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Marián Klešč, Jana Petrillová
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Abstract

Bokal developed an innovative method for finding the crossing numbers
of Cartesian product of two arbitrarily large graphs. In this article, the
crossing number of the join product of stars and cycles are given. Afterwards,
using Bokal’s zip product operation, the crossing numbers of the Cartesian
products of the wheel Wn and all trees T with maximum degree at most five
are established.
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1. Introduction

Let G be a graph, whose vertex set and edge set are denoted by V (G) and E(G),
respectively. A drawing of G is a representation of G in the plane such that its
vertices are represented by distinct points and its edges by simple continuous arcs
connecting the corresponding pair of points. For simplicity, we assume that in a
drawing (a) no edge passes through any vertex other than its end-points, (b) no
two edges touch each other (i.e., if two edges have a common interior point, then
at this point they properly cross each other), and (c) no three edges cross at the

http://dx.doi.org/10.7151/dmgt.1957
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same point. The crossing number cr(G) is the smallest number of edge crossings
in any drawing of G. It is easy to see that a drawing with minimum number of
crossings (an optimal drawing) is always a good drawing, meaning that no edge
crosses itself, no two edges cross more than once, and no two edges incident with
the same vertex cross.

The repetitive patterns in Cartesian products of graphs reflects in their dra-
wings and makes Cartesian products one of the first graph classes for which the
crossing numbers were studied (for a definition of Cartesian product see [15]).
Let Cn be the cycle of length n, Pn be the path on n vertices, and Sn be the star
isomorphic to K1,n. The crossing numbers of Cartesian products of graphs have
been studied since 1973, when Harary et al. established the crossing number of
C3�C3 and conjectured that cr(Cm�Cn) = (m − 2)n for 3 ≤ m ≤ n, [11]. This
hypothesis has been proved for m ≤ 7 by other authors, but it has not yet been
proved for 3 ≤ m ≤ n in general. The best result was given by Glebsky and
Salazar in [10].

Several authors were researching the crossing numbers of the Cartesian prod-
ucts G�Cn, G�Pn, G�Sn for some specific graphs G. Beineke and Ringeisen
in [3] as well as Jendrol’ and Ščerbová in [14] determined the crossing numbers
of the Cartesian products of four-vertex graphs with the cycle Cn. Some other
results concerning the crossing numbers of Cartesian products of special small
graphs with paths, cycles and stars one can find in [15, 16, 19, 20], and [25].
Moreover, Jendrol’ and Ščerbová in [14] conjectured that the crossing number
of Sn�Pm is (m − 2)

⌊

n
2

⌋ ⌊

n−1
2

⌋

. This conjecture was proved by Bokal using zip
product operation, see [4]. It was the first exact result which gives the crossing
number of Cartesian product of two graphs, where both graphs are arbitrarily
large. In [5], Bokal extended the properties of zip product operation and es-
tablished the crossing numbers of Cartesian products of trees with stars as well
as of paths with wheels. Another results concerning Cartesian products of two
arbitrarily large graphs were obtained in [26] and [27]. In the paper, we extend
these results by giving the crossing numbers of the Cartesian products of trees
with wheels. Our methods are based on some properties of zip product operation
and of known values of crossing numbers of join of stars and cycles.

The join product Gi+Gj of graphs Gi and Gj is created from vertex-disjoint
copies of Gi and Gj by adding all edges between V (Gi) and V (Gj). For |V (Gi)| =
m and |V (Gj)| = n, the edge set of the graph Gi + Gj is the union of E(Gi),
E(Gj) and E(Km,n). The first results on crossing numbers of join of paths and
cycles as well as of two cycles appeared in [17]. There are also some known results
concerning crossing numbers of join products of discrete graphs, paths and cycles
with special graphs, see for example [18, 21, 22] and [23].

We denote the number of crossings of a graph G in a drawing D by crD(G).
Let Gi and Gj be edge-disjoint subgraphs of a graph G. Then we denote by
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crD(Gi, Gj) the number of crossings between the edges of Gi and the edges of Gj

in the drawing D. In the proofs of the paper, we will often use the term “region”
also in nonplanar drawings. In this case, crossings are considered to be vertices of
the “map”. In a good drawing D of the graph G, we say that a cycle C separates

the vertices of a subgraph Gi not containing vertices of C if the vertices of Gi are
contained in different components of R2 \ C.

In the paper, some proofs are based on Kleitman’s result on crossing numbers
of complete bipartite graphs. More precisely, in [24] he proved that

cr(Kp,q) =
⌊p

2

⌋⌊p− 1

2

⌋⌊q

2

⌋⌊q − 1

2

⌋

, if min{p, q} ≤ 6.

