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Abstract

A graph G is H-saturated if H is not a subgraph of G but the addition
of any edge from G to G results in a copy of H. The minimum size of an
H-saturated graph on n vertices is denoted sat(n,H), while the maximum
size is the well studied extremal number, ex(n,H). The saturation spectrum
for a graph H is the set of sizes of H saturated graphs between sat(n,H) and
ex(n,H). In this paper we completely determine the saturation spectrum
of stars and we show the saturation spectrum of paths is continuous from
sat(n, Pk) to within a constant of ex(n, Pk) when n is sufficiently large.
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1. Introduction

Given a graphG let the vertex set and edge set ofG be denoted by V (G) and E(G)
respectively. Let |G| = |V (G)|, e(G) = |E(G)| and G denote the complement of
G. A graph G is called H-saturated if H is not a subgraph of G but for every
e ∈ E(G), H is a subgraph of G+e. Let SAT(n,H) denote the set of H-saturated
graphs of order n. The saturation number of a graph H, denoted sat(n,H), is the
minimum number of edges in an H-saturated graph on n vertices and SAT(n,H)
is the set of H-saturated graphs of order n with size sat(n,H). The extremal

number of a graph H, denoted ex(n,H) (also called the Turán number) is the
maximum number of edges in an H-saturated graph on n vertices and SAT(n,H)
is the set of H-saturated graphs of order n with size ex(n,H).

The saturation spectrum of a graph H, denoted spec(n,H), is the set of sizes
of H-saturated graphs of order n, spec(n,H) = {e(G) : G ∈ SAT(n,H)}.

In this paper we investigate the saturation spectrum for Pk- and K1,t-satu-
ration, where Pk is a path on k vertices. In particular, in Section 3 we show that
the saturation spectrum of K1,t contains all values from sat(n,K1,t) to ex(n,K1,t)
for fixed n such that n ≥ t + 1. Finally, in Section 4 we show when n is suffi-
ciently large, the saturation spectrum of Pk contains all values from sat(n, Pk) to
ex(n, Pk)− c(k) for some constant c(k).

2. Known Results

The saturation spectrum of K3 was studied in [3]. Later the saturation spectrum
of K4 was studied in [1]. Shortly after, the saturation spectrum for larger com-
plete graphs was studied in [2]. In this section we will describe the known results
relating to the saturation spectrum of stars and paths.

Theorem 1 [7]. Saturation numbers for paths and stars.

(a) sat(n,K1,t) =







(

t
2

)

+
(

n−t
2

)

if t+ 1 ≤ n ≤ t+ t
2 ,

⌈

t−1
2 n− t2

8

⌉

if t+ t
2 ≤ n.

(b) For n ≥ 3, sat(n, P3) =
⌊

n
2

⌋

.

(c) For n ≥ 4, sat(n, P4) =

{

n
2 n even,

n+3
2 n odd.

(d) For n ≥ 5, sat(n, P5) =
⌈

5n−4
6

⌉

.

In order to prove the main theorems in Sections 3 and 4 it is helpful to
understand the structure of graphs in SAT(n,K1,t) and SAT(n, Pk). In 1986,
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Kászonyi and Tuza characterized the K1,t-saturated graphs of minimum size.
The characterization depends on the order of the host graph and is not in general
unique.

Theorem 2 [7]. SAT(n,K1,t) =

{

Kt ∪Kn−t if t+ 1 ≤ n ≤ 3t
2 ,

G′ ∪Kp if 3t
2 ≤ n,

where p =
⌊

t+1
2

⌋

and G′ is a (t− 1)-regular graph on n− p vertices. Note that in

the case when n ≥ 3t
2 , there is a single edge connecting G′ and Kp if t − 1 and

n− p are both odd.

Kászonyi and Tuza also described graphs in SAT(n, Pk). In particular they
give a tree that is a subgraph of all Pk-saturated trees. We begin by describing
this tree. A perfect 3-ary tree is a tree such that every vertex has degree 3 or
degree 1 and all degree 1 vertices are the same distance from the center. We let
Tk−1 denote the perfect 3-ary tree with longest path on exactly k−1 vertices (see
Figure 1).

Figure 1. T5 and T6.

Theorem 3 [7]. Let Pk be a path on k ≥ 3 vertices and let Tk−1 be the perfect

3-ary tree defined above. Further let

ak =

{

3 · 2m−1 − 2 if k = 2m,

4 · 2m−1 − 2 if k = 2m+ 1.

