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Abstract

An arc-coloured digraph D = (V,A) is said to be rainbow connected
if for every pair {u, v} ⊆ V there is a directed uv-path all whose arcs have
different colours and a directed vu-path all whose arcs have different colours.
The minimum number of colours required to make the digraph D rainbow
connected is called the rainbow connection number of D, denoted −→rc(D). A
cactus is a digraph where each arc belongs to exactly one directed cycle. In
this paper we give sharp upper and lower bounds for the rainbow connection
number of a cactus and characterize those cacti whose rainbow connection
number is equal to any of those bounds. Also, we calculate the rainbow con-
nection numbers of some infinite digraphs and graphs, and present, for each
n ≥ 6, a tournament of order n and rainbow connection number equal to 2.
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1. Introduction

Given a graph G = (V,E), an edge-colouring of G is called rainbow connected

(respectively strongly rainbow connected) if for every pair {u, v} ⊆ V there is a
uv-path (respectively a uv-geodesic) all whose edges receive different colours, and
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the rainbow connection number (respectively strongly rainbow connection number)
of G is the minimum number k such that there is a rainbow connected (respectively
strong rainbow connected) edge-colouring of G with k colours. These concepts
were introduced by Chartrand et al. in [4]. A natural extension of this concept is
that of the rainbow connection and strong rainbow connection in oriented graphs,
which was introduced by Dorbec et al. in [5], and some work around these concepts
have been done since then (see for instance [1, 6]).

Let D = (V (D), A(D)) be a strong connected digraph and ρ : A(D) →
{1, . . . , k} be an arc-colouring of D. Given a pair {x, y} ⊆ V (D), a directed xy-
path T in D will be called rainbow if no two arcs of T receive the same colour.
The arc colouring ρ will be called rainbow connected if for every pair of vertices
{x, y} ⊆ V (D) there is a rainbow xy-path and a rainbow yx-path. The rainbow

connection number of D, denoted as −→rc(D), is the minimum number k such that
there is a rainbow connected arc-colouring of D with k colours. Given a pair of
vertices {x, y} ⊆ V (D), an xy-path T will be called an xy-geodesic if the length of
T is the distance from x to y in D. An arc-colouring of D will be called strongly

rainbow connected if for every pair of distinct vertices {x, y} ⊆ V (D) there is a
rainbow xy-geodesic and a rainbow yx-geodesic. The strong rainbow connection

number of D, denoted as −→src(D), is the minimum number k such that there is a
strong rainbow connected arc-colouring of D with k colours.

In this paper we give sharp upper and lower bounds for the rainbow con-
nection number of a cactus and characterize the cacti digraphs whose rainbow
connection numbers are equal to any of those bounds. Also, we calculate the
rainbow connection numbers of some infinite digraphs and graphs, and present,
for each n ≥ 6, a tournament of order n and rainbow connection number equal
to 2. It will turn out that for each of the digraphs considered here, its rainbow
connection number is equal to its strong rainbow connection number. For general
concepts we refer the reader to [2, 3].

2. Notation and Some Previous Results

Let D = (V (D), A(D) be a digraph. D will be called simple if it has no multi-arcs
nor loops, asymmetric if D has no symmetric arcs, and strong if for every pair of
vertices {x, y} of D there is a directed xy-path and a directed yx-path in D. Given
x ∈ V (D), N+(x) and N−(x) will denote the out-neighborhood of x and the in-
neighborhood of x in D, respectively. Similarily, d+(x) and d−(x) will denote the
out-degree of x and the in-degree of x in D, respectively. Given S ⊆ V (D), D[S]
will denote the subdigraph of D induced by S. Given a = (x, y) ∈ A(D), the
vertex x will be called the tail of a and y will be called the head of a. Also, a will
be an out-arc of x and an in-arc of y. D/a will be the digraph obtained from D
by the contraction of the arc a.



