RELATING 2-RAINBOW DOMINATION TO ROMAN DOMINATION

José D. Alvarado
Simone Dantas
Instituto de Matemática e Estatística
Universidade Federal Fluminense, Niterói, Brazil
e-mail: josealvarado.mat17@gmail.com
sdantas@im.uff.br
AND
Dieter Rautenbach
Institute of Optimization and Operations Research
Ulm University, Ulm, Germany
e-mail: dieter.rautenbach@uni-ulm.de

Abstract

For a graph G, let $\gamma_{R}(G)$ and $\gamma_{r 2}(G)$ denote the Roman domination number of G and the 2 -rainbow domination number of G, respectively. It is known that $\gamma_{r 2}(G) \leq \gamma_{R}(G) \leq \frac{3}{2} \gamma_{r 2}(G)$. Fujita and Furuya [Difference between 2-rainbow domination and Roman domination in graphs, Discrete Appl. Math. 161 (2013) 806-812] present some kind of characterization of the graphs G for which $\gamma_{R}(G)-\gamma_{r 2}(G)=k$ for some integer k. Unfortunately, their result does not lead to an algorithm that allows to recognize these graphs efficiently.

We show that for every fixed non-negative integer k, the recognition of the connected K_{4}-free graphs G with $\gamma_{R}(G)-\gamma_{r 2}(G)=k$ is NP-hard, which implies that there is most likely no good characterization of these graphs. We characterize the graphs G such that $\gamma_{r 2}(H)=\gamma_{R}(H)$ for every induced subgraph H of G, and collect several properties of the graphs G with $\gamma_{R}(G)=\frac{3}{2} \gamma_{r 2}(G)$.

Keywords: 2-rainbow domination, Roman domination.
2010 Mathematics Subject Classification: 05C69.

1. Introduction

We consider finite, simple, and undirected graphs, and use standard terminology and notation.

Rainbow domination was introduced in [3]. Here we consider the special case of 2-rainbow domination. A 2-rainbow dominating function of a graph G is a function $f: V(G) \rightarrow 2^{\{1,2\}}$ such that $\bigcup_{v \in N_{G}(u)} f(v)=\{1,2\}$ for every vertex u of G with $f(u)=\emptyset$. For a set X of vertices of G, let $|f(X)|=\sum_{u \in X}|f(u)|$, and let the weight $w(f)$ of f be $|f(V(G))|$. The 2-rainbow domination number $\gamma_{r 2}(G)$ of G is the minimum weight of a 2-rainbow dominating function of G, and a 2-rainbow dominating function of G of weight $\gamma_{r 2}(G)$ is minimum.

Roman domination was introduced in [7]. A Roman dominating function of a graph G is a function $g: V(G) \rightarrow\{0,1,2\}$ such that every vertex u of G with $g(u)=0$ has a neighbor v with $g(v)=2$. For a set X of vertices of G, let $g(X)=$ $\sum_{u \in X} g(u)$, and let the weight $w(g)$ of g be $g(V(G))$. The Roman domination number $\gamma_{R}(G)$ of G is the minimum weight of a Roman dominating function of G, and a Roman dominating function of G of weight $\gamma_{R}(G)$ is minimum.

For a positive integer k, let $[k]$ be the set of positive integers at most k.
The definitions of 2-rainbow domination on the one hand and Roman domination on the other hand clearly exhibit certain similarities. It is therefore not surprising that these notions are related. For later reference, we include the simple proof of the following known results.

Theorem 1 (Wu and Xing [9], Chellali and Rad [5], and Fujita and Furuya [6]). If G is a graph, then $\gamma_{r 2}(G) \leq \gamma_{R}(G) \leq \frac{3}{2} \gamma_{r 2}(G)$.