Then, for n ≥ ak, SAT(n, Pk) consists of a forest with ⌊n/ak⌋ components.

Furthermore, if T is a Pk-saturated tree, then Tk−1 ⊆ T .

It is also helpful to understand the structure of graphs in SAT(n,K1,t) and

SAT(n, Pk). It is well known that ex(n,K1,t) =
⌊

n(t−1)
2

⌋

and that SAT(n,K1,t)

consists of (t− 1)-regular graphs unless n and t− 1 are both odd, in which case
there is a single vertex of degree t− 2.

The structure of graphs in SAT(n, Pk) was studied by Erdős and Gallai in
1959.

Theorem 4 [5]. Let G be a graph of order n which contains no path with more

than k − 1 vertices. Then |E(G)| ≤ (k−2)n
2 and equality holds if and only if each

component of G is a complete graph of order k − 1.
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In [6], the saturation spectrum of small paths was studied. In particular,
spec(n, P5) and spec(n, P6) were determined.

Theorem 5 [6]. Let n ≥ 5 and sat(n, P5) ≤ m ≤ ex(n, P5) be integers, m ∈
spec(n, P5) if and only if n = 1, 2 (mod 4), or

m /∈

{

{

3n−5
2

}

if n ≡ 3 (mod 4),
{

3n
2 − 3, 3n2 − 2, 3n2 − 1

}

if n ≡ 0 (mod 4).

Theorem 6 [6]. Let n ≥ 10 and sat(n, P6) ≤ m ≤ ex(n, P6) be integers, m ∈
spec(n, P6) if and only if (n,m) /∈ {(10, 10), (11, 11), (12, 12), (13, 13), (14, 14),
(11, 14)} and

m /∈















{2n− 4, 2n− 3, 2n− 1} if n ≡ 0 (mod 5),

{2n− 4} if n ≡ 2 (mod 5),

{2n− 4} if n ≡ 4 (mod 5).

This is the starting point for this paper. Following the same lines of investi-
gation we completely determine the edge spectrum for saturation of stars and we
study the edge spectrum for saturation of long paths when n is sufficiently large.

3. Stars

In this section we will show that the saturation spectrum ofK1,t contains all values
from the saturation number to the extremal number. The following theorem is
the main result of this section.

Theorem 7. Let S = K1,t for t ≥ 3. If n ≥ t+ 1, then spec(n, S) is continuous

from sat(n, S) to ex(n, S).

Before proving Theorem 7 we give two lemmas that describe edge exchanges
that can be used to transform a K1,t-saturated graph G into a K1,t-saturated
graph with one more edge. We will refer to the exchange in Lemma 8 as a type I
exchange and the exchange in Lemma 9 as a type II exchange.

Lemma 8. In a K1,t-saturated graph G, if there is vertex v of degree at most

t − 3 that is nonadjacent to u or w where uw ∈ E(G) and d(u) = d(w) = t − 1,
then G′ = G− uw + {vw, vu} is K1,t-saturated with e(G′) = e(G) + 1.

Proof. First note that the degrees of dG(u) = dG′(u), dG(w) = dG′(w) and
dG(v)+ 2 = dG′(v). Since dG(v) ≤ t− 3, it is easy to see that no vertex of degree
t is created and hence K1,t is not a subgraph of G′. Now consider e ∈ E(G′). If
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e is incident to u or w then G′+ e contains K1,t since u and w are both of degree
t − 1. If e is incident to v then G′ + e contains K1,t otherwise G would not be
K1,t-saturated. Similarly, if e is is not incident to u, v or w then G′ + e contains
K1,t; otherwise G would not be K1,t-saturated.

Lemma 9. In a K1,t-saturated graph G, if there are vertices v1 and v2 of degree

at most t−2 and an edge uw such that u and w are of degree t−1 where v1w, v2u /∈
E(G), then G′ = G− uw + {v1w, v2u} is K1,t-saturated with e(G′) = e(G) + 1.

Proof. First note that the degrees of dG(u) = dG′(u), dG(w) = dG′(w), dG(v1)+
1 = dG′(v1), and dG(v2) + 1 = dG′(v2). Since dG(v1) ≤ t− 2 and dG(v2) ≤ t− 2,
no vertex of degree t is created centered at v1, v2, u or w. Hence K1,t is not a
subgraph of G′. Now consider e ∈ E(G′). If e is incident to u or w then G′ + e
contains K1,t since u and w are both of degree t− 1. If e is incident to v1 or v2
then G′ + e contains K1,t otherwise G would not be K1,t-saturated. Similarly, if
e is is not incident to v1, v2, u or w then G′+ e contains K1,t; otherwise G would
not be K1,t-saturated.