In Section 2, we give some special properties concerning drawings of join products
of graphs with cycles, especially of join products of discrete graphs with cycles
and of their subgraphs. Using these results, in Section 3 we find the exact values
of crossing numbers for join products of stars with cycles. Let Wn be the wheel on
n+ 1 vertices and let Dm denote the discrete graph on m vertices. In Section 4,
the isomorphism between Sm+Cn andWn+Dm, together with the Bokal’s results
on zip product operation, allows us to establish the crossing number of Cartesian
product of all trees with maximum degree at most five with all wheels.

2. Preliminary Results

Let us consider a graph G with V (G) = {v1, v2, . . . , vm} and the cycle Cn with
the vertices c1, c2, . . . , cn. The join product G + Cn consists of one copy of the
graph G, one copy of the cycle Cn, and of the edges joining every vertex of G
with every vertex of Cn. The edges joining the vertices of G with the vertices
of Cn form the complete bipartite graph Km,n. For the vertices v1, v2, . . . , vm of
the graph G, let T i denote the subgraph induced by n edges joining the vertex
vi with the vertices c1, c2, . . . , cn of the cycle Cn. So,

G+ Cn = G ∪Km,n ∪ Cn = G ∪

(

m
⋃

i=1

T i

)

∪ Cn.

Lemma 1. Let G be a graph of order m, m ≥ 1. In an optimal drawing of the

join product G+ Cn, n ≥ 3, the edges of Cn do not cross each other.

Proof. Assume an optimal drawing of the graph G + Cn in which two edges
of Cn cross. Any optimal drawing is good and in such a drawing, the edges of
a 3-cycle cannot cross. Thus, assume n ≥ 4 in the rest of the proof. Let x

be the point of the plane in which two edges, say {ci, ci+1} and {cj , cj+1}, of
Cn cross. The plane is a normal space. Hence, in the plane there is an open
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set Ax such that Ax contains x together with the corresponding segments of
the crossed edges. All remaining edges of the drawing are disjoint with Ax, see
Figure 1(a). Figure 1(b) shows that the edges {ci, ci+1} and {cj , cj+1} can be
redrawn into new edges {ci, cj} and {ci+1, cj+1} which do not cross. The vertices
c1, . . . , ci−1, ci, cj , cj−1, . . . , ci+2, ci+1, cj+1, cj+2, . . . , cn, c1 form the n-cycle again.
Since every vertex of the cycle Cn is adjacent to every vertex of the graph G, the
new drawing of the graph G+Cn with less number of crossings is obtained. This
contradiction completes the proof.

x x

(a) (b)

j+1c
j+1ci+1

c
i+1

c

ic
icjc

jc

Figure 1. Elimination of a crossing in Cn.

We note that, in Section 3, only optimal drawings of stars with cycles are
considered and therefore, in the whole section it will be assumed that the cycle
Cn does not cross itself.

Assume now the discrete graph Dm on m vertices. Clearly, Dm + Cn is a
subgraph of the graph G + Cn, where |V (G)| = m. In the proofs of the paper,
several special properties of the graph Dm + Cn are used. Let us present some
of them. Several results of the paper are based on the next Lemma 2. Although
Lemma 2 was proved in [17], we prove it again. This proof is simpler than the
previous one.

Lemma 2. Let D be a good drawing of the join product Dm+Cn, m ≥ 2, n ≥ 3,
in which no edge of Cn is crossed and Cn does not separate the other vertices

of the graph. Then, for all i, j = 1, 2, . . . ,m, two different subgraphs T i and T j

cross each other at least
⌊

n
2

⌋ ⌊

n−1
2

⌋

times in D.

Proof. By hypothesis, the cycle Cn divides the plane into two regions in such
a way that all m subgraphs T 1, T 2, . . . , Tm are placed in one of these regions,
say in the interior region of Cn. Assume that two different subgraphs T i and T j

cross each other less than
⌊

n
2

⌋ ⌊

n−1
2

⌋

times. As both are placed inside Cn, it is
possible to add a new vertex w into the unbounded region of Cn together with
the edges {w, c1}, {w, c2}, . . . , {w, cn} such that none of them crosses an edge of
T i ∪ T j . Now the edges of the new graph incident with the vertices vi, vj , and w

form the subgraph isomorphic to K3,n and cross each other less than
⌊

n
2

⌋ ⌊

n−1
2

⌋

times. This contradiction with cr(K3,n) =
⌊

n
2

⌋ ⌊

n−1
2

⌋

completes the proof.
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For the case when the cycle Cn separates some of the other vertices of the graph, or
when some subgraphs T i, i ∈ {1, 2, . . . ,m}, cross Cn, we have the next corollary.

