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Abstract

Let G = (V,E) be a graph of order n and let 1 ≤ k < n be an integer.
The k-token graph of G is the graph whose vertices are all the k-subsets of
V , two of which are adjacent whenever their symmetric difference is a pair
of adjacent vertices in G. In this paper we characterize precisely, for each
value of k, which graphs have a regular k-token graph and which connected
graphs have a planar k-token graph.
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1. Introduction

Throughout this paper, G = (V,E) denotes a simple graph of n vertices and k
is an integer with 1 ≤ k < n. The k-token graph Fk(G) of G is the graph whose
vertices are all the k-subsets of V , where two such subsets are adjacent whenever
their symmetric difference is a pair of adjacent vertices in G. The token graph
was introduced in [4] where some of their properties were studied. In that paper
the authors noted that:

“Thus vertices of Fk(G) correspond to configurations of k indistin-
guishable tokens placed at different vertices of G, where two configu-
rations are adjacent whenever one configuration can be reached from
the other by moving one token along an edge from its current position
to an unoccupied vertex.”

As an example, the 2-token graph of the cycle graph C5 is shown in Figure 1.
Clearly, F1(G) ≃ Fn−1(G) ≃ G; we say that F1(G) and Fn−1(G) are the trivial

token graphs of G.
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Figure 1. The cycle graph C5 and its token graph F2(C5).

The Johnson graph J(n, k) is the graph whose vertices are the k-subsets of
an n-set, where two such subsets A and B are adjacent whenever |A ∩ B| =
k− 1. Thus, the Johnson graph J(n, k) is isomorphic to the k-token graph of the
complete graph Kn, i.e., J(n, k) ≃ Fk(Kn). Therefore, results obtained for token
graphs also apply for Johnson graphs; Johnson graphs are widely studied due to
connections with coding theory, see, e.g., [3, 5, 6, 9, 11].

We write u ∼ v whenever u and v are adjacent vertices in G. The edge joining
these vertices is denoted by [u, v]. For a nonempty setX ⊆ V , and a vertex v ∈ V ,
NX(v) denotes the set of neighbors that v has in X, i.e., NX(v) := {u ∈ X :
u ∼ v}; the degree of v in X is denoted by dX(v) := |NX(v)|. For a vertex
v ∈ V , N(v) denotes the set of neighbors that v has in V , i.e., N(v) := {u ∈
V : u ∼ v}; and N [v] denotes the closed neighborhood of the vertex v, i.e.,
N [v] := N(v)∪{v}. We denote by dG(vi) := |N(vi)| the degree of a vertex vi ∈ V
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in G, and by δ(G),∆(G) the minimum and maximum degree of G, respectively.
The complement of a nonempty set S ⊆ V is denoted by S and the complement
of G by G. The subgraph induced by S is denoted by 〈S〉. As usual, X denotes
the indicator function of X, i.e., X(x) = 1 if x ∈ X and X(x) = 0 otherwise.

In this paper we characterize precisely, for each value of k, which graphs
have a regular k-token graph and which connected graphs have a planar k-token
graph; in particular we show the following.

Theorem 1. Let G be a graph of n vertices and let 2 ≤ k ≤ n− 2 be an integer.

Then Fk(G) is regular if and only if one of the following four cases holds.

1. G is isomorphic to the complete graph Kn on n vertices;

2. G is isomorphic to Kn;

3. G is isomorphic to complete bipartite graph K1,n−1 and k = n/2;

4. G is isomorphic to K1,n−1 and k = n/2.

Theorem 2. Let G be a connected graph of order n > 10 and let 2 ≤ k ≤ n−2 be

an integer. Then Fk(G) is planar if and only if k = 2 or k = n− 2, and G ≃ Pn.

We study regularity in Section 2 and planarity in Section 3. In Section 3.1
we consider the planarity of the token graphs of graphs of small order.

2. Regularity

In this section we prove Theorem 1. We split the proof in two cases: whether G
is regular or not. This are shown in Theorems 6 and 11, respectively.