Rainbow Connectivity of Cacti and of Some Infinite Digraphs 303

Given an arc-colouring ρ : A(D) → {1, . . . , k}, a subdigraph H of D will be
called rainbow if no two arcs of H receive the same colour. For each i ∈ {1, . . . , k},
the set of arcs ρ−1(i) will be called the chromatic class of the colour i, and if
|ρ−1(i)| = 1, ρ−1(i) will be also called a singular chromatic class. If |ρ[A(D)]| = k
(that is, if ρ use k colours) ρ will be called a k-colouring.

Let Q be a strong asymmetric digraph. We say that Q is a cactus if each arc
belongs to exactly one directed cycle.

Recall that a block is a maximal subdigraph without a cut-vertex. The block

graph of D, denoted B(D), is the graph with V (B(D)) = {Bi | Bi is block of D}
and BiBj ∈ E(B(D)) if Bi and Bj shares a vertex in D.

From the definition of a cactus, it is not hard to obtain the following chara-
terization.

Lemma 1. Let Q be a digraph with n vertices and m arcs. Then the following

statements are equivalent.

(I) Q is a cactus.

(II) Q is a strong digraph in which every block is a directed cycle.

(III) Let q be the number of blocks in Q. Then Q has a decomposition into directed

cycles Cn1
, . . . , Cnq such that, for each k = 2, . . . , q, we have

∣

∣

∣

∣

∣

V (Cnk
) ∩

(

k−1
⋃

i=1

V (Cni
)

)
∣

∣

∣

∣

∣

= 1

and q = m− n+ 1.

(IV) There is exactly one directed path between each pair of vertices of Q.

When a cactus on n vertices has decomposition into q cycles, we will say that
such a digraph is an (n, q)-cactus. From now on, we always consider a cactus
along with its cycle decomposition given in (III) of Lemma 1, and it is clear that
such a decomposition is unique (up to the order of the cycles). Observe that since
the directed path between any pair of vertices of Q is unique, in any rainbow
connected colouring of Q such a path most be rainbow and also this implies that
−→rc(Q) = −→src(Q). Given u, v ∈ V (Q), we will denote by uQv the unique directed
uv-path in Q, and we will denote by KQ the set formed by all the cut-vertices of
Q. Also, for each a ∈ A(Q) we denote by C(a) the directed cycle containing a. By
Lemma 1 we see that if Q is a cactus, then for every u ∈ V (Q), d+(u) = d−(u).
Moreover, u ∈ KQ if and only if d+(u) = d−(u) > 1.

3. Cacti Digraphs

The aim of this section is to show the following.

Theorem 5. Let Q be an (n, q)-cactus with q ≥ 2. Then

n− q + 1 ≤ −→rc(Q) ≤ n− 1.
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Theorem 6. Let Q be an (n, q)-cactus. −→rc(Q) = n − q + 1 if and only if KQ is

independent.

Theorem 8. Let Q be an (n, q)-cactus with q ≥ 2. −→rc(Q) = n− 1 if and only if

B(Q) ∼= Pq and Q[KQ] ∼=
−−→

Pq−1.

Theorem 9. Let q ≥ 2. For every n ≥ 2q+1 there is an (n, q)-cactus with −→rc(Q)
= n− q + k for k ∈ {1, 2, . . . , q − 1}.

To show these theorems, we need some preparatory results.

Lemma 2. Let ρ be a rainbow connected colouring on a cactus Q and let (u, v) ∈
A(Q). If {u, v} ∩KQ = ∅ then the arc (u, v) is a singular chromatic class. Mo-

reover, if (u, v) is contained in a cycle of length at least four, then −→rc(Q) =
−→rc(Q/(u, v)) + 1.

Proof. Let a = (u, v) with {u, v} ∩ KQ = ∅, let b = (x, y) be any other arc
of Q and let C(a) and C(b) be the cycles that contain a and b, respectively. If
C(a) = C(b), then ρ(a) 6= ρ(b) by (IV) in Lemma 1. Otherwise, each C(a)C(b)-
path contains a cut-vertex w ∈ V (C(b)). Without loss of generality w 6= x, then
uQy contains both arcs, therefore ρ(a) 6= ρ(b), and hence the arc a is a singular
chromatic class.