Corollary 3. Let D be a good drawing of the join product Dm + Cn, m ≥ 2,
n ≥ 3, in which the edges of Cn do not cross each other and Cn does not separate

r vertices vi1 , vi2 , . . . , vir , 2 ≤ r ≤ m. If none of the subgraphs T i1 , T i2 , . . . , T ir

induced on the edges incident with the vertices vi1 , vi2 , . . . , vir crosses Cn, then

two different subgraphs T ij and T ik , j, k = 1, 2, . . . , r, cross each other at least
⌊

n
2

⌋ ⌊

n−1
2

⌋

times in D.

Proof. By the assumptions, the drawing of Dm + Cn contains the subdrawing
of Dr + Cn satisfying the conditions of Lemma 2. Thus, the result follows.

Corollary 4. Let D be a good drawing of the join product Dm + Cn, m ≥ 2,
n ≥ 3, in which the edges of Cn do not cross each other and Cn does not separate

r vertices vi1 , vi2 , . . . , vir , 2 ≤ r ≤ m. Let T i1 , T i2 , . . . , T is , s < r, be the subgraphs

induced on the edges incident with the vertices vi1 , vi2 , . . . , vis that do not cross

Cn. If k edges of some subgraph T ij induced on the edges incident with the vertex

vij , j ∈ {s + 1, s + 2, . . . , r}, cross the cycle Cn, then the subgraph T ij crosses

each of the subgraphs T i1 , T i2 , . . . , T is at least
⌊

n−k
2

⌋

⌊

(n−k)−1
2

⌋

times in D.

Proof. When k > n − 3, the assertion is true. For k ≤ n − 3, consider n − k

vertices of the cycle Cn incident with the edges of T ij which do not cross Cn.
Let us delete all edges of T 1, T 2, . . . , Tm which are not incident with these n− k

vertices. The resulting subgraph is homeomorphic to the graph Dm +Cn−k and,
in its subdrawing induced by D, all subgraphs T i1 , T i2 , . . . , T is as well as T ij

of Dm + Cn−k satisfies the conditions of Corollary 3. Hence, the subgraph T ij

crosses each of the subgraphs T i1 , T i2 , . . . , T is at least
⌊

n−k
2

⌋

⌊

(n−k)−1
2

⌋

times.

3. Join of Stars with Cycles

Our aim in this section is to give the crossing numbers of the join products Sm+Cn

for m ≤ 5 and n ≥ 3. Clearly, the graph K1 + Cn is planar. It is shown in [17]
that cr(Pk +Cn) =

⌊

k
2

⌋ ⌊

k−1
2

⌋ ⌊

n
2

⌋ ⌊

n−1
2

⌋

+ 1 for k ≥ 2. As S1 +Cn is isomorphic
to P2+Cn and S2+Cn is isomorphic to P3+Cn, the crossing number of S1+Cn is
one, and the crossing number of S2+Cn is

⌊

n
2

⌋ ⌊

n−1
2

⌋

+1. For m ≥ 3, our proofs

are based on Kleitman’s result cr(Kp,q) =
⌊

p
2

⌋

⌊

p−1
2

⌋

⌊

q
2

⌋

⌊

q−1
2

⌋

for min{p, q} ≤ 6.

This is the reason that, unfortunately, we are not able to give the crossing number
of the graph Sm+Cn for m > 5 and arbitrarily large n, because the graph S6+Cn

contains K7,n as a subgraph.
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In this section, the crossing numbers of the graphs Sm + Cn for m = 3, 4, 5,
and for all n ≥ 3 are established. The methods used in the general proofs are
successful for n ≥ 5. For the small graphs S3 + C3, S3 + C4, S4 + C3, S4 + C4,
S5+C3, and S5+C4, the crossing numbers must be done separately. We tried to
compute these values of crossing numbers using algorithm located on the webside
http://crossings.uos.de/. This algorithm can find the crossing numbers of
small undirected graphs. It uses an ILP formulation, based on Kuratowski sub-
graphs, and solves it via branch-and-cut-and-price, see [6, 7] and [8]. The system
also generates verifiable formal proofs, as described in [9]. Unfortunately, the
capacity of this system is restricted and it does not establish crossing numbers
for large graphs.