Let Fk(G)
J
be the complement of Fk(G) with respect to the Johnson graph,

i.e.,

V
(

Fk(G)
J
)

:= V (Fk(G)) and E
(

Fk(G)
J
)

:= E
(

J(n, k)
)

\ E
(

Fk(G)
)

.

The following statement follows easily from the definitions.

Proposition 3. Fk

(

G
)

= Fk(G)
J
for every graph G.

Since the Johnson graph J(n, k) is a regular graph, Proposition 3 has the
following direct consequence.

Corollary 4. Let G be a graph such that Fk(G) is regular. Then Fk

(

G
)

is also

regular.
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2.1. Regular token graph of a regular graph

In this section we answer the following question: when is the token graph of a
regular graph also regular? We show in Theorem 6 that there are exactly two
regular graphs which produce regular token graphs.

Lemma 5. Let G be a regular graph and 2 ≤ k ≤ n − 2 such that Fk(G) is

regular. Then there exists a constant c, depending on k, the degree of G and the

degree of Fk(G), such that dA(b) = c for every A ∈ V
(

Fk(G)
)

and every b /∈ A.

Proof. Fix A ∈ V
(

Fk(G)
)

and b /∈ A. Let B ∈ V
(

Fk(G)
)

with B \A = {b} and
let {a} = A \B. Let r1 and r2 be the degrees of G and Fk(G), respectively.

We first claim that dA∩B(b) = dA∩B(a). Note that

dFk(G)(A) =
∑

u∈A

dA(u) =
∑

u∈A

(r1 − dA(u)) = kr1 −
∑

u∈A

(

dA∩B(u) + N(a)(u)
)

= kr1 −
∑

u∈A∩B

dA∩B(u)− 2dA∩B(a).

Analogously, we obtain

dFk(G)(B) = kr1 −
∑

u∈A∩B

dA∩B(u)− 2dA∩B(b).

Since Fk(G) is regular, the claim follows.

For every u ∈ A, letAu := A\{u}; by the claim we have that dAu
(u) = dAu

(b).
Note that dA(u) = dAu

(u) for every u ∈ A, and that dAu
(b) = dA(b) − N(b)(u).

Thus, we have dA(u) = dA(b)− N(b)(u) for every u ∈ A. Furthermore, we have
dA(b) vertices u ∈ A with dA(u) = dA(b)− 1, and k − dA(b) vertices u ∈ A with
dA(u) = dA(b). Therefore,

r2 = dA(b)
(

r1 − dA(b) + 1
)

+
(

k − dA(b)
)(

r1 − dA(b)
)

= k
(

r1 − dA(b)
)

+ dA(b) = kr1 − (k − 1)dA(b).

The result follows with c := (r2 − kr1)/(1− k).

It is a simple fact that Fk(G) is a regular graph for every admissible k if G is
any empty graph En or any complete graph Kn. The following result shows that
they are the unique regular graphs with regular k-token graph for 2 ≤ k ≤ n− 2.

Theorem 6. Let G be regular graph not isomorphic to either En or Kn. Then

its token graph Fk(G), with 2 ≤ k ≤ n− 2, is non-regular.
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Proof. Suppose to the contrary that Fk(G) is regular. Since G is not isomorphic
to Kn nor to En, there exists a vertex v of G such that the following holds. Vertex
v is of degree at least one and there exists another vertex v′ not adjacent to v.
Let A be a vertex of Fk(G) such that A ∩ N(v) 6= ∅ and v, v′ /∈ A. Consider
any vertex u ∈ A ∩ N(v) and let Au :=

(

A ∪ {v′}
)

\ {u}. Hence, we have that
dA(v) = dAu

(v) + 1 which contradicts Lemma 5.

2.2. Regular token graphs of non-regular graphs

In this section we show that there are exactly two non-regular graphs which
produce regular token graphs. Throughout this subsection, G is a fixed non-
regular graph, u and v are vertices ofG such that dG(u) < dG(v), and F := Fk(G).
Also, we partition R := V (G) \ {u, v} into four subsets:

X := N(u) \N [v], W := N(u) ∩N(v),

Y := N(v) \N [u], Z := R \ (X ∪ Y ∪W ).