Now, let h be the new vertex in Q/a. We define ρa to be the colouring induced
by ρ on Q/a such that

ρa((x, y)) =







ρ((x, y)) if x 6= h, y 6= h,
ρ((v, y)) if x = h,
ρ((x, u)) if y = h.

Clearly, ρa uses one colour less than ρ, and each rainbow path in Q corresponds to
a rainbow path in Q/a. Thus −→rc(Q) ≥ −→rc(Q/(u, v)) + 1. Analogously, we obtain
that −→rc(Q) ≤ −→rc(Q/(u, v)) + 1, and the result follows.

By the previous lemma we can restrict our study to cactus where each end-
block is a 3-cycle, and for each pair of adjacent vertices contained in any other
block, at least one is a cut-vertex.

Proposition 3. Let ρ be an arc-colouring of Q. ρ is rainbow connected if and

only if for any pair of distinct arcs a = (u, v) and b = (x, y) of Q such that

ρ(a) = ρ(b), it holds that

(i) C(a) 6= C(b);

(ii) every C(a)C(b)-path contains the set of vertices {u, x}, or every C(a)C(b)-
path contains the set of vertices {v, y}.
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Proof. Let ρ be a rainbow connected colouring on Q and let a = (u, v) and
b = (x, y), with ρ(a) = ρ(b). Notice that C(a) 6= C(b) since each cycle has no two
arcs sharing the same colour. Clearly, each C(a)C(b)-path contains two vertices
(not necessarily different) wa ∈ KQ∩V (C(a)) and wb ∈ KQ∩V (C(b)). We claim
that wa and wb are the tails (u and x) of a and b, or the heads (v and y) of a
and b. Otherwise, without loss of generality, let wa 6= u and wb 6= y, thus uQy
contains both arcs a and b, contradicting that ρ is a rainbow connected colouring.

On the other hand, assume that if ρ(a) = ρ(b), then C(a) 6= C(b) and every
C(a)C(b)-path contains the tails of a and b or every C(a)C(b)-path contains the
heads of a and b. Suppose that ρ is not a rainbow connected colouring. Then there
exists a directed path P containing two arcs (u, v) and (x, y) of the same colour.
Thus C((u, v)) 6= C((x, y)) and vPx is a C((u, v))C((x, y))-path that contains no
both tails nor both heads of (u, v) and (x, y), which is a contradiction.

Let Cni
be a block of an (n, q)-cactus Q. For each u ∈ V (Cni

) we define
the i-branching of u, denoted by Bi(u), as the maximal cactus Q′ contained in
Q where V (Cni

) ⊆ V (Q′) and u is not a cut-vertex of Q′. Notice that for each
u ∈ V (Q), the set {Bj(u) |u ∈ V (Cnj

) with 1 ≤ j ≤ q} is a decompositon of Q
into the branchings of u.

Lemma 4. Let Cni
be an end-block of a cactus Q and let u be the only cut-vertex

of Q contained in Cni
. If Q′ = Q− (Cni

− u), then

−→rc(Q′) + ni − 2 ≤ −→rc(Q) ≤ −→rc(Q′) + ni − 1.

Moreover, if N(u) ∩KQ = ∅ or there is another end-block Cnj
contaning u, then

−→rc(Q) = −→rc(Q′) + ni − 2.

Proof. The first inequality follows from Lemma 2, since each arc of Cni
− u has

a unique colour. For the second inequality, since u ∈ KQ, then there is Cnj

containing u where j 6= i. Denote by v and v′ the in-neighbors of u in Cni
and

Cnj
, respectively, and let w and w′ be the corresponding out-neighbors of u. By

Lemma 2 we can assume that Cni
= uwvu. Let ρ0 be a rainbow connected

−→rc(Q′)-colouring on Q′ where ρ0(v
′, u) = c and define a colouring ρ on Q such

that

ρ(a) =















r if a = (w, v),

r + 1 if a = (u,w) or a ∈ ρ−1
0

(c) \A(Bj(v
′)),

c if a = (v, u),
ρ0(a) otherwise,

where r and r+1 are two new colours. We will see that ρ is a rainbow connected
colouring of Q. Let {a, b} ⊆ A(Q) with ρ(a) = ρ(b). If {a, b} ⊆ A(Q′), then
the condition of Proposition 3 holds, so we can assume that a ∈ A(Cni