Proof. These inequalities follow immediately from two simple observations. If g is a Roman dominating function of G, then

$$
f: V(G) \rightarrow 2^{\{1,2\}}: x \mapsto \begin{cases}\emptyset, & \text { if } g(x)=0, \\ \{1\}, & \text { if } g(x)=1, \text { and } \\ \{1,2\}, & \text { if } g(x)=2\end{cases}
$$

is a 2-rainbow dominating function of G of weight $w(f) \leq w(g)$. Similarly, if f is a 2-rainbow dominating function of G, and $\left|f^{-1}(\{1\})\right| \geq\left|f^{-1}(\{2\})\right|$, then

$$
g: V(G) \rightarrow\{0,1,2\}: x \mapsto \begin{cases}0, & \text { if } f(x)=\emptyset, \\ 1, & \text { if } f(x)=\{1\}, \text { and } \\ 2, & \text { otherwise }\end{cases}
$$

is a Roman dominating function of G of weight

$$
\begin{align*}
w(g) & =\left|f^{-1}(\{1\})\right|+2\left|f^{-1}(\{2\})\right|+2\left|f^{-1}(\{1,2\})\right| \\
& \leq \frac{3}{2}\left|f^{-1}(\{1\})\right|+\frac{3}{2}\left|f^{-1}(\{2\})\right|+2\left|f^{-1}(\{1,2\})\right| \tag{1}\\
& \leq \frac{3}{2}\left|f^{-1}(\{1\})\right|+\frac{3}{2}\left|f^{-1}(\{2\})\right|+3\left|f^{-1}(\{1,2\})\right| \tag{2}\\
& =\frac{3}{2} w(f) .
\end{align*}
$$

Fujita and Furuya [6] present some kind of characterization of the connected graphs G for which $\gamma_{R}(G)-\gamma_{r 2}(G)=k$ for some non-negative integer k at most $\frac{1}{2} \gamma_{r 2}(G)$ (cf. Corollary 3.6 in [6]). Unfortunately, their result does not lead to an algorithm that allows to recognize these graphs efficiently.

In the present note we show that for every fixed non-negative integer k, the recognition of the connected K_{4}-free graphs G with $\gamma_{R}(G)-\gamma_{r 2}(G)=k$ is NPhard, which implies that there is most likely no good characterization of these graphs. In view of this negative result, we characterize the graphs G such that $\gamma_{r 2}(H)=\gamma_{R}(H)$ for every induced subgraph H of G, and also establish a similar result for the equality $\gamma_{R}(H)=\frac{3}{2} \gamma_{r 2}(H)$. The graphs G that satisfy $\gamma_{R}(G)=$ $\frac{3}{2} \gamma_{r 2}(G)$ seem far more restricted and we collect several of their properties.

For further related results on these parameters refer to $[8,1,2]$.

2. Results

We begin with our hardness results.
Theorem 2. It is NP-hard to decide whether $\gamma_{r 2}(G)=\gamma_{R}(G)$ for a given connected K_{4}-free graph G.

Proof. We describe a reduction from 3Sat. Therefore, let \mathcal{F} be an instance of 3SAT with m clauses C_{1}, \ldots, C_{m} over n boolean variables x_{1}, \ldots, x_{n}. Clearly, we may assume that $m \geq 2$. We will construct a connected K_{4}-free graph G whose order is polynomially bounded in terms of n and m such that \mathcal{F} is satisfiable if and only if $\gamma_{r 2}(G)=\gamma_{R}(G)$.

- For every variable x_{i}, we create a copy G_{i} of the diamond $K_{4}-e$, and denote the two vertices of degree 3 in G_{i} by x_{i} and \bar{x}_{i}.
- For every clause C_{j}, we create a vertex C_{j}.
- For every literal $x \in\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{\bar{x}_{1}, \ldots, \bar{x}_{n}\right\}$ and every clause C_{j} such that x appears in C_{j}, we add the edge $x C_{j}$.
- Finally, we add an induced path $u v w$ of order 3 and all possible edges between $\{u, w\}$ and $\left\{C_{1}, \ldots, C_{m}\right\}$.

This completes the construction of G. Clearly, G is connected and K_{4}-free, and has order $4 n+m+3$.