In the reasonable time, the algorithm found the exact values of crossing
numbers for the graphs S3+C3, S3+C4, S4+C3, S4+C4, and S5+C3. The next
Lemma 5 lists these results. We remark that we can prove that all these results
are correct. All these proofs are similar to the proof of Lemma 6. Moreover, all of
them are much easier. So, we omit these proofs and the reader can find them on
his own. Since for the graph S5+C4 the algorithm in http://crossings.uos.de/
found only a lower bound of 20 and an upper bound of 23, we prove in Lemma 6
that the crossing number of the graph S5 + C4 is 23.

Lemma 5. cr(S3 + C3) = 5, cr(S3 + C4) = cr(S4 + C3) = 8, cr(S4 + C4) = 14,
and cr(S5 + C3) = 13.

12 n n-1
2

n
+1

2

n

v0

v1

v2

v3

v4

v5

c c c c c c

Figure 2. The drawing of the graph graph S5 + Cn.

The drawing in Figure 2 shows the graph S5 + Cn. Let us denote by v0, v1,

v2, v3, v4, and v5 the vertices of the star S5, where v0 is the central vertex, and let
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c1, c2, . . . , cn be the vertices of the cycle Cn. For the graph S5+Cn, as well as for
its subgraphs S3+Cn and S4+Cn, let T

vi denote the subgraph induced on the n
edges incident with the vertex vi, i = 0, 1, 2, . . . , 5. The edges of

⋃5
i=0 T

vi ∼= K6,n

cross each other 6
⌊

n
2

⌋ ⌊

n−1
2

⌋

times. For every vertex cj , j = 1, 2, . . . ,
⌊

n
2

⌋

, the
edges incident with cj cross the edges of the star S5 four times, and the cycle Cn

crosses S5 three times. So, in Figure 2, exactly 6
⌊

n
2

⌋ ⌊

n−1
2

⌋

+4
⌊

n
2

⌋

+3 crossings
appear among the edges of the graph S5 + Cn in this drawing.

Lemma 6. cr(S5 + C4) = 23.

Proof. It follows from the drawing in Figure 2 that cr(S5 + C4) ≤ 23. To prove
the reverse inequality assume that there is an optimal drawing D of the graph
S5+C4 with at most 22 crossings. By Lemma 1, the edges of C4 do not cross each
other in D. Moreover, the edges of C4 are crossed at most twice in D, otherwise
by deleting the edges of C4 from D a drawing of the complete tripartite graph
K1,5,4 with less than 20 crossings is obtained. This contradicts the fact that
cr(K1,5,4) = 20, see [13]. By Lemma 5, cr(S4 +C4) = 14. This implies that in D

there are at most eight crossings on the edges of every subgraph T vi ∪ {v0, vi},
i = 1, 2, 3, 4, 5. As (S5+C4)\E(C4∪T v0) is isomorphic to the complete bipartite
graph K5,5 with crossing number 16, at most six crossings appear on the edges
of C4 ∪ T v0 . We note that C4 is crossed at least once, because otherwise all
subgraphs T vi , i = 0, 1, 2, 3, 4, 5, are placed in the same region of C4 and, by
Lemma 2, in D there are at least 2

(

6
2

)

> 22 crossings.

The cycle C4 divides the plane into two regions and, in D, the vertex v0 is
placed in one of them, say in the interior region. Our next analysis depends on
the number of crossings between the edges of C4 and the edges of the subgraph
T v0 in the drawing D. If crD(T

v0 , C4) = 0, then at least three subgraphs T vi ,
i ∈ {1, 2, 3, 4, 5}, are placed in the same region as v0 such that cr(T vi , C4) = 0.
By Corollary 3, each such subgraph T vi crosses T v0 at least twice and, together
with at least one crossing on C4, on the edges of C4 ∪ T v0 there are more than
six crossings. Thus, crD(T

v0 , C4) 6= 0.

If crD(T
v0 , C4) = 2, no other crossing appears on the edges of C4. In this

case, the star S5 is placed in the interior region of C4 such that none of T vi , i =
1, 2, 3, 4, 5, crosses C4. Thus, by Corollary 3, in D there are at least 2

(

5
2

)

+2 = 22
crossings among the edges of (S5+C4)\E(S5). This forces that crD(C4∪T

v0 , T vi∪
{v0, vi}) = 0 for all i = 1, 2, 3, 4, 5 and in the subdrawing induced by C4 ∪ T v0

there must exist a region containing all five vertices c1, c2, c3, c4, and v0 on its
boundary. The only possibility to obtain such a drawing is that one edge of C4 is
crossed by two edges of T v0 . Without loss of generality, let the edge {c1, c2} of C4

is crossed by the edges {v0, c3} and {v0, c4}. Thus, the 5-cycle c1v0c2c3c4c1 forms
the boundary of the region containing the vertices v1, v2, v3, v4, and v5. This
boundary together with the edges joining the vertices v1, v2, v3, v4, and v5 with
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the vertices c1, c2, c3, c4, and v0 form the graph D5 +C5. Hence, by Lemma 2, in
D there are at least 4

(

5
2

)

> 22 crossings. This confirms that crD(T
v0 , C4) = 1.

