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Abstract

We study problems related to the chromatic number of a random inter-
section graph G (n,m, p). We introduce two new algorithms which colour
G (n,m, p) with almost optimum number of colours with probability tend-
ing to 1 as n → ∞. Moreover we find a range of parameters for which the
chromatic number of G (n,m, p) asymptotically equals its clique number.

Keywords: random intersection graphs, chromatic number, colouring algo-
rithms.

2010 Mathematics Subject Classification: 05C80, 05C15, 05C85.

1. Introduction

Let V = {v1, . . . , vn} be a set of vertices and W = {w1, . . . , wm} be an auxiliary
set of objects. Each vertex v ∈ V is assigned a subset of objects Wv ⊆ W. The
intersection graph generated by a family of sets {Wv ⊆ W : v ∈ V} is the graph
with vertex set V in which two vertices v and v′ are connected by an edge if their
sets of objects Wv and Wv′ intersect (i.e., Wv ∩Wv′ 6= ∅). An intersection graph
generated by a family of sets {Wv ⊆ W : v ∈ V} is a random intersection graph
if for each Wv the set v ∈ V is chosen at random.

In this paper we will study the asymptotic (as n → ∞) properties of a ran-
dom intersection graph G (n,m, p) introduced by Karoński, Scheinerman and
Singer-Cohen in [10]. In a random intersection graph G (n,m, p) for each ver-
tex v ∈ V and each object w ∈ W we have w ∈ Wv with probability p in-
dependently of all other vertices and objects. In what follows we will use the
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asymptotic notation o(·), ≪ and ≫ consistently with [9]. Moreover we will write
that a random graph on n vertices Gn has property A with high probability if
Pr {Gn has property A} → 1 as n→ ∞.

In [10], among others, it was shown that for some range of parameters the
asymptotic behaviour of G (n,m, p) differs from this of a classical random graph
G(n, p̂) (with the vertex set V , in which each edge appears independently with
probability p̂). The subsequent article by Fill, Scheinerman and Singer-Cohen [6]
(see also [14]) determined a range of parameters for which both models G (n,m, p)
and G(n, p̂) are equivalent. It appears that for many graph properties there exists
a range of parameters for which G (n,m, p) and G(n, p̂) with the same edge density
have the property with asymptotically (as n → ∞) the same probability and
outside which G (n,m, p) and G(n, p̂) differ. We will be particularly interested in
some of those properties related to the chromatic number of G (n,m, p). We will
mainly concentrate on analysing algorithmic aspects of the problem.

The classical results concerning G(n, p̂) ([4, 5, 8, 12, 16], see also Chap-
ter 7 in [9]) show that as 1/n ≪ p̂ ≪ 1 with high probability χ(G(n, p̂)) =
(1+o(1)) n

α(G(n,p̂)) , where χ(G) is the chromatic number of G and α(G) is its inde-

pendence (stability) number. Therefore for sparse G(n, p̂) with p̂ above the phase
transition threshold, a trivial relation χ(G(n, p̂)) ≥ n/α(G(n, p̂)) is with high
probability asymptotically tight. Moreover, for 1/n ≪ p̂ ≪ 1, the greedy algo-
rithm (or its slight modification) with high probability uses (1+o(1))2χ(G(n, p̂))
colours to colour properly G(n, p̂). Last but not least, no polynomial time algo-
rithm which with high probability uses at most (2 − δ)G(n, p̂) colours (for some
constant δ > 0) has been found so far. For an extensive discussion on the problem
see [7] or Chapter 7 in [9].

The problems related to the chromatic number of G (n,m, p) were first stud-
ied by Behrisch, Taraz and Ueckerdt [2] and then by Nikoletseas, Raptopoulos
and Spirakis [13]. In [13] the authors analysed the problem of colourability of
almost all vertices (i.e., all but at most o(n) vertices) while in [2] two colouring
algorithms were studied. Each of the algorithms analysed in [2], for some range of
parameters, with high probability colour G (n,m, p) with ω(G (n,m, p)) colours.
Here by ω(G) we denote the clique number of a graph G. In particular in [2] the
following two theorems were shown.