Let f be a 2-rainbow dominating function of G. It is easy to see that $\left|f\left(V\left(G_{i}\right)\right)\right| \geq 2$ for every $i \in[n]$, and $\left|f\left(\left\{C_{1}, \ldots, C_{m}\right\} \cup\{u, v, w\}\right)\right| \geq 2$, which implies $\gamma_{r 2}(G) \geq 2 n+2$. Since

$$
x \mapsto \begin{cases}\{1\}, & x \in\left\{u, x_{1}, \ldots, x_{n}\right\}, \\ \{2\}, & x \in\left\{w, \bar{x}_{1}, \ldots, \bar{x}_{n}\right\}, \text { and } \\ \emptyset, & \text { otherwise }\end{cases}
$$

defines a 2-rainbow dominating function of weight $2 n+2$, we obtain $\gamma_{r 2}(G)=$ $2 n+2$, which implies $\gamma_{R}(G) \geq 2 n+2$.

In remains to show that \mathcal{F} is satisfiable if and only if $\gamma_{R}(G)=2 n+2$.
Suppose that $\gamma_{R}(G)=2 n+2$. Let g be a minimum Roman dominating function of G. It is easy to see that $g\left(V\left(G_{i}\right)\right) \geq 2$ for every $i \in[n]$, and $g\left(\left\{C_{1}\right.\right.$, $\left.\left.\ldots, C_{m}\right\} \cup\{u, v, w\}\right) \geq 2$. Since $\gamma_{R}(G)=2 n+2$, all these inequalities are satisfied with equality, and considering u, v, and w, it follows easily that $g(v)=2$, and that every vertex C_{j} has a neighbor x in $\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{\bar{x}_{1}, \ldots, \bar{x}_{n}\right\}$ with $g(x)=2$. Therefore, these latter vertices indicate a satisfying truth assignment for \mathcal{F}.

Conversely, suppose that \mathcal{F} is satisfiable, and consider a satisfying truth assignment. The function

$$
x \mapsto \begin{cases}2, & x=v \\ 2, & x \in\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{\bar{x}_{1}, \ldots, \bar{x}_{n}\right\} \text { such that } x \text { is true, and } \\ 0, & \text { otherwise }\end{cases}
$$

defines a Roman dominating function of G of weight $2 n+2$, which implies $\gamma_{R}(G)=$ $2 n+2$, and completes the proof.

If G is a graph, then $\gamma_{r 2}\left(G \cup C_{4}\right)=\gamma_{r 2}(G)+2$ and $\gamma_{R}\left(G \cup C_{4}\right)=\gamma_{R}(G)+3$. Furthermore, if G has k components G_{1}, \ldots, G_{k}, the star $K_{1, k+2}$ has endvertices u_{1}, \ldots, u_{k+2}, and G^{\prime} arises from $G \cup K_{1, k+2}$ by adding an edge between u_{i} and one vertex of G_{i} for every $i \in[k]$, then G^{\prime} is connected, and satisfies $\gamma_{r 2}\left(G^{\prime}\right)=$ $\gamma_{r 2}(G)+2$ and $\gamma_{R}\left(G^{\prime}\right)=\gamma_{R}(G)+2$. In combination with Theorem 2, these observations immediately imply the following.

Corollary 3. Let k be a positive integer. It is NP-hard to decide whether $\gamma_{R}(G)-$ $\gamma_{r 2}(G)=k$ for a given connected K_{4}-free graph G.

We proceed to our results concerning induced subgraphs.
Theorem 4. A graph G satisfies $\gamma_{r 2}(H)=\gamma_{R}(H)$ for every induced subgraph H of G if and only if G is $\left\{P_{5}, C_{5}, C_{4}\right\}$-free.