Note that Z consists precisely of the vertices of R which are nonadjacent to
neither u nor v (see Figure 2).

v

X
. . .

W
. . .

Y
. . .

Z
. . .

u

Figure 2. Partition of R depending on whether or not w ∈ R is adjacent to u or v.

In this context, we have the following statements.

Lemma 7. If k−1 ≤ |X|+|W |+|Z|, then Fk(G) is non-regular for 2 ≤ k ≤ n−2.

Proof. We analyze three cases separately.

• k− 1 ≤ |Z|. We choose a fixed S ⊆ Z such that |S| = k− 1. Now consider
the vertices A,B of F defined as follows: A := S ∪ {u} and B := S ∪ {v}. By
definition of F we know that the degree of the vertex A (respectively, B) in F
corresponds to the number of edges of G with one end in A (respectively, B) and
the other in V (G) \ A (respectively, V (G) \ B). Let r be the number of edges
of G with one end in S and the other in R \ S. Then dF (A) = dG(u) + r and
dF (B) = dG(v) + r. Since dG(v) − dG(u) > 0, we have dF (B) 6= dF (A). Hence,
F is not regular.
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• |Z| < k − 1 ≤ |Z|+ |X|. We choose a fixed nonempty subset S of X such
that |S|+ |Z| = k− 1. Thus the sets A := S ∪Z ∪ {u} and B := S ∪Z ∪ {v} are
vertices of F . Let r denote the number of edges of G with one end in S∪Z and the
other in R\(S∪Z). Clearly, dF (A) = dG(u)−|S|+r and dF (B) = dG(v)+ |S|+r
(recall that u, v 6∈ R). Thus dF (B)− dF (A) = dG(v)− dG(u) + 2|S| > 0, because
dG(v)− dG(u) > 0. Hence, F is not regular.

• |Z| + |X| < k − 1 ≤ |Z| + |X| + |W |. We choose a fixed nonempty subset
S of W such that |S| + |Z| + |X| = k − 1. Thus the sets A := S ∪ Z ∪X ∪ {u}
and B := S ∪ Z ∪X ∪ {v} are vertices of F . Let r denote the number of edges
of G with one end in S ∪ Z ∪ X and the other in R \ (S ∪ Z ∪ X). It is easy
to see that dF (A) = dG(u) − |X| + r and dF (B) = dG(v) + |X| + r. Thus
dF (B)− dF (A) = dG(v)− dG(u) + 2|X| > 0, because dG(v)− dG(u) > 0. Hence,
F is not regular.

Lemma 8. If Fk(G) is a regular graph for some 2 ≤ k ≤ n−2, then v is adjacent

to every vertex in V (G) \ {u, v} in G.

Proof. Since Fn−k(G) is isomorphic to Fk(G), we may assume that 2 ≤ k ≤ n/2.
By Lemma 7 and the hypothesis we have that |X|+ |W |+ |Z| < k− 1 ≤ n/2− 1.
Then |Y | ≥ n/2 because |X|+ |Z|+ |W |+ |Y | = n− 2. Suppose that there exists
a vertex y in V (G) \ {u, v} that is nonadjacent to v. Note that y must be an
element of X ∪ Z.

Let S1 be a fixed subset of Y such that |S1| = k − 1. Thus the sets A1 :=
S1∪{u} and B1 := S1∪{v} are vertices of F . Let r1 be the number of edges of G
with one end in S1 and the other in R \ S1. Then dF (A1) = dG(u) + (k− 1) + r1
and dF (B1) = dG(v)− (k− 1)+ r1. By the regularity of F we have 0 = dF (B1)−
dF (A1) = dG(v)− dG(u)− 2(k − 1), or equivalently

(1) dG(v)− dG(u) = 2(k − 1).

