphs and split graphs?
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