) and
b ∈ A(Q′). Let ρ(a) = r + 1. Then a = (u,w) and b ∈ A(Bk(v

′)) with k 6= j.
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Since ρ0(b) = ρ0((v
′, u)) we have that each C(b)Cnj

-path contains the tails of b
and (v′, u), hence every C(b)Cni

-path contains the tails of b and (u,w). Now, let
ρ(a) = ρ0((v

′, u)). Then a = (v, u) and b ∈ A(Bj(v
′)). If b = (v′, u), then clearly

each Cni
Cnj

-path contains u. If b 6= (v′, u), then each C(b)Cnj
-path contains

the heads of b and (v′, u) since ρ0(b) = ρ0((v
′, u)), therefore every C(b)Cni

-path
contains the heads of b and (v, u). Hence in any case the condition of Proposition
3 holds, thus ρ is a rainbow connected colouring on Q using −→rc(Q′)+ni−1 colours,
and the second inequality follows.

On the other hand, if Cnj
is another end-block containing u, let ρ′ be a

rainbow connected −→rc(Q′)-colouring on Q′ and extend this colouring on Q such
that the in-arcs and out-arcs of u in Cni

receive the same colours as the in-arcs
and out-arcs of u in Cnj

, respectively, and assign new colours to each arc in Cni

not incident to u. Clearly such a colouring is a rainbow connected colouring
on Q using −→rc(Q′) + ni − 2 colours. Analogously if there is no other end-block
containing u and N(u) ∩ KQ = ∅, then let ρ′ be a rainbow connected −→rc(Q′)-
colouring on Q′, and let (u, v) and (w, u) be the arcs of Q′ incident on u. Since
u is not a cut-vertex in Q′ and N(u) ∩ KQ = ∅, by Lemma 2, no other arc of
Q′ share the same colour with (u, v) or (w, u). Now, let (y, u) and (u, x) be
the arcs of Cni

incident on u, and define an extension ρ of ρ′ on Q such that
ρ((y, u)) = ρ′((w, u)), ρ((u, x)) = ρ′((u, v)), and assign ni − 2 new colours to the
arcs in Cni

− u. Clearly ρ is a rainbow connected (−→rc(Q′) + ni − 2)-colouring on
Q. Since −→rc(Q) ≥ −→rc(Q′) + ni − 2 in both cases, the equality holds.

Now, we can prove a pair of main results of this section.

Theorem 5. Let Q be an (n, q)-cactus with q ≥ 2. Then

n− q + 1 ≤ −→rc(Q) ≤ n− 1.

Proof. Let Q be an (n, q)-cactus, {Cn1
, . . . , Cnq} be a cycle decomposition of

Q (see Lemma 1) and suppose that for each j, with 1 ≤ j ≤ q − 1, Cnj
is an

end-block of
⋃q

i=j Cni
. By Lemma 4 it follows that

−→rc(Q) ≥ −→rc(Cnq) +

q−1
∑

i=1

(ni − 2) = nq +

q−1
∑

i=1

(ni − 1)− (q − 1) = n− q + 1.

On the other hand, again by Lemma 4,

−→rc(Q) ≤ −→rc(Cnq ∪ Cnq−1
) +

q−2
∑

i=1

(ni − 1) = nq + nq−1 − 2 +

q−2
∑

i=1

(ni − 1) = n− 1

and the result follows.