Theorem 1. Let m = nβ with β > 0 fixed and mp ≪
√

m
n (i.e., mp2 ≪ 1

n).
Then G (n,m, p) can with high probability be coloured optimally in linear time and

χ(G (n,m, p)) = ω(G (n,m, p)).

If mp2 = o(1) then the probability that two vertices are connected by an
edge in G (n,m, p) equals 1 − (1 − p2)m = (1 + o(1))mp2. Moreover mp2 = 1

n is
a threshold function for phase transition in G (n,m, p) [1]. Therefore Theorem 1
describes the structure of G (n,m, p) far below phase transition threshold. For
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G(n, p̂) this case is trivial since then with high probability in G(n, p̂) all compo-
nents are trees. The proof of Theorem 1 basis on the fact that for mp2 ≪ 1/n,
G (n,m, p) with high probability has no induced cycles of length greater than 3.

Theorem 2. Let m = nβ with 0 < β < 1 fixed and mp≪ 1
m lnn . Then G (n,m, p)

can with high probability be coloured optimally in linear time. Moreover, for

np > ln4 n we have with high probability

χ(G (n,m, p)) = ω(G (n,m, p)) = (1 + o(1))np.

Theorems 1 and 2 show that if mp is ,,small” then with high probability
χ(G (n,m, p))= ω(G (n,m, p)), i.e., a trivial relation χ(G (n,m, p))≥ω(G (n,m, p))
is tight. Moreover these results give algorithms which, in this range of parame-
ters, use exactly χ(G (n,m, p)) colours. A natural question arises, for what choice
of n, m and p with high probability

(1) χ(G (n,m, p)) = (1 + o(1))ω(G (n,m, p))

and when with high probability

χ(G (n,m, p)) = (1 + o(1))
n

α(G (n,m, p))
.

Moreover one could ask whether, in the case where with high probability (1)
is fulfilled, there exists a simple algorithm using almost the optimum number
of colours. As the chromatic number and the independence number are tightly
related, based on results determining α(G (n,m, p)) [15] one could state the fol-
lowing conjecture.

Conjecture 1. Let m ≥ nβ for some constant β ∈ (0, 1) and 1
n ≪ mp2 ≪ 1.

(i) If m = o(n) and mp≪ ln n
m then with high probability

χ(G (n,m, p)) = (1 + o(1))ω(G (n,m, p))

and there exists a polynomial time algorithm which with high probability

colours G (n,m, p) with (1 + o(1))χ(G (n,m, p)) colours.

(ii) If n = O(m) or m = o(n) and mp≫ ln n
m then with high probability

χ(G (n,m, p)) = (1 + o(1))
n

α(G (n,m, p))
.

We will propose two new algorithms which colour intersection graphs. The
analysis of them shows that Conjecture 1 is true in two cases. The first one is
np ≥ 2 lnn and mp = o

(

ln lnn
lnn

)

. The second case is ln lnn≪ mp≪ ln n
m lnm and

np≫ lnn. Therefore we considerably sharpen Theorem 2 and propose new ideas
which possibly might be used for other values of n, m and p.
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Recall that V = {v1, . . . , vn} and W = {w1, . . . , wm}. In what follows we use
the following notation.

Vw = {v ∈ V : w ∈Wv}, for w ∈ W;

Xi = |Vvi |, 1 ≤ i ≤ m;

Yi = |Wwi
|, 1 ≤ i ≤ n.

Note that in G (n,m, p) sets Wvi (1 ≤ i ≤ n) are independent and Yi (1 ≤ i ≤ n)
are independent with the binomial distribution Bin (m, p). Moreover for all w∈W
sets Vw = {v ∈ V : w ∈ Wv} are independent and their sizes Xi (1 ≤ i ≤ m) are
independent with the binomial distribution Bin (n, p). By colouring greedily we
will mean using the algorithm which, given a palette of colours {k1, k2, . . .} and
a graph with an ordered set of vertices {v1, v2, . . . , vn}, colours properly vertices
one by one, using each time the available colour with the smallest index (i.e.,
for each vertex, the algorithm uses the colour with the smallest index chosen
from the set of colours which have not been used to colour the neighbours of the
considered vertex).