The proof for Theorem 7 is split into cases according to the number of vertices
in the host graph G relative to t. To ease reading, cases are listed as lemmas.

Lemma 10. Let n = t+ 1. For each t ≥ 3 and m such that sat(n,K1,t) ≤ m ≤
ex(n,K1,t) there exists a K1,t-saturated graph G with e(G) = m.

Proof. We construct a sequence of K1,t-saturated graphs, G1, . . . , Gs where
e(Gi) + 1 = e(Gi+1), and this sequence contains a graph of each size from
sat(n,K1,t) to ex(n,K1,t). Let G1 = Kt ∪ {v}, by Theorem 2 we see that G1 ∈
SAT(n,K1,t). In order to construct the sequence of graphs we will need a large
matching from Kt so that we may use type I exchanges. Let M be a maximum
matching of Kt; clearly M contains ⌊t/2⌋ edges. Now to create Gi+1 from Gi we
use an edge of M and v to perform a type I exchange. Lemma 8 implies that Gi+1

is a K1,t-saturated graph with e(Gi+1) = e(Gi)+1. We note that we can perform
⌊t/2⌋ type I exchanges when t is odd so that Gs = G⌊t/2⌋ is a (t−1)-regular graph
and when t is even we can perform t/2−1 type I exchanges so that dGs

(v) = t−2
and all other vertices in Gs are degree t− 1. Notice that in either case, Gs is the
extremal graph.

Lemma 11. For each t ≥ 3, t+ 2 ≤ n ≤ 3t
2 and m such that sat(n,K1,t) ≤ m ≤

ex(n,K1,t) there exists a K1,t-saturated graph of size m.

Proof. To show this, we will construct a sequence of K1,t-saturated graphs,
G1, . . . , Gs, that contains a graph of each size from sat(n,K1,t) to ex(n,K1,t).
Let G1 = Kt ∪ Kn−t. By Theorem 2 we see that G1 ∈ SAT(n,K1,t). In order
to construct the sequence of graphs we use large disjoint matchings from Kt so



816 J. Faudree, R.J. Faudree, R.J. Gould, M.S. Jacobson and ...

that we may use type I and type II exchanges. It is well known (cf. [4]) that
Kt contains t − 1 matchings, M1, . . . ,Mt−1, each of size

⌊

t
2

⌋

. Since n ≤ 3t/2
implies n − t ≤ t/2, each one of the the t − 1 matchings can be associated with
a vertex of Kn−t. For convenience, let V (Kn−t) = {v1, . . . , vn−t} and say that vi
is associated with Mi for 1 ≤ i ≤ n− t.

Starting with G1, iteratively change the degree of each vertex in Kn−t from
n− t− 1 to t− 1. In order to do this each vertex in V (Kn−t) needs 2t− n more
incident edges. Proceed based on the parity of 2t− n. If 2t− n is odd, pair the
vertices in Kn−t so that vi is paired with vi+1 for each odd i < n− t. Note that
when n − t is odd, vn−t is unpaired. Associate each of the pairs with an edge
from Mn−t+1. Then, iteratively use each pair and associated edge to preform a
type II exchange to create G2, . . . , G⌊n−t

2
+1⌋.

Notice that in G⌊n−t

2
+1⌋ it is possible that vi is adjacent to some vertex in Mi.

Thus there are at least ⌊t/2⌋−1 edges inMi that are not incident to vi. Create the
remaining graphs in the sequence by preforming (2t− n− 1)/2 type I exchanges
with each vi and Mi. In order to preform (2t−n−1)/2 type I exchanges, it must
be verified that (2t − n − 1)/2 ≤ ⌊t/2⌋ − 1, otherwise Mi has too few edges to
preform the type I exchanges with vi. Since n ≥ t+ 2, it follows that:

n ≥ t+ 2

t− 3 ≥ 2t− n− 1

t− 1

2
− 1 ≥

2t− n− 1

2
⌊

t

2

⌋

− 1 ≥
2t− n− 1

2
.