Theorem 6. Let Q be an (n, q)-cactus. −→rc(Q) = n − q + 1 if and only if KQ is

independent.
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Proof. Let KQ be an independent set. We will proved the sufficiency by induction
on q. If q = 1 the statement holds trivially. Then assume that the result is valid
for any cactus with q−1 cycles. Now, let {Cn1

, . . . , Cnq} be a cycle decomposition

of Q ( as in Lemma 1) where Cnq is an end-block. Also, let Q′ =
⋃q−1

i=1
Cni

. Then
by induction hypothesis we have that −→rc(Q′) = (n − nq + 1) − (q − 1) + 1. Now
by Lemma 4 we obtain that −→rc(Q) = n− nq − q + 3 + nq − 2 = n− q + 1.

On the other hand, if KQ is not an independent set, then let (u, v) ∈ A(Q)
such that u, v ∈ KQ. Notice that there are at least 3 cycles in Q: the first
one containing (u, v), the second one containing u but not v, and the last one
containing v but not u. Without loss of generality, let Cn1

, Cn2
and Cn3

be such
cycles, respectively, and let Q′ = Cn1

∪Cn2
∪Cn3

where Q′ has n′ = n1+n2+n3−2
vertices and q′ = 3 cycles (see Figure 1). Denote by x−i and x+i the predecessor
and the successor of vertex x ∈ {u, v} in Cni

. Since v+
3
Q′u−

2
is a hamiltonian path

and by Theorem 5 we have rc(Q′) = n′ − 1. Hence, by Lemma 4, we can see that
rc(Q) ≥ rc(Q′) +

∑q
i=4

(ni − 2) = n′ − 1+
∑q

i=4
(ni − 1)− (q− 3) = n− q+2.

u v

u−
1

v+
1

u−
2

u+
2

v−
3

v+
3

Cn1

Cn2
Cn3

Figure 1. The cactus Q′ in the proof of Theorem 6.

Lemma 7. Let Q be an (n, q)-cactus and let KQ not be an independent set. If

KQ lies on a cycle, then −→rc(Q) = n− q + 2.

Proof. By the previous theorem, it suffices to find a rainbow (n−q+2)-colouring
on Q. Let V (Q) = {u1, . . . , un} and assume, without loss of generality, that KQ

lies on Cn1
. Also, consider the set U = {(ui, uj) ∈ A(Q) | ui /∈ V (Cn1

), uj ∈
V (Cn1

)}. Now, define the (n− q + 2)-colouring ρ such that

ρ((ui, uj)) =

{

i if (ui, uj) /∈ U,
0 if (ui, uj) ∈ U.

We will see that ρ is a rainbow connected colouring. Let {a, b} ⊆ A(Q) with the
same colour. If ρ(a) = ρ(b) 6= 0, then a and b have the same tail. Otherwise,
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{a, b} ⊆ U , then C(a) 6= C(b) and the heads of both arcs lies on Cn1
. Clearly,

each C(a)C(b)-path contains the heads of both arcs. Thus, by Proposition 3,
ρ is a rainbow connected colouring and since |U | = q − 1, then ρ is a rainbow
connected (n− q + 2)-colouring.

Now we characterize the family of cacti whose rainbow connection numbers
are equal to the upper bound.

Theorem 8. Let Q be an (n, q)-cactus with q ≥ 2. −→rc(Q) = n− 1 if and only if

B(Q) ∼= Pq and Q[KQ] ∼=
−−→

Pq−1.

Proof. First, suppose that B(Q) ∼= Pq and Q[KQ] ∼=
−−→

Pq−1 with q ≥ 2. Since
B(Q) is a path, each non-end-block of Q contains exactly two cut-vertices of Q,
and we can order the blocks of Q from one end-block to the other end-block. We
denote by ui the cut-vertex contained in Cni

∩ Cni+1
for i = 1, . . . , q − 1. Also,

we denote by vi,j and wi,j the in-neighbor and the out-neighbor of ui contained
in Cnj

, respectively. If Q[KQ] is a directed path we can assume without loss of
generality that ui+1 = wi,i+1 for each i = 1, . . . , q − 2 (see Figure 2). Notice that
wq−1,qQv1,1 is a path of length n − 1, so −→rc(Q) ≥ n − 1 which by Theorem 5
implies that −→rc(Q) = n− 1.

u1 u2 u3 u4v1,1

w1,1 v1,2 w2,2 v2,3 w3,3 v3,4 w4,4 v4,5

w4,5

Cn1
Cn2

Cn3
Cn4

Cn5

Figure 2. A cactus Q with B(Q) ∼= P5 and Q[KQ] ∼=
−−→

P4 .