Assume first that the crossing between C4 and T v0 is the only crossing on the
edges of C4. Then the subdrawing of C4∪T v0 induced by D is unique as shown in
Figure 3(a). Clearly, every subgraph T vi , i = 1, 2, 3, 4, 5, crosses T v0 . Moreover,
none of them crosses T v0 twice, otherwise the edges of C4 ∪T v0 are crossed more
than six times. Hence, in D, all five vertices vi, i 6= 0, are placed in the region
α of the subdrawing of C4 ∪ T v0 . Now, the boundary of the region α forms the
4-cycle and, in D, all five vertices vi inside α are adjacent with four vertices on its
boundary such that the considered edges do not cross the boundary of α. Thus,
applying Lemma 2 on the subgraph isomorphic to D5+C4, the edges of

⋃5
i=0 T

vi

cross each other at least 2
(

5
2

)

times and in D there are at least 2
(

5
2

)

+ 5+ 1 > 22
crossings.

v0 v0

v1

(a) (b)

a

Figure 3. The subdrawings of C4 ∪ T v0 and C4 ∪ T v0 ∪ T v1 ∪ {v0, v1}.

The last possibility is that crD(T
v0 , C4) = 1 and the edges of C4 are crossed

twice. This implies that crD(S5, C4 ∪ T v0) = 0, otherwise, together with the
crossings between five subgraphs T vi and C4∪T

v0 , more than six crossings appear
on the edges of C4 ∪ T v0 . Thus, one of the subgraphs T vi , say T v1 , crosses C4

once. The subdrawing of C4 ∪ T v1 induced by D is the same as the drawing in
Figure 3(a) if we replace the vertex v0 by the vertex v1. Since no other crossing
is allowed on C4, every subgraph T vi , i = 2, 3, 4, 5, crosses both T v0 and T v1 .
Moreover, by Corollary 3, the edges of T v2 ∪ T v3 ∪ T v4 ∪ T v5 cross each other at
least 2

(

4
2

)

times. So, at least 22 crossings appear in D on the edges other than the
edges of S5. Now, the unique subdrawing of the subgraph C4∪T v0∪T v1∪{v0, v1}
induced by D is shown in Figure 3(b). It is easy to verify that every subgraph
T vi , i = 2, 3, 4, 5, crosses the edges of T v0 ∪ T v1 ∪ {v0, v1} at least three times
and in D there are at least 4 · 3 + 2

(

4
2

)

+ 2 > 22 crossings. This completes the
proof.



Crossing Numbers of Products of Wheels and Trees 407

Theorem 7. cr(S3 + Cn) = 2
⌊

n
2

⌋ ⌊

n−1
2

⌋

+
⌊

n
2

⌋

+ 2 for n ≥ 3.

Proof. By Lemma 5, the result is true for n = 3 and n = 4. The drawing of
the graph S3 + Cn with 2

⌊

n
2

⌋ ⌊

n−1
2

⌋

+
⌊

n
2

⌋

+ 2 = 1
2n(n− 1) + 2 crossings can be

obtained by deleting the vertices v4 and v5 from the drawing in Figure 2. So,
cr(S3 +Cn) ≤

1
2n(n− 1) + 2. To prove the reverse inequality suppose that there

is an optimal drawing D with less than 1
2n(n − 1) + 2 crossings for n ≥ 5. The

subgraph (S3+Cn)\E(Cn) is isomorphic to the complete tripartite graph K1,3,n.
Asano in [2] proved that cr(K1,3,n) =

1
2n(n− 1). This forces that the edges of Cn

are crossed at most once in D.