Proof. Since $\gamma_{r 2}(H)<\gamma_{R}(H)$ for every graph H in $\left\{P_{5}, C_{5}, C_{4}\right\}$, the necessity follows immediately. In view of Theorem 1, in order to complete the proof, it suffices to show that every $\left\{P_{5}, C_{5}, C_{4}\right\}$-free graph G satisfies $\gamma_{R}(G) \leq \gamma_{r 2}(G)$. Therefore, let G be a $\left\{P_{5}, C_{5}, C_{4}\right\}$-free graph, and let f be a minimum 2-rainbow dominating function of G such that $\left|f^{-1}(\{1,2\})\right|$ is as large as possible. For $F \in 2^{\{1,2\}}$, let $V_{F}=f^{-1}(F)$. Let

$$
g: V(G) \rightarrow\{0,1,2\}: x \mapsto \begin{cases}0, & \text { if } x \in V_{\emptyset} \\ 1, & \text { if } x \in V_{\{1\}} \cup V_{\{2\}}, \text { and } \\ 2, & \text { if } x \in V_{\{1,2\}} .\end{cases}
$$

Note that $w(g)=w(f)$. If g is a Roman dominating function of G, then $\gamma_{R}(G) \leq$ $\gamma_{r 2}(G)$. Hence, we may assume that g is not a Roman dominating function of G, which implies the existence of a vertex u in V_{\emptyset} that has a neighbor v_{1} in $V_{\{1\}}$ as well as a neighbor v_{2} in $V_{\{2\}}$ but no neighbor in $V_{\{1,2\}}$. We say that $v_{1} u v_{2}$ is a special path.

First, suppose that there is no special path $v_{1} u v_{2}$ such that v_{1} and v_{2} are adjacent, that is, every special path is induced. Let $v_{1} u v_{2}$ be a special path. Let

$$
f_{1}: V(G) \rightarrow 2^{\{1,2\}}: x \mapsto \begin{cases}\emptyset, & \text { if } x \in\left\{v_{1}, v_{2}\right\} \\ \{1,2\}, & \text { if } x=u, \text { and } \\ f(x), & \text { otherwise }\end{cases}
$$

Since $w\left(f_{1}\right)=w(f)$, the choice of f implies that f_{1} is not a 2-rainbow dominating function of G. By symmetry, we may therefore assume that there is a special path $v_{1} u^{\prime} v_{2}^{\prime}$ with $u^{\prime} \notin N_{G}[u]$. By our assumption, v_{1} is not adjacent to v_{2} or to v_{2}^{\prime}. Since G is C_{4}-free, u^{\prime} is not adjacent to v_{2}, which implies that v_{2}^{\prime} is distinct from v_{2}. Since G is C_{4}-free, u is not adjacent to v_{2}^{\prime}. Now, $G\left[\left\{v_{2}^{\prime}, u^{\prime}, v_{1}, u, v_{2}\right\}\right]$ is C_{5} or P_{5} depending on whether v_{2} and v_{2}^{\prime} are adjacent or not, which is a contradiction. Hence, there is a special path that is not induced. If $v_{1} u v_{2}$ is a special path, and v_{1} is adjacent to v_{2}, then we say that $v_{1} u v_{2}$ is a special triangle.

Let U be a set of vertices of maximum order such that every vertex in U belongs to some special triangle T with $V(T) \subseteq U$. Since there is at least one special triangle, the set U is not empty. For $F \in\{\emptyset,\{1\},\{2\}\}$, let $U_{F}=U \cap V_{F}$. By symmetry, we may assume that $\left|U_{\{1\}}\right| \geq\left|U_{\{2\}}\right|$. Let

$$
f_{2}: V(G) \rightarrow 2^{\{1,2\}}: x \mapsto \begin{cases}\emptyset, & \text { if } x \in U_{\{1\}} \\ \{1,2\}, & \text { if } x \in U_{\{2\}}, \text { and } \\ f(x), & \text { otherwise }\end{cases}
$$

Since $w\left(f_{2}\right) \leq w(f)$, the choice of f implies that f_{2} is not a 2-rainbow dominating function of G. Since every vertex in $U_{\emptyset} \cup U_{\{1\}}$ has a neighbor in $U_{\{2\}}$, together
with the definition of U, this implies the existence of a special triangle $v_{1} u v_{2}$ as well as a special path $v_{1} u^{\prime} v_{2}^{\prime}$ such that

- $u \in U_{\emptyset}, v_{1} \in U_{\{1\}}$, and $v_{2} \in U_{\{2\}}$,
- $u^{\prime}, v_{2}^{\prime} \notin U$, and
- u^{\prime} is not adjacent to v_{2}.