Similarly, let S2 be a fixed subset of Y such that |S2| = k − 2. Thus the
sets A2 := S2 ∪ {u, y} and B2 := S2 ∪ {v, y} are vertices of F . Let r2 be the
number of edges of G with one end in S2 ∪ {y} and the other in R \ (S2 ∪ {y}).
Then dF (A2) = dG(u)− N(u)(y) + (k − 2) + r2 and dF (B2) = dG(v)− (k − 2) +

N(y)(u) + r2. Since N(u)(y) = N(y)(u), we have that 0 = dF (B2) − dF (A2) =
dG(v)− dG(u)− 2(k − 2) + 2 N(y)(u), or equivalently

(2) dG(v)− dG(u) = 2(k − 2)− 2 N(y)(u).

From (1) and (2) we obtain

2(k − 1) = 2(k − 2)− 2 N(y)(u).

Which implies that N(y)(u) = −1, a contradiction.
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The next statement is an immediate consequence of Lemma 8.

Corollary 9. If Fk(G) is a regular graph, for some 2 ≤ k ≤ n− 2, then X and

Z are empty sets.

Lemma 10. If Fk(G) is a regular graph for some 2 ≤ k ≤ n−2, then dR(u) = 0.

Proof. Again, we may assume that 2 ≤ k ≤ n/2 because Fn−k(G) is isomorphic
to Fk(G). Suppose to the contrary that dR(u) > 0. By Corollary 9, X and Z are
empty; therefore, |W | ≥ 1.

First suppose that |W | < k − 1. Let S be a fixed subset of Y such that
|S| + |W | = k − 1. Then the sets A := S ∪ W ∪ {u} and B := S ∪ W ∪ {v}
are vertices of F. Let r be the number of edges of G with one end in S ∪W and
the other in R \ (S ∪ W ). Then dF (A) = (k − 1) + N(u)(v) + r and dF (B) =
|W | + (n − 2 + N(v)(u)) − (k − 1) + r. In the last equation we are using that
dG(v) = n − 2 + N(v)(u) (Lemma 8). Since N(u)(v) = N(v)(u), we have that
0 = dF (B) − dF (A) = |W | + (n − 2) − 2(k − 1), or equivalently, |W | = 2k − n.
This implies that |W | ≤ 0, a contradiction.

Now suppose that |W | ≥ k − 1. Let S be a fixed subset of W such that
|S| = k − 1. Then the sets A := S ∪ {u} and B := S ∪ {v} are vertices of F.
Let r be the number of edges of G with one end in S and the other in R \ S.
Then dG(A) = |W | + N(u)(v) + r and dG(B) = (n − 2) + N(v)(u) + r. Since

N(u)(v) = N(v)(u), we have that 0 = dG(B) − dG(A) = (n − 2) − |W |, or
equivalently, |W | = n− 2. This implies, dG(v) = dG(u), a contradiction.

We are ready to prove the main result of this section.

Theorem 11. Let G be a non-regular graph such that Fk(G) is regular for some

2 ≤ k ≤ n− 2. Then G is isomorphic to K1,n−1 or to K1,n−1, and in both cases

k = n/2.

Proof. Again, we assume that 2 ≤ k ≤ n/2. First, we show that there are only
two possible degrees in G. Suppose to the contrary that there exists three vertices
x1, x2 and x3 such that dG(x1) < dG(x2) < dG(x3). Apply Lemma 10 twice: once
with u = x1 and v = x3, and a second time with u = x2 and v = x3. Then
d(x1) = 0 and d(x2) = 1. We obtain a contradiction by applying Lemma 8 with
u = x2 and v = x3, since x3 is not adjacent to x1.

Let r1, r2, with r1 < r2, be the only two possible degrees in G. By Lemma 10
we have that r1 = 0 or r1 = 1. Let x and y be vertices of G of degree r1 and r2,
respectively.