2. Result for mp≪ ln lnn/ lnn.

Algorithm 1

INPUT: an intersection graph G with an ordered vertex set V generated
by a family of sets {Wv : v ∈ V}
and
an infinite palette of colours;

OUTPUT: a proper vertex colouring of G;

1. V2 := {v ∈ V : |Wv| ≥ 2};

2. Colour greedily the vertices of G[V2], the subgraph of G induced on V2;

3. Colour greedily the remaining vertices of G.

Theorem 3. Let p ∈ (0, 1) and let n,m be positive integers. For any ε ∈ (0, 1)
and any C > 1 + ε there exists c ∈ (0, 1) such that if

(2) np ≥ C lnn and mp ≤ c
ln lnn

lnn
,

then for large n with probability at least 1−3n−ε Algorithm 1 colours G (n,m, p)
with ω(G (n,m, p)) colours.
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Proof. Let {k1, k2, . . .} be a palette of colours. Let G be an intersection graph
generated by a family of sets {Wv ⊆ W, v ∈ V}. The greedy colouring in Step 2
of Algorithm 1 uses at most ∆(G[V2]) + 1 colours. Moreover for any i and
j, i 6= j, in G there is no edge between Vwi

\ V2 and Vwj
\ V2. Therefore, after

Step 2, the largest index of the colours from {k1, k2, . . .} used to colour vertices
from Vwi

(wi ∈ W) is at most the maximum of ∆(G[V2]) + 1 and Xi. Thus
Algorithm 1 uses at most max{∆(G[V2]) + 1, X1, . . . , Xm} colours. On the
other hand max1≤i≤mXi ≤ ω(G). Therefore to prove the theorem it is enough
to prove that under conditions of the theorem in G (n,m, p) with probability at
least 1 − 3n−ε we have

(3) ∆(G (n,m, p) [V2]) < max
1≤i≤m

Xi.

Let

(4) ψ (x) = x lnx− x+ 1.

By Chernoff’s inequality (see for example Theorem 2.1 in [9]) for any random
variable X with the binomial distribution with mean µ we have

Pr {X ≥ xµ} ≤ exp (−ψ (x)µ) for x > 1;(5)

Pr {X ≤ xµ} ≤ exp (−ψ (x)µ) for x ∈ (0, 1).(6)

Let ε > 0, C > (1 + ε), and np ≥ C lnn. Moreover, define A ∈ (0, 1) and
c ∈ (0, 1) to be such that

(7) ψ (A) =
(1 + ε) lnn

np
and A ln c− c+ 1 = 0.

Note that (1+ε) lnn
np < 1, i.e., A is well defined.

Moreover (2) implies m ≤ n. Therefore by (6) and (7)

Pr

{

∀
1≤i≤m

Xi > Anp

}

≥ 1 − Pr

{

∃
1≤i≤m

Xi ≤ Anp

}

≥ 1 −m exp(−(1 + ε) lnn) = 1 − n−ε.

Thus

(8) Pr

{

max
1≤i≤m

Xi > Anp

}

≥ 1 − n−ε.

Now we will find the upper bound on ∆(G(n,m, p) [V2]). For vi ∈ V2, let Zi
(1 ≤ i ≤ n) be the number of neighbours of vertex vi ∈ V which are contained
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in V2. Moreover let Zi = 0 for vi /∈ V2. Given Yi = d (d ≥ 2) Zi has the binomial
distribution with parameters n− 1 and

(

1 − (1 − p)d
)

− dp(1 − p)m−1 ≤ dmp2.