If v_{1} and v_{2}^{\prime} are adjacent, then $v_{1} u^{\prime} v_{2}^{\prime}$ is a special triangle, and adding u^{\prime} and v_{2}^{\prime} to U yields a contradiction to the choice of U. Hence, v_{1} is not adjacent to v_{2}^{\prime}. Since G is C_{4}-free, v_{2} is not adjacent to v_{2}^{\prime}. Let

$$
f_{3}: V(G) \rightarrow 2^{\{1,2\}}: x \mapsto \begin{cases}\emptyset, & \text { if } x=v_{2}, \\ \{1,2\}, & \text { if } x=v_{1}, \text { and } \\ f(x), & \text { otherwise. }\end{cases}
$$

Since $w\left(f_{3}\right)=w(f)$, the choice of f implies that f_{3} is not a 2-rainbow dominating function of G. This implies the existence of a vertex $u^{\prime \prime} \in V_{\emptyset}$ that is adjacent to v_{2} but not to v_{1}. Since G is C_{4}-free, u^{\prime} is not adjacent to $u^{\prime \prime}$. Now, $G\left[\left\{v_{2}^{\prime}, u^{\prime}, v_{1}, v_{2}, u^{\prime \prime}\right\}\right]$ is C_{5} or P_{5} depending on whether v_{2}^{\prime} and $u^{\prime \prime}$ are adjacent or not, which is a contradiction and completes the proof.

For a positive integer k, let $\mathcal{G}_{k}\left(\gamma_{R}, \frac{3}{2} \gamma_{r 2}\right)$ be the set of all graphs G such that $\gamma_{R}(H)=\frac{3}{2} \gamma_{r 2}(H)$ for every induced subgraph H of G with $\gamma_{r 2}(H) \geq k$, that is,

$$
\mathcal{G}_{k}\left(\gamma_{R}, \frac{3}{2} \gamma_{r 2}\right)=\left\{G: \forall H \subseteq_{\text {ind }} G: \gamma_{r 2}(H) \geq k \Rightarrow \gamma_{R}(H)=\frac{3}{2} \gamma_{r 2}(H)\right\} .
$$

Since $\gamma_{r 2}\left(K_{1}\right)=1=\gamma_{R}\left(K_{1}\right)$, the set $\mathcal{G}_{1}\left(\gamma_{R}, \frac{3}{2} \gamma_{r 2}\right)$ contains no graph of positive order. Since $\gamma_{r 2}\left(K_{2}\right)=\gamma_{R}\left(K_{2}\right)=\gamma_{r 2}\left(\bar{K}_{2}\right)=\gamma_{R}\left(\bar{K}_{2}\right)=2$, the set $\mathcal{G}_{2}\left(\gamma_{R}, \frac{3}{2} \gamma_{r 2}\right)$ contains the null graph, and K_{1}.

Theorem 5. A graph G belongs to $\mathcal{G}_{3}\left(\gamma_{R}, \frac{3}{2} \gamma_{r 2}\right)$ if and only if G is $\left\{\bar{K}_{3}, K_{2} \cup K_{1}\right\}$ free.

Proof. Since $\gamma_{r 2}\left(\bar{K}_{3}\right)=\gamma_{R}\left(\bar{K}_{3}\right)=\gamma_{r 2}\left(K_{2} \cup K_{1}\right)=\gamma_{R}\left(K_{2} \cup K_{1}\right)=3$, the graphs in $\mathcal{G}_{3}\left(\gamma_{R}, \frac{3}{2} \gamma_{r 2}\right)$ are $\left\{\bar{K}_{3}, K_{2} \cup K_{1}\right\}$-free. In view of Theorem 1, in order to complete the proof, it suffices to show that no graph G exists that is both $\left\{\bar{K}_{3}, K_{2} \cup K_{1}\right\}$-free and satisfies $\gamma_{r 2}(G) \geq 3$. For a contradiction, suppose that G is a $\left\{\bar{K}_{3}, K_{2} \cup K_{1}\right\}$-free graph with $\gamma_{r 2}(G) \geq 3$. Since $\gamma_{r 2}(G) \geq 3$, the graph G is not complete. Let u and v be two distinct vertices of G that are not adjacent. Since G is $\left\{\bar{K}_{3}, K_{2} \cup K_{1}\right\}$-free, we obtain $N_{G}(u)=N_{G}(v)=V(G) \backslash\{u, v\}$. This im- plies that