Suppose that r1 = 0. We claim that x is the only vertex of degree 0. Suppose
that there exists a second vertex z with degree 0. We arrive at a contradiction by
applying Lemma 8 with u = x and v = y, as y and z are not adjacent. Therefore,
all vertices of G distinct from x have degree r2. Moreover, Lemma 8 with u = x



580 W. Carballosa, R. Fabila-Monroy, J. Leaños and L.M. Rivera

and y = v implies that r2 = n − 2. Therefore, G is isomorphic to K1,n−1. Now
we show that k = n/2. Let S be any subset of V (G)\{x} with |S| = k−1. Then
the sets A := S ∪ {x} and B := S ∪ {z}, where z is any element in V (G) \A, are
vertices of F with dF (A) = (k − 1)(n − k) and dF (B) = k(n − k − 1). As F is
a regular graph we have that 0 = dF (B) − dF (A) = n − 2k which implies that
k = n/2.

Suppose that r1 = 1. Then, Lemma 8 with u = x and y = v implies
r2 = n − 1 and y is adjacent to every vertex in G. Therefore, there cannot be
another vertex distinct from y adjacent to every vertex in G since d(x) = 1. Thus,
G is isomorphic to K1,n−1. Finally we show that k = n/2. Let S be any subset
of N(y) with |S| = k − 1. Let A := S ∪ {y} and B := S ∪ {z}, where z is any
element in V (G) \ A. Then A and B are vertices of F with dF (A) = n − k and
dF (B) = k. As F is a regular graph we have that 0 = dF (A) − dF (B) = n − 2k
which implies that k = n/2.

3. Planarity

In this section we fully characterize, in terms of G, when the k-token graph of
G is planar. Since F1(G) ≃ Fn−1(G) ≃ G, we have that F1(G) and Fn−1(G)
are planar if and only if G is planar; therefore, we only consider the cases when
2 ≤ k ≤ n− 2 and n ≥ 4.

As usual, we denote by G/e the graph obtained from graph G by contracting
the edge e of G; and also, we denote by G − e (G − v, respectively) the graph
obtained from graph G by deleting the edge e (vertex v, respectively) of G. A
graph H is a minor of a graph G if a graph isomorphic to H can be obtained from
G by contracting some edges, deleting some edges, and deleting some isolated
vertices. A graph H is a subdivision of a graph G if H can be obtained from G
by subdividing some edges.

Kuratowski [8] proved that a graph is planar if and only if it does not contain
a subdivision of the complete graph K5 nor a subdivision of the bipartite graph
K3,3. Wagner [8] proved that a graph is planar if and only if it does not contain
the complete graph K5 nor the complete bipartite graph K3,3 as a minor.

First we show that if G′ is a minor of G then Fk(G
′) is a minor of Fk(G).

This result, which is of independent interest, is used to prove the main theorems
of this section.

Lemma 12. If G′ is a minor of G then Fk(G
′) is a minor of Fk(G).

Proof. First suppose that G′ is obtained from G from applying one minor op-
eration on G. That is by deleting a vertex, deleting an edge or contracting an
edge; we show that Fk(G

′) is a minor of Fk(G).
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• G′ is obtained from G by deleting a vertex a. Then Fk(G
′) is isomorphic

to the graph obtained from Fk(G) by deleting all the vertices of Fk(G) which
contain a. Thus, Fk(G

′) is a minor of Fk(G).

• G′ is obtained from G by deleting an edge [a, b]. Then Fk(G
′) is isomorphic

to the graph obtained from Fk(G) by deleting all the edges [A,B] of Fk(G) such
that A△B = {a, b}. Thus, Fk(G

′) is a minor of Fk(G).

• G′ is obtained from G by contracting an edge e := [a, b]. Consider the
following subsets of V (Fk(G)):

A :=
{

A ∈ V
(

Fk(G)
)

: a ∈ A, b /∈ A
}

,

B :=
{

B ∈ V
(

Fk(G)
)

: b ∈ B, a /∈ B
}

.

Clearly, A,B are disjoint, and |A| = |B| =
(

n−2
k−1

)

. Since a ∼ b we have that
for each A ∈ A there is exactly one B ∈ B with A ∼ B in Fk(G), in fact
A△B = {a, b}. Hence, by contracting these

(

n−2
k−1

)

edges from Fk(G), we obtain
a subgraph isomorphic to Fk(G/e) = Fk(G

′). Thus, Fk(G
′) is a minor of Fk(G).