Lemmas 8 and 9 imply that after completing the (2t−n− 1)/2 type I exchanges
and a type II with each vi we have d(vi) = t− 1 for 1 ≤ i ≤ n− t− 1. Further,
if n− t is odd then d(vn−t) = t− 2 and if n− t is even then d(vn−t) = t− 1. In
either case, it follows that Gs is the extremal graph.

Now consider the case when 2t−n is even. In this case, only type I exchanges
will be used. Construct G2, . . . , Gs by preforming (2t − n)/2 type I exchanges
using each vi and associated Mi. It remains to verify that (2t− n)/2 ≤ ⌊t/2⌋ so
that (2t − n)/2 type I exchanges can be completed. Again, since n ≥ t + 2, it
follows that:

n ≥ t+ 2

t− 2 ≥ 2t− n

t− 2

2
≥

2t− n

2
⌊

t

2

⌋

≥
2t− n

2
.
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Finally Lemma 8 implies that after completing the (2t−n−1)/2 type I exchanges
to each vi that d(vi) = t− 1. So, it follows that Gs is the extremal graph.

Lemma 12. For each t ≥ 3, n > 3t
2 and m such that sat(n,K1,t) ≤ m ≤

ex(n,K1,t) there exists a K1,t-saturated graph of size m.

Proof. Proceed in a fashion similar to the proof of Lemma 11. Construct a
sequence of K1,t-saturated graphs, G1, . . . , Gs, that contains a graph of each
size from sat(n,K1,t) to ex(n,K1,t). Begin by constructing a (t − 1)-regular
(or nearly regular depending on the parity of n and t) graph, G′, on r vertices
where r = n −

⌊

t+1
2

⌋

such that G′ has a sufficient number of large matchings
for the algorithm. A well known result (cf. [4]) shows that a complete graph Kr

decomposes into r−1 matchings of size r/2 when r is even or r−1
2 hamilton cycles

when r is odd will be used.
First suppose that r is even. To form G′, begin with a matching decom-

position of Kr = M1 ∪ · · · ∪ Mr−1. Let G′ = M1 ∪ · · · ∪ Mt−1. Clearly G′ is
(t− 1)-regular and contains t− 1 disjoint matchings, M1, . . . ,Mt−1, of size r/2.

When r is odd begin with a hamiltonian cycle decomposition of Kr = C1 ∪
· · · ∪ C(r−1)/2. If t − 1 is even then let G′ = C1 ∪ · · · ∪ C(t−1)/2. If t − 1 is odd
then let G′ = C1 ∪ · · · ∪ C(t−2)/2 ∪M where M is a maximum matching of Ct/2;
in this case there is a single vertex of degree t− 2 all other vertices are of degree
t−1. Further since each hamiltonian cycle of Kr contains two disjoint matchings
of size (r − 1)/2, G′ contains t − 1 disjoint matchings, M1, . . . ,Mt−1, of size at
least (r − 1)/2.

Let G1 = G′ ∪ K⌊ t+1

2
⌋ and label the vertices in V (G′) = {u1, . . . , un−⌊ t+1

2
⌋}

and V (K⌊ t+1

2
⌋) = {v1, . . . , v⌊ t+1

2
⌋}. If r and t− 1 are both odd then a single edge

from the vertex of degree t− 2 in G′ is added to a vertex in K⌊ t+1

2
⌋, without loss

of generality let this edge be u1v⌊ t+1

2
⌋. Theorem 2 implies that G1 is a minimally

K1,t-saturated graph. Associate each vertex vi with a matching Mi in G′.
Starting with G1, iteratively change the degree of each vertex in K⌊ t+1

2
⌋ from

⌊

t+1
2

⌋

− 1 to t − 1. Each vertex, vi, needs
⌊

t
2

⌋

more incident edges. Notice that
when r and t− 1 are both odd that only

⌊

t
2

⌋

− 1 incident edges need to be added
to v⌊ t+1

2
⌋. Proceed based on the parity of

⌊

t
2

⌋

. If
⌊

t
2

⌋

is odd, then pair the vertices

in K⌊ t+1

2
⌋ so that vi is paired with vi+1 for each odd i <

⌊

t+1
2

⌋

. Note that if
⌊

t+1
2

⌋

is odd then v⌊ t+1

2
⌋ is unpaired. Associate each of the pairs with an edge from

M⌊ t+1

2
⌋+1. Then, iteratively use each pair and associated edge to preform a type

II exchange to create G2, . . . , G ⌊ t
2
⌋+1

2

.