For the sufficiency we proceed by induction on q. The cases q ∈ {2, 3} follow
from Theorem 6 and Lemma 7, respectively. Suppose that the statement holds
for any cactus with q cycles and let Q be an (n, q+1)-cactus with −→rc(Q) = n− 1.
By Lemma 2 we can assume that the end-blocks of Q have lenght 3. Let Cni

be
an end-block where xi is the only cut-vertex of Q contained in such a cycle, and
let Qi = Q − (Cni

− xi). Observe that −→rc(Qi) = n − 3 (otherwise, by Lemma
4, −→rc(Q) < n − 1 which is a contradiction). Thus, by induction hypothesis,

B(Qi) ∼= Pq and Qi[KQi
] ∼=

−−→

Pq−1. Therefore, for each end-block Cni
of Q, B(Qi)

is a path. It follows that either Q has three end-blocks (and B(Q) ∼= K1,3), or
two end-blocks, but if B(Q) ∼= K1,3 then either by Theorem 6 or by Lemma 7,
−→rc(Q) < n − 1 which is not possible. Thus Q has exactly two end-blocks, and
therefore B(Q) ∼= Pq+1. Moreover, if Cn1

and Cnq+1
are the end-blocks of Q (and
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x1 and xq are the only cut-vertices of Q contained in Cn1
and Cnq+1

, respectively),

by induction hypothesis Q1[KQ1
] ∼= Qq+1[KQq+1

] ∼=
−−→

Pq−1 and then it follows that

Q[KQ] ∼=
−−→

Pq .

We now construct cacti digraphs on n vertices with rainbow connection num-
ber equal to any value between the lower and upper bounds.

Theorem 9. Let q ≥ 2. For every n ≥ 2q + 1 there is an (n, q)-cactus with
−→rc(Q) = n− q + k for k ∈ {1, 2, . . . , q − 1}.

Proof. Let q ≥ 2 and k ∈ {1, 2, . . . , q − 1}. Consider a (2q + 1, q)-cactus Q
where Cni

= uiviwiui for 1 ≤ i ≤ q, such that {uj} = Cnj
∩ (
⋃j−1

r=1
Cnr) for

2 ≤ j ≤ q; ut = vt−1 for 2 ≤ t ≤ k + 1 and ut = v1 for k + 2 ≤ t ≤ q.

Now let Q′ =
⋃k+1

r=1
Cnr . Notice that Q′[KQ′ ] ∼=

−−→

Pk and B(Q′) ∼= Pk+1, then, by
Theorem 8, −→rc(Q′) = 2k + 2. Also, since Cnt is an end-block containing u1 for
k + 2 ≤ t ≤ q − 1, then, by Lemma 4, −→rc(Q) = −→rc(Q′) + q − (k + 1). Therefore
−→rc(Q) = 2k+2+ q−k−1 = q+k+1 = (2q+1)− q+k. Now, for any n > 2q+1
we subdivide n − 2q − 1 times the arc (v1, w1), so, by Lemma 2, the resulting
(n, q)-cactus has rainbow connection number n− q + k.

4. Tournaments

In [5] the following two theorems were proven.

Theorem 10 (Dorbec et al. [5]). If T is a strong tournament with n ≥ 5 vertices,

then 2 ≤ −→rc(T ) ≤ n− 1.

Theorem 11 (Dorbec et al. [5]). For every n and k such that 3 ≤ k ≤ n − 1,
there exists a tournament T on n vertices such that −→rc(T ) = k.