$$
x \mapsto \begin{cases}\{1\}, & x=u, \\ \{2\}, & x=v, \text { and } \\ \emptyset, & \text { otherwise }\end{cases}
$$

defines a 2 -rainbow dominating function of G of weight 2 , which is a contradiction.
Theorem 2 implies that the graphs G with $\gamma_{r 2}(G)=\gamma_{R}(G)$ do not have a simple structure. In contrast to that, the graphs G with $\gamma_{R}(G)=\frac{3}{2} \gamma_{r 2}(G)$ seem far more restricted. In fact, it is conceivable that these graphs can be recognized in polynomial time. In our last result, we collect several of their properties.
Theorem 6. If G is a graph with $\gamma_{R}(G)=\frac{3}{2} \gamma_{r 2}(G)$, then every minimum 2rainbow dominating function f of G has the following properties, where $V_{F}=$ $f^{-1}(F)$ and $n_{F}=\left|V_{F}\right|$ for $F \in 2^{\{1,2\}}$.
(i) $n_{\{1\}}=n_{\{2\}}$ and $n_{\{1,2\}}=0$.
(ii) There are no edges between $V_{\{1\}}$ and $V_{\{2\}}$.
(iii) For $i \in[2]$, the maximum degree of $G\left[V_{\{i\}}\right]$ is at most 1 .
(iv) For $i \in[2]$, every vertex in V_{\emptyset} has at least 1 and at most 2 neighbors in $V_{\{i\}}$.
(v) For $i \in[2]$, every vertex u in $V_{\{i\}}$ has at least 2 neighbors v in V_{\emptyset} with $N_{G}(v) \cap V_{\{i\}}=\{u\}$.
Proof. Let G be a graph with $\gamma_{R}(G)=\frac{3}{2} \gamma_{r 2}(G)$, and let f be a minimum 2rainbow dominating function of G.
(i) Since the inequality (1) in the proof of Theorem 1 is satisfied with equality, we obtain $n_{\{1\}}=n_{\{2\}}$. Similarly, since (2) is satisfied with equality, we obtain $n_{\{1,2\}}=0$. Since f is a 2-rainbow dominating function of G and $n_{\{1,2\}}=0$, every vertex in V_{\emptyset} has a neighbor in $V_{\{1\}}$ as well as a neighbor in $V_{\{2\}}$.
(ii) If v_{1} in $V_{\{1\}}$ is adjacent to v_{2} in $V_{\{2\}}$, then

$$
x \mapsto \begin{cases}0, & x \in\left\{v_{2}\right\} \cup V_{\emptyset}, \\ 1, & x \in V_{\{2\}} \backslash\left\{v_{2}\right\}, \text { and } \\ 2, & x \in V_{\{1\}}\end{cases}
$$

defines a Roman dominating function of G of weight $\frac{3}{2} \gamma_{r 2}(G)-1$, which is a contradiction.
(iii) If u in $V_{\{i\}}$ is adjacent to two distinct vertices v and w in $V_{\{i\}}$, then

$$
x \mapsto \begin{cases}0, & x \in\{v, w\} \cup V_{\emptyset}, \\ 1, & x \in V_{\{i\}} \backslash\{u, v, w\}, \text { and } \\ 2, & x \in\{u\} \cup V_{\{3-i\}}\end{cases}
$$