Now suppose that G′ is obtained by applying two or more minor operations
on G. Since the minor relation is a transitive relation, the result follows by
induction on the number of these operations.

Lemma 12 implies the following.

Theorem 13. Let G be a graph and let H be a minor of G such that every non-

trivial token graph of H is non-planar. Then Fk(G) is non-planar for 2 ≤ k ≤
n− 2.

Notice that the order of H in Theorem 13 is greater than 4 because F2(K4)
is a planar graph. The circumference c(G) of a graph G is the supremum of the
lengths of its cycles, if G is a tree we define c(G) = 0. The following theorem
implies the non-planarity of many token graphs.

Theorem 14. Let G be a graph and 2 ≤ k ≤ n− 2. If ∆(G) or c(G) are greater

than or equal to 5, then Fk(G) is non-planar.

Proof. Since G contains as a minor a star graph K1,5 or a cycle graph C5 and
by Theorem 13, it suffices to check that F2(K1,5), F3(K1,5) and F2(C5) are non-
planar. As shown in Figures 1 and 3, F2(C5) and F2(K1,5) both contain a sub-
division of K5 and thus are not planar. For the case of F3(K1,5), note that by
contracting the edges joining vertices of the same color in Figure 3 we obtain the
complete graph K5. Thus, F3(K1,5) is non-planar and the proof is completed.
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Figure 3. The non-planar graphs F2(K1,5) and F3(K1,5) (both contain K5 as a minor).

The following results shows that others token graphs not included in the
previous theorems are non-planar, too. In particular paths do not verify the
hypotheses of previous theorems; however, many of their token graphs are non-
planar.

The following two propositions are direct consequences of Theorem 4.1 in [2]
and Theorem 10 in [4].

Proposition 15. Let G be a graph containing a path P3 on three vertices as a

subgraph and let 2 ≤ k ≤ n− 2. If Fk−1(G−P3) or Fk−2(G−P3) have maximum

degree greater than 2, then Fk(G) is non-planar.

Proposition 16. Let G be a graph and 2 ≤ k ≤ n−2. If G contains two disjoint

subgraphs isomorphic to P3 and to K1,3, respectively, then Fk(G) is non-planar.

We now show that the non-trivial token graphs of all trees (with the exception
Pn) of more than 10 vertices are non-planar.

Theorem 17. Let T be a tree of order n > 10 non-isomorphic to Pn. Then for

every 2 ≤ k ≤ n− 2, the graph Fk(T ) is non-planar.

Proof. Let 2 ≤ k ≤ n− 2. Since T 6≃ Pn we have ∆ ≥ 3. The case when T has
maximum degree ∆ ≥ 5 follows by Theorem 14. We consider the cases ∆ = 4
and ∆ = 3 separately.

Suppose that ∆ = 4. Consider a vertex v ∈ V (T ) with d(v) = 4. Note that
if there exists a vertex u ∈ V (T ) \ {v} with d(u) ≥ 3, then we have a subgraph
P3 ⊂ N [u]\{v}, and so Fk(T ) is non-planar by Proposition 16. Now, if d(u) ≤ 2,
for every u ∈ V (T ) \ {v}, and since n > 10, then there are vertices u1, u2, u3 in
V (T ) such that the distance d(v, ui) = i for i = 1, 2, 3 with 〈{u1, u2, u3}〉 ≃ P3.
Therefore, Proposition 16 implies that Fk(T ) is non-planar.