When n ∈ {4, 5} it is easy to verified that −→rc(T ) ≥ 3 for each tournament T
on n vertices. Here we will show that this is not true for tournaments of order
n ≥ 6.

Theorem 12. For every n ≥ 6, there is a tournament T of order n with −→src(T ) =
−→rc(T ) = 2.

Proof. For n = 2k + 1, with k ≥ 3, let S = {1, 2, 4, . . . , 2(k − 1)} and let
T = (V (T ), A(T )) be the tournament such that V (T ) = {u0, u1, . . . , un−1} and

A(T ) = {(ui, uj) | j − i
n
≡ s, s ∈ S} (observe that T is the circulant tournament

C2k+1(S)). Now consider the partition of A(T ) into the sets

A0 = {(u0, u1), (u0, u2), (u1, u2k−1)}

∪
(

{(ur, us) | r ≡ 0 mod 2, r ≥ 2} \ {(u2, u2k)}
)
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and A1 = A(T ) \ A0; and let ρ be the colouring where ρ(a) = i if a ∈ Ai for
i = 0, 1.

Observe that it suffices to check that there is a rainbow uiuj-path for each
pair (i, j) with 0 ≤ i ≤ n− 1 and j = i+ 3, i+ 5, . . . , i+ 2k − 1, i+ 2k. We will
denote such a path by Pi,j . First, let Pi,i+3 = uiui+1ui+3 for i ∈ {0, . . . , 2k − 1}
and P2k,2 = u2ku1u2. Now, let 3 ≤ i ≤ n− 1. Then Pi,i+r = uiui+1ui+r for each
r = 5, . . . , 2k − 1 and Pi,i+2k = uiui+2k−2ui+2k (observe that i+ 2k − 2 ∼= i− 3).
For i = 1 we have P1,j = u1u2uj with j ∈ {6, . . . , 2k − 2} and P1,j = u1u2k−1uj
if j ∈ {2k, 2k + 1}. For i = 2, P2,j = u2u3uj with j ∈ {7, . . . , 2k + 1} and
P2,2k+2 = P2,1 = u2u2ku1. Finally, for i = 0, P0,j = u0uj−1uj with j ≥ 5 and j
odd, and P0,2k = u0u2u2k. In any case, Pi,j is a rainbow path by the definition of
ρ. Hence −→rc(T ) = 2.

u0

u1

u2

u3

u4

u5

u0

u1

u2

u3u4

u5

u6

C7(1, 2, 4)

u0

u1

u2

u3u4

u5

u6

u7

Figure 3. Tournaments on n vertices with −→rc(Tn) = 2 with n ∈ {6, 7, 8}.

For n = 6, let T be the first tournament in Figure 3. If n = 2k ≥ 8, we
consider the tournament T obtained by adding a new vertex un−1 to C2k−1(1, 2, 4,
. . . , 2(k − 2)) in such a way that (un−1, ui) ∈ A(T ) if i is even and (ui, un−1) ∈
A(T ) if i is odd (see the third tournament in Figure 3). Also, let ρ be the rainbow
colouring on C2k−1(1, 2, 4, . . . , 2(k − 2)) described above and extend it to T in
such a way that ρ(a) = 1 for each arc a incident to un−1. Clearly, there is a
rainbow uiuj-path if i, j 6= n− 1, and for the vertex un−1 we have to consider
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Pn−1,i =

{

un−iui if i is even,
un−1ui−1ui if i is odd,

and Pi,n−1 =







uiun−i if i is odd,
un−2u1un−1 if i = n− 2 = 2k − 2,
uiui+1un−1 otherwise.

By construction such paths are rainbow paths, therefore −→rc(T ) = 2.

Finally, just observe that if −→rc(T ) = 2 then −→src(T ) = 2 and the result follows.

From the above the next result follows.

Corollary 13. For every n ≥ 6 and every k such that 2 ≤ k ≤ n− 1, there exists

a tournament T on n vertices such that −→rc(T ) = k.