By Lemma 1, the edges of Cn do not cross each other inD and the subdrawing
of Cn induced by D divides the plane into two regions. If the edges of Cn are
not crossed, then all four vertices v0, v1, v2, and v3 are placed in one of these two
regions and, by Lemma 2, in D there are at least

(

4
2

) ⌊

n
2

⌋ ⌊

n−1
2

⌋

> 1
2n(n− 1) + 1

crossings, a contradiction. So, if all vertices v0, v1, v2, and v3 are placed in D

in the same region of Cn, exactly one subgraph T vi , i ∈ {0, 1, 2, 3}, crosses Cn

once. But, for n ≥ 4, it crosses also all three subgraphs T vj , j ∈ {0, 1, 2, 3},
j 6= i, and Corollaries 3 and 4 imply that in D there are at least

(

3
2

) ⌊

n
2

⌋ ⌊

n−1
2

⌋

+
3
⌊

n−1
2

⌋ ⌊

n−2
2

⌋

+ 1 > 1
2n(n− 1) + 1 crossings. This contradicts the assumption of

D. Hence, the cycle Cn separates the vertices of S3. As Cn does not have more
than one crossing, one vertex, say v3, of degree one of S3 is separated from the
other three. In this case, by Corollary 3, the edges of T v0 ∪ T v1 ∪ T v2 cross each
other at least

(

3
2

) ⌊

n
2

⌋ ⌊

n−1
2

⌋

times and in D there are at least 3
⌊

n
2

⌋ ⌊

n−1
2

⌋

+ 1
crossings. This number exceeds the considered number of crossings in D for n ≥ 5
and the proof is done.

Theorem 8. cr(S4 + Cn) = 4
⌊

n
2

⌋ ⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 2 for n ≥ 3.

Proof. By Lemma 5, the result is true for n = 3 and n = 4. The drawing of
the graph S4 + Cn with 4

⌊

n
2

⌋ ⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 2 = n(n − 1) + 2 crossings can
be obtained by deleting the vertex v5 from the drawing in Figure 2. Hence,
cr(S4 + Cn) ≤ n(n − 1) + 2. To prove the reverse inequality assume that, for
n ≥ 5, there is an optimal drawing D of the graph S4 + Cn with fewer than
n(n− 1) + 2 crossings.

By Lemma 1, the edges of Cn do not cross each other in D. The subgraph
(S4 + Cn) \E(Cn) of the graph S4 + Cn is isomorphic to the complete tripartite
graph K1,4,n. It was shown in [12] that cr(K1,4,n) = n(n− 1). This implies that
the edges of Cn are crossed at most once in D. On the other hand, if no edge of
Cn is crossed, then all five vertices of S4 are placed in the same region in the view
of the subdrawing of Cn induced by D and, by Lemma 2, in D there are at least
(

5
2

) ⌊

n
2

⌋ ⌊

n−1
2

⌋

crossings. This number is greater than the considered number of
crossings in the drawing D. Thus, the edges of Cn are crossed exactly once in D.
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Regardless of Cn is crossed by S4 or by some subgraph T vi , i ∈ {0, 1, 2, 3, 4},
at least four subgraphs T vi are placed in the same region of the subdrawing of
Cn and none of them crosses Cn. Thus, by Corollary 3, in D there are at least
(

4
2

) ⌊

n
2

⌋ ⌊

n−1
2

⌋

+ 1 crossings. This exceeds the considered number of crossings in
D for n ≥ 5, and the proof is done.

Theorem 9. cr(S5 + Cn) = 6
⌊

n
2

⌋ ⌊

n−1
2

⌋

+ 4
⌊

n
2

⌋

+ 3 for n ≥ 3.

Proof. By Lemmas 5 and 6, Theorem 9 is true when n = 3 and n = 4. The
drawing in Figure 2 shows that cr(S5 + Cn) ≤ 6

⌊

n
2

⌋ ⌊

n−1
2

⌋

+ 4
⌊

n
2

⌋

+ 3. For
n ≥ 5, assume that there is an optimal drawing D of the graph S5 + Cn with
at most 6

⌊

n
2

⌋ ⌊

n−1
2

⌋

+ 4
⌊

n
2

⌋

+ 2 crossings. By Lemma 1, the edges of Cn do
not cross each other in D. The subgraph (S5 + Cn) \ E(Cn) is isomorphic to
the complete tripartite graph K1,5,n. It was proved in [13] that cr(K1,5,n) =
6
⌊

n
2

⌋ ⌊

n−1
2

⌋

+ 4
⌊

n
2

⌋

. Thus, Cn is crossed at most twice in D. At most four
vertices vi, i ∈ {0, 1, 2, 3, 4, 5}, are placed in the same region of Cn such that
the corresponding subgraphs T vi do not cross Cn. Otherwise, by Corollary 3,
in D there are at least

(

5
2

) ⌊

n
2

⌋ ⌊

n−1
2

⌋

> 6
⌊

n
2

⌋ ⌊

n−1
2

⌋

+ 4
⌊

n
2

⌋

+ 2 crossings. This
forces that the edges of Cn are crossed exactly twice and that every subgraph T vi

crosses Cn at most once. In addition, as the deleting of all edges of the subgraph
Cn ∪ T v0 results in the graph K5,n+1 with crossing number 4

⌊

n
2

⌋ ⌊

n+1
2

⌋

, at most
2
⌊

n
2

⌋ ⌊

n−1
2

⌋

+ 2 crossings can appear on the edges of Cn ∪ T v0 in D.