Therefore, under condition Yi = d (d ≥ 2) Zi is stochastically dominated by ran-
dom variable Z∗

i,d with the binomial distribution Bin
(

n, dmp2
)

.
By (5), for large n,

Pr

{

Yi ≥

⌈

lnn

ln lnn

⌉}

≤ exp

(

−
lnn

ln lnn
· ln

(

lnn
ln lnn

mp

)

+
lnn

ln lnn
−mp

)

≤ exp

(

−
lnn

ln lnn
· ln

(

lnn
ln lnn
ln lnn
lnn

)

+
lnn

ln lnn
−mp

)

≤ exp

(

−
lnn

ln lnn
(2 ln lnn− 2 ln ln lnn) +

lnn

ln lnn
−mp

)

≤ exp

(

−2 lnn

(

1 −
ln ln lnn

ln lnn
−

1

2 ln lnn
+

mp

2 lnn

))

≤ exp(−(1 + ε) lnn) = n−1−ε.

In the second inequality we have used the fact that by definition we have c < 1,
i.e., mp ≤ c ln lnn

lnn ≤ ln lnn
lnn .

Moreover for d ≤
⌊

lnn
ln lnn

⌋

by (4), (5), and (7) we get

Pr
{

Z∗
i,d ≥ Anp

}

≤ exp

(

−dnmp2ψ

(

A

dmp

))

= exp

(

−dnmp2
(

A

dmp
ln

A

dmp
−

A

dmp
+ 1

))

= exp (−np (A lnA−A ln dmp−A+ dmp))

≤ exp (−npψ (A) + np (A ln(dmp) − dmp+ 1))

≤ exp (−(1 + ε) lnn+ np (A ln c− c+ 1))

= exp (−(1 + ε) lnn) = n−1−ε.

In the first inequality we used (5). The second last line follows by (7) and by
the fact that function f(x) = A lnx − x + 1 is increasing for x ≤ A (recall that
dmp ≤ c ≤ A). In order to obtain the last line, (7) was used.

Thus

Pr {∆(G (n,m, p) [V2]) ≥ Anp} = Pr

{

∃
1≤i≤n

Zi ≥ Anp

}

≤ nPr {Z1 ≥ Anp}
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≤ n

⌊ lnn
ln lnn⌋
∑

d=2

Pr
{

Z∗
1,d ≥ Anp

}

Pr {Y1 = d} + nPr

{

Y1 ≥

⌈

lnn

ln lnn

⌉}

≤ 2n−ε.(9)

Therefore by (8) and (9) with probability at least 1 − 3n−ε

∆(G (n,m, p) [V2]) < Anp < max
1≤i≤m

Xi ≤ ω(G (n,m, p)),

i.e., (3) is fulfilled.

3. Result for mp≫ ln lnn

The result presented in this section will partly rely on Theorem 1.2 from [11].
The result from [11] concerns a uniform random intersection graph in which,
for all v ∈ V , Wv is chosen independently and uniformly at random from all
D-element subsets of W. In [11] it was shown that, under some conditions on
D, n and m, a greedy random algorithm colours a uniform random intersection
graph with almost the optimum number of colours.

We will use the fact that the algorithm analysed in [11] may be easily rewrit-
ten to work on any random intersection graph in which, for each v ∈ V , |Wv| ≤ D
and Wv is chosen independently and uniformly at random from all subsets of W
of size |Wv|. Namely each vertex v ∈ V would independently choose additional
D − |Wv| vertices from W \Wv to obtain a uniform random intersection graph.
Then one would run the algorithm described in [11] on the constructed uniform
random intersection graph. We will call the above described algorithm Algo-
rithm[D].

Lemma 4 (Corollary of Theorem 1.2 from [11]). Let D,m, n ≥ 2, D̄ = Dn
m , and

V≤D := {v ∈ V : |Wv| ≤ D}. For any δ > 0 there is a constant cδ > 0 such that

the following holds. Suppose that

(10) D ≤ cδ ln
( m

ln D̄

)

and D ≤ cδ ln

(

D̄

lnm

)

.

Then Algorithm[D] properly colours all vertices of G(n,m, p)[V≤D] with at most
⌈

D̄(1 + δ)
⌉

colours with probability at least 1 − 2m−1 − 2D̄−1.