5. Infinite Digraphs

Now, we focus our attention on infinite digraphs. For this, first we define the
following. Given a pair of positive integers k and b, let kb(0), kb(1), . . . , kb(j), . . .
be the b-base expansion of k, that is to say, k =

∑

i=0
kb(i)b

i where, for every
i ≥ 0, kb(i) is an integer such that 0 ≤ kb(i) ≤ b− 1.

Now we will define some infinite digraphs, all of them inspired in the definition
of the Rado Graph, and each of them with N∪{0} as its set of vertices. Let D1 be
the digraph such that (i, j) ∈ A(D1) if and only if j4(i) ∈ {1, 3} or i4(j) ∈ {2, 3};
let D2 be the symmetric digraph such that {(i, j), (j, i)} ⊆ A(D2) if and only if
j2(i) = 1 or i2(j) = 1; let D3 be the digraph such that (i, j) ∈ A(D3) if and
only if j3(i) = 1 or i3(j) = 2; and let D4 be the digraph such that A(D4) =
A(D3) ∪ {(i, j), (j, i) | j3(i) = i3(j) = 0}. Finally, let D5 be the tournament such
that for every pair i, j, with i > j, if i2(j) = 1 then (i, j) ∈ A(D5), and if i2(j) = 0
then (j, i) ∈ A(D5).

Theorem 14. Let D ∈ {D1, D2, D3, D4, D5}. Thus −→rc(D) = −→src(D) = 2.

Proof. Let ρ be a colouring defined for each (i, j) ∈ A(D) as

ρ(i, j) =

{

1 if i < j,
2 otherwise.

We will see that ρ is a rainbow connected 2-colouring of D. Let i, j be ver-
tices of D such that i < j, and let b be the base expansion of the vertices in D
(observe that the base in D1 is 4, for D2 and D5 is 2, and for D3 and D4 is 3).
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Consider the vertices k = bi + abj and k′ = abi + bj , where

a =







0 if D = D5,
1 if D = D2,
2 if D ∈ {D1, D3, D4}.

For the case when D = D5, k2(i) = 1, k2(j) = 0, k′2(i) = 0 and k′2(j) = 1.
Since i, j < k, k′, {(j, k), (k, i), (i, k′), (k′, j)} ⊆ A(D) and the both paths jki
and ik′j are rainbow. For the case when D = D2 we see that k = k′ and
k2(i) = k2(j) = 1, and therefore {(i, k), (k, i), (j, k), (k, j)} ⊆ A(D). For the
other cases kb(i) = 1, kb(j) = 2, k′b(i) = 2 and k′b(j) = 1 which implies that
{(i, k), (k, j), (j, k′), (k′, i)} ⊆ A(D). Since i, j < k, k′, in the last four cases the
both paths ikj and jk′i are rainbow, hence ρ is a rainbow connected 2-colouring
on D and therefore −→rc(D) = 2. Since −→rc(D) = 2 it follows that −→src(D) = 2.

Finally, we turn our attention to graphs. The Rado Graph R has all the
non-negative integers as vertices, and two distinct vertices a and b are adjacent if
and only if a2(b) = 1 or b2(a) = 1.

Theorem 15. The rainbow connection number of the Rado Graph is 2.

Proof. Let R = (V (R), E(R)) be the Rado Graph and let ρ be a colouring defined
for each ab ∈ E(R) as

ρ(ab) =

{

1 if a < b and (a+ 1)b ∈ E(R),
2 otherwise.

We will see that ρ is a rainbow connected 2-colouring of R. Let a, b be non-
adjacent vertices of R such that a < b, and consider the vertex k = 2a + · · ·+ 2b.
Notice that k2(a) = k2(b) = 1 which implies that {ak, bk} ⊆ E(R). Besides,
k2(a + 1) = 1 and therefore (a + 1)k ∈ E(R) which implies that ρ(ak) = 1.
Finally, observe that k2(b + 1) = 0 and, since b < k, (b + 1)2(k) = 0, thus
(b + 1)k 6∈ E(R) and therefore ρ(bk) = 2. Hence akb is an ab-rainbow path and
the result follows.
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