We show first that T v0 crosses Cn in D. If crD(T
v0 , Cn) = 0, at least three

subgraphs T vi , i ∈ {1, 2, 3, 4, 5}, are placed in the same region of Cn as the
vertex v0 with crD(T

vi , Cn) = 0. By Corollary 3, each of these three considered
subgraphs crosses T v0 at least

⌊

n
2

⌋ ⌊

n−1
2

⌋

times. Hence, the edges of Cn∪T v0 are
crossed at least 3

⌊

n
2

⌋ ⌊

n−1
2

⌋

+ 1 times. This is greater than 2
⌊

n
2

⌋ ⌊

n−1
2

⌋

+ 2 for
n ≥ 5. Thus, crD(T

v0 , Cn) = 1 and there is exactly one another crossing on the
edges of Cn. For the case cr(S5, Cn) = 1, one subgraph T vi , say T v1 , is placed in
the other region of Cn as v0 with crD(T

v1 , Cn) = 0. The drawing in Figure 3(a)
can be generalized such that it confirms that, in this case, T v1 crosses T v0 at
least once. If cr(S5, Cn) = 0, one subgraph T vi , say again T v1 , crosses Cn once.
But it crosses also T v0 . By Corollary 4, each of the remaining four subgraphs
T vi , i = 2, 3, 4, 5, crosses T v0 at least

⌊

n−1
2

⌋ ⌊

n−2
2

⌋

times. Hence, on the edges of
Cn ∪ T v0 there are at least 4

⌊

n−1
2

⌋ ⌊

n−2
2

⌋

+ 3 crossings. This contradiction with
at most 2

⌊

n
2

⌋ ⌊

n−1
2

⌋

+2 crossings on the edges of Cn∪T v0 completes the proof.

4. Cartesian Products of Wheels and Trees

In this section, using the results obtained in Section 3, we give the crossing number
of the Cartesian products of wheels and trees. Let Wn denote the wheel of n+ 1
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vertices. In Figure 2 it is easy to verify that the graph S5 + Cn is isomorphic to
the graph Wn + D5. In general, the graph Sm + Cn is isomorphic to the graph
Wn +Dm for all integers m ≥ 1 and n ≥ 3. So, we know the crossing numbers of
the graph Wn +Dm for all m ≤ 5. Now, using zip product operation introduced
in [4], we establish the crossing number of the Cartesian product Wn�T for all
trees with maximum degree five. For better reading, we repeat the related terms,
notations and results introduced by Bokal in [5].

For a graph G and a discrete graph Dm, let the vertices of Dm be called
apices of the graph G+Dm. Consider now two graphs G1 and G2. For a multiset
L ⊆ V (G2), we denote with G1�LG2 the capped Cartesian product of graphs G1

and G2, that is, the graph obtained by adding a distinct vertex v′ to G1�G2

for each copy of a vertex v ∈ L and joining v′ to all the vertices of G1�{v}.
We call each v′ a cap of v. Let χL(v) denote the multiplicity of v in L and
ℓ(v) := degG2

(v) + χL(v). An edge {u, v} ∈ E(G2) is unbalanced if ℓ(u) 6= ℓ(v).
Let β(G2) be the number of unbalanced edges of G2.

A drawingD of G+Dm is apex-homogeneous if there exists a permutation ρ of
the vertices of G such that the vertex rotation around every apex in D is ρ or ρ−1.
Two drawings D(i) of G+Di and D(j) of G+Dj are pairwise apex-homogeneous,
if they are apex-homogeneous with respect to the same permutation ρ. A graph
G has all apex-homogeneous drawings if there exist drawings D(m) of G+Dm for
all m ≥ 1, such that every two of them are pairwise apex-homogeneous. The next
result given by Bokal enables us to establish the crossing numbers of Wn�T .

Theorem 10 ([5]). Let G be a graph of order n, let T be a tree, and let L ⊆ V (T )
be a multiset with either ℓ(v) ≥ 3 or, if G has a dominating vertex, ℓ(v) ≥ 2 for

every v ∈ V (T ). Define

B =
∑

v∈V (T )

cr
(

G+Dl(v)

)

.