defines a Roman dominating function of G of weight $\frac{3}{2} \gamma_{r 2}(G)-1$, which is a contradiction.
(iv) As observed above, every vertex in V_{\emptyset} has a neighbor in $V_{\{i\}}$. If u in V_{\emptyset} is adjacent to three distinct vertices v_{1}, v_{2}, and v_{3} in $V_{\{i\}}$, then

$$
x \mapsto \begin{cases}0, & x \in\left\{v_{1}, v_{2}, v_{3}\right\} \cup\left(V_{\emptyset} \backslash\{u\}\right) \\ 1, & x \in V_{\{i\}} \backslash\left\{v_{1}, v_{2}, v_{3}\right\}, \text { and } \\ 2, & x \in\{u\} \cup V_{\{3-i\}}\end{cases}
$$

defines a Roman dominating function of G of weight $\frac{3}{2} \gamma_{r 2}(G)-1$, which is a contradiction.
(v) Let $i \in[2]$ and let $u \in V_{\{i\}}$. Let $P(u)=\left\{v \in V_{\emptyset}: N_{G}(v) \cap V_{\{i\}}=\{u\}\right\}$. If $P(u)=\emptyset$, then

$$
x \mapsto \begin{cases}0, & x \in V_{\emptyset}, \\ 1, & x \in V_{\{3-i\}} \cup\{u\}, \text { and } \\ 2, & x \in V_{\{i\}} \backslash\{u\}\end{cases}
$$

defines a Roman dominating function of G of weight $\frac{3}{2} \gamma_{r 2}(G)-1$, which is a contradiction. Hence, $P(u)$ is non-empty. If $P(u)=\{v\}$, then let w be a neighbor of v in $V_{\{3-i\}}$. Now,

$$
x \mapsto \begin{cases}0, & x \in\{u, w\} \cup\left(V_{\emptyset} \backslash\{v\}\right) \\ 1, & x \in V_{\{3-i\}} \backslash\{w\}, \text { and } \\ 2, & x \in\{v\} \cup\left(V_{\{i\}} \backslash\{u\}\right)\end{cases}
$$

defines a Roman dominating function of G of weight $\frac{3}{2} \gamma_{r 2}(G)-1$, which is a contradiction.

Acknowledgment

J.D. Alvarado and S. Dantas were partially supported by FAPERJ, CNPq, and CAPES. D. Rautenbach was partially supported by CAPES.

References

[1] J.D. Alvarado, S. Dantas and D. Rautenbach, Averaging 2-rainbow domination and Roman domination, Discrete Appl. Math. 205 (2016) 202-207. doi:10.1016/j.dam.2016.01.021
[2] J.D. Alvarado, S. Dantas and D. Rautenbach, Relating 2-rainbow domination to weak Roman domination, arXiv:1507.04899.
[3] B. Brešar, M.A. Henning and D.F. Rall, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008) 213-225.
[4] M. Chellali, T.W. Haynes and S.T. Hedetniemi, Bounds on weak roman and 2rainbow domination numbers, Discrete Appl. Math. 178 (2014) 27-32. doi:10.1016/j.dam.2014.06.016
[5] M. Chellali and N.J. Rad, On 2-rainbow domination and Roman domination in graphs, Australas. J. Combin. 56 (2013) 85-93.
[6] S. Fujita and M. Furuya, Difference between 2-rainbow domination and Roman domination in graphs, Discrete Appl. Math. 161 (2013) 806-812. doi:10.1016/j.dam.2012.10.017
[7] I. Stewart, Defend the Roman empire!, Sci. Amer. 281 (1999) 136-139. doi:10.1038/scientificamerican1299-136
[8] Y. Wu and N.J. Rad, Bounds on the 2-rainbow domination number of graphs, arXiv:1005.0988v1.
[9] Y. Wu and H. Xing, Note on 2-rainbow domination and Roman domination in graphs, Appl. Math. Lett. 23 (2010) 706-709.
doi:10.1016/j.aml.2010.02.012
Received 3 December 2015
Revised 7 July 2016
Accepted 8 August 2016