Remark 5. Let D ≥ 2 and m ≥ nβ for some β ∈ (0, 1). Then by a simple
calculation we get that for large n

ln

(

D̄

lnm

)

≥ ln
( n

m lnm

)
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and

ln
( m

ln D̄

)

= ln

(

( n

m lnm

)β
)

+ ln

(

m1+β(lnm)β

nβ ln D̄

)

≥ β ln
( n

m lnm

)

.

Algorithm 2

INPUT: an intersection graph G with an ordered vertex set V generated
by a family of sets {Wv : v ∈ V};
an infinite palette of colours;
integer D;

OUTPUT: a proper vertex colouring of G;

1. V≤D := {v ∈ V : |Wv| ≤ D};

2. Colour G[V≤D] using Algorithm[D];

3. Colour greedily remaining vertices of G.

Theorem 6. Let p ∈ (0, 1) and m ≥ nβ for some constant β ∈ (0, 1). For all

δ ∈ (0, 1) there exists c and C such that if

1

c
ln lnn ≤ mp ≤ c ln

( n

m lnm

)

and np ≥ C lnn

and

D =

⌈(

1 +
δ

5

)

mp

⌉

+ 1,

then for large n with probability at least 1 − 2m−1 − 2(np)−1 − 2n−0.2, Algo-
rithm 2 colours G (n,m, p) with at most (1 + δ)np colours and

χ(G (n,m, p)) ≤ (1 + δ)np .

In the proof we will use the following lemma.

Lemma 7 (Lemma 1 in [3]). Let di and dj be positive integers and 0 < ξ < 1
be such that di + dj ≤ ξm. Then the probability that vi and vj are neighbours in

G (n,m, p) under the condition that |Wvi | = di and |Wvj | = dj is

didj
m

(

1 −
didj
m

)

≤ Pr
{

Wvi ∩Wvj 6= ∅ | |Wvi | = di, |Wvj | = dj
}

≤
didj
m

(

1 +
2

(1 − ξ)

didj
m

)

.

Proof of Theorem 6. Let

(11) c = min

{

1

8
,
ψ (1 + δ/5)

2
,

βcδ/4

(1 + δ/4)

}

,
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where ψ (·) is defined in (4) and cδ/4 is as in Lemma 4.
Let D = ⌈(1 + δ/5)mp⌉ + 1. By assumption c−1 ln lnn ≤ mp, therefore

D ≤ (1 + δ/4)mp for large n. Moreover, let

V≤D = {vi ∈ V : Yi ≤ D},

V>D = {vi ∈ V : D < Yi ≤ lnn}.

In what follows we will prove that

(12) Pr {(V≤D ∪ V>D) = V} ≥ 1 − n−0.2

and

(13) Pr

{

∆(G (n,m, p) [V>D]) ≤
δ

4
np

}

≥ 1 − n−0.2.

By the definition of D and (11), for large n, we have

D ≤

(

1 +
δ

4

)

mp ≤

(

1 +
δ

4

)

c ln
n

m lnm
≤ βcδ/4 ln

n

m lnm
.

Thus by Remark 5 and by Lemma 4 with probability at least 1−2m−1−2(np)−1

Algorithm[D] colours G (n,m, p) [V≤D] with at most

(

1 +
δ

4

)

Dn

m
≤

(

1 +
δ

4

)2

np ≤

(

1 +
3δ

4

)

np

colours. This combined with (12) and (13) shows that for large n with probability
at least 1−2m−1−2(np)−1−2n−0.2 Algorithm 2 uses at most (1+δ)np colours
to colour G (n,m, p). We are left with showing (12) and (13).

Note that mp ≤ c lnn/(m lnm) ≤ c lnn (for large n), i.e., lnn/mp ≥ c−1.
Moreover x−1ψ (x) is increasing for x ≥ 1. Therefore by (5) and (11), for large n
and any 1 ≤ i ≤ n

Pr {Yi ≥ lnn} ≤ exp

(

− lnn ·
mp

lnn
· ψ

(

lnn

mp

))

≤ exp

(

− lnn ·
ψ
(

c−1
)

c−1

)

≤ exp

(

− lnn ·
ψ (8)

8

)

≤ n−1.2.