Then, B ≤ cr(G�LT ) ≤ B + β(T )
2

(

n
2

)

. Also, cr(G�LT ) = B whenever G has all

apex-homogeneous drawings such that each of them is optimal.

Let v ∈ V (G) be a vertex of degree d in G. A bundle Bv of the vertex v is a
set of d edge disjoint paths from v to some other vertex u ∈ V (G). Let F ⊂ E(G)
be a subset of edges of G and π a permutation of F . A π-subdivision Gπ of G is
the graph obtained from G by subdividing every edge e ∈ F with the vertex ve
and adding the edges {{ve, vπ(e)}|e ∈ F}.

Theorem 11 ([5]). Let v be a vertex that has a bundle Bv in a graph G and let

π be cyclic permutation of a subset of F of all but one of the edges incident with

v, |F | ≥ 3. Then

cr(Gπ) ≥ cr(G) + 1,
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with equality if π respects the edge rotation around v in some optimal drawing

of G.

In the rest of the section, we give the crossing numbers of the Cartesian
products of the wheel Wn and all trees T with maximum degree at most five.

Theorem 12. Let T be a tree with maximum degree ∆(T ) ≤ 5. Let di be the

number of vertices of degree i in T . Then, for n ≥ 3,

cr(Wn�T ) = d1 + d2 + 2d3 + 2d4 + 3d5 +
⌊n

2

⌋⌊n− 1

2

⌋(

d2 + 2d3 + 4d4 + 6d5

)

+
⌊n

2

⌋(

d3 + 2d4 + 4d5

)

.

Proof. Let T ′ be the tree obtained from T by removing all vertices of degree
one in T . For a vertex v of T ′, let rv be the number of T -leaves adjacent to v in
T , and let L be the set of vertices in T ′, each with multiplicity rv. Thus, ℓ(v) =
dT ′(v)+ rv = dT (v) ≥ 2 for all v ∈ V (T ′). Note that the central vertex of Wn is a
dominating vertex, i.e., a vertex adjacent to all other vertices of the graph. Let us
restrict on the graph Wn+Dm for m ≤ 5. The drawing in Figure 2 shows that, by
this restriction, the wheel Wn has all apex-homogeneous drawings such that each

of them is optimal. Thus, by Theorem 10, cr(Wn�LT
′) =

∑∆(T )
i=2 (di·cr(Wn+Di)).

The graphWn�LT
′ is obtained from the Cartesian productWn�T ′ by adding

rv caps to Wn�{v} for every vertex v of T with rv T -leaves adjacent to v. This
consistency in combination with Theorem 11 also implies that a properly chosen
π-subdivision of edges connecting a cap of Wn�LT

′ with the corresponding rim
increases the crossing number by precisely one. Thus, after such π-subdivision
for each of d1 leafs of T , the graph Wn�T is obtained. This, together with the

fact that cr(Wn +D1) = 1, proves that cr(Wn�T ) =
∑∆(T )

i=1 (di · cr(Wn +Di)).

The values of crossing numbers of Wn + Dm are known for all m ≤ 5. In

[5] Bokal proved that cr(Wn + D2) =
⌊

n
2

⌋ ⌊

n−1
2

⌋

+ 1. As the graph Wn + Dm

is isomorphic to the graph Sm + Cn, by Theorems 7, 8, and 9 we have that

cr(Wn +D3) = 2
⌊

n
2

⌋ ⌊

n−1
2

⌋

+
⌊

n
2

⌋

+ 2, cr(Wn +D4) = 4
⌊

n
2

⌋ ⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 2,

and cr(Wn + D5) = 6
⌊

n
2

⌋ ⌊

n−1
2

⌋

+ 4
⌊

n
2

⌋

+ 3 for n ≥ 3. Applying this, together

with the formula cr(Wn�T ) =
∑∆(T )

i=1 (di · cr(Wn +Di)) for ∆(T ) ≤ 5, the result

is done.

At present, the crossing numbers of very few join products of graphs with
discrete graphs are known. In [21] there are collected the crossing numbers of
G+Dm for all graphs G of order at most four. Only some few results on crossing
numbers of G +Dm are known for graphs G on five and six vertices. Note that
Theorem 10 cannot be simply used for estimating the crossing number of the
Cartesian product G�T for all graphs G, for which the crossing number of the
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join product G + Dm is known. The reason is that not every graph contains
a dominating vertex and, in this case, the vertices of degree two in T are not
treatable using zip product.
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[16] M. Klešč, The crossing numbers of Cartesian products of paths with 5-vertex graphs ,
Discrete Math. 233 (2001) 353–359.
doi:10.1016/S0012-365X(00)00251-X
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