Notice that in G ⌊ t
2
⌋+1

2

it is possible that vi is adjacent to some vertex in Mi.

Thus there are at least ⌊r/2⌋ − 1 in Mi that are not incident to vi. Create the
remaining graphs in the sequence by preforming (1/2)(⌊t/2⌋−1) type I exchanges
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with each vi and Mi. In order to preform (1/2)(⌊t/2⌋ − 1) type I exchanges it
must be verified that (1/2)(⌊t/2⌋ − 1) ≤ ⌊r/2⌋ − 1. Since n > 3t

2 , it follows that

r = n+

⌊

t+ 1

2

⌋

>
3t

2
−

⌊

t+ 1

2

⌋

≥ t− 1.

As r and t are both integers, it follows that r ≥ t and hence (1/2)(⌊t/2⌋ − 1) ≤
⌊r/2⌋−1. Lemmas 8 and 9 imply that after completing the (1/2)(⌊t/2⌋−1) type
I exchanges and a type II with each vi that d(vi) = t − 1 for 1 ≤ i ≤

⌊

t+1
2

⌋

− 1.
Further, if

⌊

t+1
2

⌋

and t− 1 are odd and r is even then d(v⌊ t+1

2 ⌋) = t− 2 otherwise

d(v⌊ t+1

2
⌋) = t− 1. In either case it follows that Gs is the extremal graph.

Now, consider the case when
⌊

t
2

⌋

is even. In this case only type I exchanges
will be used. Create G2, . . . , Gs by preforming (1/2) ⌊t/2⌋ type I exchanges using
each vi and associated Mi. Since r ≥ t, it follows that (1/2)⌊t/2⌋ ≤ ⌊r/2⌋ so that
(1/2) ⌊t/2⌋ type I exchanges may be done with each vertex vi.

Finally, Lemma 8 implies that after completing the (1/2) ⌊t/2⌋ type I ex-
changes to each vi that d(vi) = t− 1 for 1 ≤ i ≤

⌊

t+1
2

⌋

− 1. If r and t− 1 are odd
then then d(v⌊ t+1

2
⌋) = t − 2 otherwise d(v⌊ t+1

2
⌋) = t − 1. Again, in either case it

follows that Gs is the extremal graph.

Theorem 7 follows directly from Lemmas 10, 11 and 12.

4. Paths

In this section we show that when n is sufficiently large, spec(n, Pk) contains all
values from sat(n, Pk) to ex(n, Pk) − c where c is a constant that depends on k.
Recall from Theorem 3 that

ak =

{

3 · 2m−1 − 2 if k = 2m,

4 · 2m−1 − 2 if k = 2m+ 1.

The following is the main result of the section, the proof is given towards the
end of this section.

Theorem 13. Let P = Pk. If n = r(k − 1) + ak
[(

k−1
2

)

− (k − 1)
]

+ β, where

0 ≤ β < k−1, then spec(n, P ) is continuous from sat(n, P ) to
(

k−1
2

)

r+ak
[(

k−1
2

)

−
(k − 1)

]

+ β − 1.

As in the previous section we provide two lemmas that transform a Pk-
saturated graphG into a Pk-saturated graph with one more edge. Let ak = |Tk−1|.
An immediate consequence of the proof of Theorem 3 in [7] is that there exists
Pk-saturated trees of every order p such that p ≥ ak. Let v be a vertex with
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pendant neighbors in Tk−1. The graph obtained by adding additional pendant
vertices to v in Tk−1 so that the order of the new graph is p will be denoted T p

k−1

(see Figure 2). Clearly, T p
k−1 ∈ SAT(n, Pk). Let T

∗
k−1 denote a Pk-saturated tree

of arbitrary order.

Figure 2. T 15

5
.

Lemma 14. Let G be a Pk-saturated graph that contains two components T p1
k−1

and T p2
k−1. If H = G−{T p1

k−1, T
p2
k−1} then G′ = H∪T p1+p2

k−1 is a Pk-saturated graph

where e(G′) = e(G) + 1.

Proof. Let p = p1 + p2. Since T p
k−1 and G are Pk-saturated it follows that G′

does not contain Pk. Let e ∈ E(G′). In order to show that G′+ e contains Pk we

will consider several cases. First, if e ∈ E(T p
k−1), then T p

k−1 + e contains Pk since
T p
k−1 is Pk-saturated, hence G′ + e contains Pk. Now since G is Pk-saturated, if

e ∈ E(H) then G′+ e contains Pk. Now suppose that e has at least one endpoint
in V (H) and one in V (T p

k−1). Notice that H ∪T p1
k−1 is an induced subgraph of G′.