Thus

Pr

{

∃
1≤i≤n

Yi ≥ lnn

}

≤
n
∑

i=1

Pr {Yi ≥ lnn} ≤ n−0.2,

which implies (12).
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Now we focus on showing (13). For vi, vj ∈ V , denote by vi ∼ vj the event
that vi and vj are neighbours in G (n,m, p) (i.e., Wvi ∩Wvj 6= ∅). Recall that Yi
and Yj are independent random variables. For di, dj ≤ lnn and large n we have
di + dj ≤ m/2 and didj/m ≤ 1

2 . Therefore by Lemma 7

Pr {vi ∼ vj ∩ {D ≤ Yj ≤ lnn} | Yi = di}

=
lnn
∑

dj=D

Pr {vi ∼ vj ∩ {Yj = dj} | Yi = di}

=
lnn
∑

dj=D

Pr {vi ∼ vj | {Yi = di} ∩ {Yj = dj}}Pr {Yj = dj}

≤
lnn
∑

dj=D

3
didj
m

(

m

dj

)

pdj (1 − p)m−dj ≤ 3dip
lnn
∑

dj=D

(

m− 1

dj − 1

)

pdj−1(1 − p)m−dj

≤ 3dipPr {Yj∗ ≥ D − 1} ≤ 3dipPr {Yj ≥ D − 1} ≤ 3p lnnPr {Yj ≥ D − 1} ,

where Y ∗
j has the binomial distribution Bin (m− 1, p). By (5)

Pr {Yj ≥ D − 1} ≤ Pr

{

Yj ≥

(

1 +
δ

5

)

mp

}

≤ exp

(

−ψ

(

1 +
δ

5

)

mp

)

≤ (lnn)−ψ(1+ δ
5
)/c ≤ ln−2 n.

The last inequality follows by (11).

Therefore finally for di ≤ lnn

Pr {vi ∼ vj ∩ {D ≤ Yj ≤ lnn} | Yi = di} ≤
3p

lnn
.

Recall that Y1, Y2, . . . , Yn are independent random variables and one may
choose Wvi by first choosing the value Yi and given Yi = di, choosing Wvi uni-
formly at random from all di–element subsets of W (each independently of all
other vertices in V). Therefore, given Yi = di, D ≤ di ≤ lnn, degree of vertex vi
in G (n,m, p) [V≥D] has the binomial distribution

Bin (n− 1,Pr {vi ∼ vj ∩ {D ≤ Yj ≤ lnn} | Yi = di}) ,

which is stochastically dominated by a random variable Z∗ with the binomial
distribution Bin (n, 3p/ lnn).
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Let n be large enough to have δ ≥ 24/ lnn. If C ≥ 25/δ and D ≤ di ≤ lnn
then by (5) and the monotonicity of ψ (x) /x

Pr

{

Z∗ ≥
δ

4
np

}

≤ exp

(

−
3np

lnn
·
δ lnn

12
·
ψ
(

δ lnn
12

)

δ lnn
12

)

≤ exp

(

−
Cδ lnn

4
·
ψ (2)

2

)

≤ n−1.2.

Therefore

Pr

{

∆(G (n,m, p) [V≥D]) ≥
δ

4
np

}

≤
∑

1≤i≤n

Pr

{

Z∗ ≥
δ

4
np

}

≤ n−0.2,

which implies (13).

References

[1] M. Behrisch, Component evolution in random intersection graphs , Electron. J. Com-
bin. 14 (2007) R17.

[2] M. Behrisch, A. Taraz and M. Ueckerdt, Coloring random intersection graphs and

complex networks , SIAM J. Discrete Math. 23 (2009) 288–299.
doi:10.1137/050647153

[3] M. Bloznelis, Component evolution in general random intersection graphs , SIAM J.
Discrete Math. 24 (2010) 639–654.
doi:10.1137/080713756

[4] B. Bollobás, The chromatic number of random graphs , Combinatorica 8 (1988)
49–55.
doi:10.1007/BF02122551
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