Suppose that ∆ = 3. Consider a vertex v ∈ V (T ) with d(v) = 3 and let
N(v) = {v1, v2, v3}. Suppose first that no other vertex of T has degree 3. Since
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n > 10, there is a path P3 in V (T )\N [v] and so Proposition 16 gives that Fk(T ) is
non-planar. Suppose now that there are at least two vertices in V (T ) with degree
3. Note that if there is a vertex u ∈ V (T ) \N [v] with d(u) = 3, then there is a
path P3 in N [u] \ N [v], and so, Proposition 16 gives that Fk(T ) is non-planar.
Thus we can assume that there is no u ∈ V (T ) \ N [v] with d(u) = 3. Note
that if d(v1) = d(v2) = 3, then Proposition 16 gives that Fk(T ) is non-planar
taking a P3 in N [v1]\N [v2]. Thus, we can assume without loss of generality that
d(v) = d(v1) = 3 and d(u) ≤ 2 for u ∈ V (T ) \ {v, v1}. Since n > 10, there exists
a P3 in N [v] ∪N [v1], and so, Proposition 16 gives that Fk(T ) is non-planar.

Note that the 2-token graph F2(Pn) of every path graph Pn with n vertices
is planar, see [4, Figure 1]. However, the following result shows that the token
graph of Pn is non-planar for 3 ≤ k ≤ n− 3 and n ≥ 7.

Theorem 18. Let G be a graph and 3 ≤ k ≤ n− 3. If G contains a path with 7
vertices, then Fk(G) is non-planar.

Proof. Let P7 := (v1, . . . , v7) be a path of seven vertices in G. We first show
that Fk(G) contains F3(P7) as a subgraph. This follows immediately if k = 3.
Thus, assume that k ≥ 4. Fix k − 4 tokens at vertices in V (P7) and let H be
the subgraph of Fk(G) that results from moving the remaining four tokens freely.
Then, H contains F4(P7) as a subgraph, but F4(P7) ≃ F3(P7). Thus F3(P7)
is a subgraph of Fk(G) as claimed. Now, by Proposition 15 and the fact that
maximum degree of F2(P4) is three, F3(P7) is non-planar. The result follows.

With Theorems 14, 17 and 18 we are ready to prove Theorem 2.

Proof of Theorem 2. The proof follows from the fact that any connected graph
which is non-isomorphic to neither Pn nor Cn has an spanning tree non-isomorphic
to Pn. Thus, Theorem 17 gives the result if G 6≃ Cn. However, if G ≃ Cn then
Theorem 14 gives the result.

3.1. Graphs of small order

The only one non-trivial token graph of K4 is F2(K4), it is isomorphic to the
octahedral graph, which is planar. Therefore, all token graphs of graphs with at
most four vertices are planar. Theorem 2 implies that all the non-trivial token
graphs of a connected graph not isomorphic Pn of more than ten vertices are
non-planar. Thus, the graphs of more than four and at most ten vertices, whose
non-trivial token graphs are planar, remain to be found. Note that if G′ is a
subgraph of G, then Fk(G

′) is a subgraph of Fk(G). Therefore, it is sufficient
to search for the connected graphs edge-maximal with the property that their
k-token graphs are planar.
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Figure 4. The connected edge-maximal graphs on 5, . . . , 10 vertices whose 2-token graphs
are planar.

Figure 5. The connected edge-maximal graphs on 6 vertices whose 3-token graphs are
planar.

For each value of k, we did an exhaustive search for these graphs as follows.
Since Fk(G) ≃ Fn−k(G), we considered only those graphs of order at least 2k.
Using nauty [10] we generated every connected graph on n ≥ 2k vertices and m
edges. We started our search at m = n − 1; afterwards, we increased m by one.
We stopped as soon as all graphs of n vertices and m edges have non-planar k-
token graphs. For a given graph G we tested whether its k-token graph is planar
and whether the addition of any new edge to G produces a graph whose k-token
graph is non-planar. To check for planarity we used sage [12], which in turn uses
Boyer’s implementation of [1]. We found 13 connected graphs edge-maximal with
the property that their 2-token graphs are planar; these are shown in Figure 4.
For k = 3 we found the two graphs of six vertices shown on Figure 5. All 3-
token graphs of connected graphs with seven or more vertices are non-planar.
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For k ≥ 4, all connected graphs of 2k or more vertices have non-planar k-token
graphs.
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