If G′ + e does not contain Pk then by deleting pendant vertices not incident to e
it can be seen that H ∪ T p1

k−1 + e does not contain Pk, since deleting vertices can
not create a copy of Pk. This implies that G is not Pk-saturated, a contradiction.
Therefore G′ is Pk-saturated. Finally, note that e(G) = e(H)+(p1−1)+(p2−1)
and e(G′) = e(H) + (p1 + p2 − 1), thus e(G′) = e(G) + 1.

Lemma 15. Let k ≥ 5 and G be a Pk-saturated graph. Let p be an integer

such that p ≥ (k − 1) + ak
[(

k−1
2

)

− (k − 1)
]

. Let T p
k−1 be a component of G and

F =
[(

k−1
2

)

− (k− 1)
]

T ∗
k−1 such that |F | = p− k+1. If H = G−T p

k−1 then G′ =
H ∪Kk−1 ∪ F is a Pk-saturated graph where e(G′) = e(G) + 1.

Proof. Notice F is a forest of Pk-saturated trees. By Theorem 3 each component
of F must have order at least ak. Since p ≥ (k−1)+ak

[(

k−1
2

)

−(k−1)
]

, it follows

that |F | ≥ ak
[(

k−1
2

)

− (k − 1)
]

. Hence, |F | is large enough for each component
to be a Pk-saturated tree.

Note that e(G) = e(H) + p − 1 and e(G′) = e(H) +
(

k−1
2

)

+ e(F ). Since F

is a forest on p− k + 1 vertices and
[(

k−1
2

)

− (k − 1)
]

components it follows that

e(F ) = p− k + 1−
[(

k−1
2

)

− (k − 1)
]

. Thus e(G′) = e(H) + p = e(G) + 1.
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It now remains to show that G′ is Pk-saturated. Let e ∈ E(G′). First
suppose that e ∈ E(F ), it follows that G′+ e contains Pk since F is Pk-saturated
by Theorem 3. Now suppose that has both endpoints in V (H). Clearly since
G is Pk-saturated G + e contains a copy of Pk such that V (Pk) ⊆ V (H). Thus
G′ + e contains a copy of Pk. Finally suppose that e has one endpoint in H and
one in F . Assume that G′+ e does not contain Pk. Let T be the component of F
incident to e. Let Ĝ = G′[H∪T ]. Notice Ĝ+e does not contain Pk. Further since
G = H ∪ T p

k−1 and Ĝ = H ∪ T differ only in the number of pendants adjacent to
the vertex of highest degree in T and T p

k−1, it is easy to see that G+ e does not
contain Pk. Thus G

′ is Pk-saturated.

The transformation in Lemma 14 will be referred to as a tree exchange and
the transformation in Lemma 15 will be referred to as clique exchange. We are
now ready to prove our main result of this section.

Proof of Theorem 13. Beginning with a minimally Pk-saturated graph, we
will build a sequence of Pk-saturated graphs, G1, . . . , Gf , of size sat(n, P ) to
(

k−1
2

)

r+ ak
[(

k−1
2

)

− (k− 1)
]

+β− 1 where e(Gi+1) = e(Gi)+ 1 for 1 ≤ i ≤ f − 1.
Let G1 = qTk∪T ∗

k where q =
⌊

n
ak

⌋

−1. Theorem 3 implies that G1 ∈ SAT(n, Pk).
Once Gi is built use one of the following exchanges to build Gi+1.

1. If Gi contains two components T p1
k−1 and T p2

k−1, then use a tree exchange to
create Gi+1.

2. If Gi contains exactly one tree component and the tree has at least ak
[(

k−1
2

)

−
(k − 1)

]

+ (k − 1) vertices, then use a clique exchange to obtain Gi+1.

Lemmas 14 and 15 imply that when either a tree exchange or a clique ex-
change is used, Gi+1 is a Pk-saturated graph with e(Gi+1) = e(Gi) + 1. As long
as there are at least two tree components or there is a single tree component T
in Gi such that |T | ≥ ak

[(

k−1
2

)

− (k − 1)
]

+ (k − 1), one of the exchanges can be
used to build Gi+1. So the final graph built by the algorithm will have one tree
component of order less than ak

[(

k−1
2

)

− (k − 1)
]

+ (k − 1).

Since n = r(k−1)+ak
[(

k−1
2

)

− (k−1)
]

+β, it follows that upon constructing

Gi = (r−1)Kk−1∪T
∗
k−1 that |T

∗
k−1| = ak

[(

k−1
2

)

−(k−1)
]

+(k−1)+β. Thus another
clique exchange can be used followed by tree exchanges to produce rKk−1∪T q

k−1.

At this point it is easy to calculate q = ak
[(

k−1
2

)

− (k − 1)
]

+ β < ak
[(

k−1
2

)

−
(k − 1)

]

+ (k − 1). So the algorithm will terminate with Gf = rKk−1 ∪ T q
k−1.

Thus

e(Gf ) =

(

k − 1

2

)

r + [n− r(k − 1)− 1]

=

(

k − 1

2

)

r + ak

[(

k − 1

2

)

− (k − 1)

]

+ β − 1.
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Note that the algorithm in Theorem 13 could be altered to include exchanges
with Pk-saturated graphs other than T p

k−1 and Kk−1. However, the following
theorem will show when n is large that the algorithm gives Pk-saturated graphs
to within a constant of the extremal number.

Theorem 16. For n sufficiently large and k ≥ 5, spec(n, Pk) contains all values
from sat(n, Pk) to ex(n, Pk)− c where c = c(k).

Proof. Let n be expressed as n = r(k− 1) + ak
[(

k−1
2

)

− (k− 1)
]

+ β, where β is
a constant such that 0 ≤ β < k − 1. The algorithm in the proof of Theorem 13
gives a sequence of Pk-saturated graphs that contains graphs of each size from
sat(n, Pk) to

(

k−1
2

)

r+ak
[(

k−1
2

)

− (k− 1)
]

+β− 1. Let G be a Pk-saturated graph

of size
(

k−1
2

)

r + ak
[(

k−1
2

)

− (k − 1)
]

+ β − 1. Theorem 4 implies that ex(n, Pk)

≤ (k−2)n
2 . Now it is possible to estimate ex(n, Pk)− e(G) as follows:

ex(n, Pk)− e(G) ≤
(k − 2)n

2
−

[(

k − 1

2

)

r + ak

[(

k − 1

2

)

− (k − 1)

]

+ β − 1

]

=
(k − 2)

(

r(k − 1) + ak

[

(

k−1
2

)

− (k − 1)
]

+ β
)

2

−

[(

k − 1

2

)

r + ak

[(

k − 1

2

)

− (k − 1)

]

+ β − 1

]

=

(

k − 1

2

)

r +
(k − 2)

[

ak

[

(

k−1
2

)

− (k − 1)
]

+ β
]

2

−

[(

k − 1

2

)

r + ak

[(

k − 1

2

)

− (k − 1)

]

+ β − 1

]

=
(k − 4)ak

(

k−1
2

)

− ak(k − 1)(k − 4) + (k − 4)β

2
+ 1

≤ (k − 4)
ak
(

k−1
2

)

− ak(k − 1) + (k − 1)

2
+ 1.

Thus, for a fixed k the difference between ex(n, Pk) and e(G) is a constant for all
n sufficiently large.

Although Theorems 13 and 16 show that spec(n, Pk) is continuous between
sat(n, Pk) and ex(n, Pk) − c, where c is a constant dependent on k — although
exponential in k, additional techniques would need to be developed to better
understand the exact form of the saturation spectrum.



822 J. Faudree, R.J. Faudree, R.J. Gould, M.S. Jacobson and ...

Acknowledgement

This project was started before Ralph Faudree’s unfortunate passing, and the
authors dedicate this work to his memory.

References

[1] K. Amin, J. Faudree and R.J. Gould, The edge spectrum of K4-saturated graphs , J.
Combin. Math. Combin. Comput. 81 (2012) 233–242.

[2] K. Amin, J. Faudree, R.J. Gould and E. Sidorowicz, On the non-(p − 1)-partite
Kp-free graphs , Discuss. Math. Graph Theory 33 (2013) 9–23.
doi:10.7151/dmgt.1654

[3] C. Barefoot, K. Casey, D. Fisher, K. Fraughnaugh and F. Harary, Size in maximal

triangle-free graphs and minimal graphs of diameter 2, Discrete Math. 138 (1995)
93–99.
doi:10.1016/0012-365X(94)00190-T

[4] G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs (CRC Press, 2010).
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