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Abstract

In 2009, Barrière, Dalfó, Fiol, and Mitjana introduced the generalized
hierarchical product of graphs. This operation is a generalization of the
Cartesian product of graphs. It is known that every connected graph has
a unique prime factor decomposition with respect to the Cartesian prod-
uct. We generalize this result to show that connected graphs indeed have
a unique prime factor decomposition with respect to the generalized hierar-
chical product. We also give preliminary results on the domination number
of generalized hierarchical products.
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1. Introduction

The most appealing aspect of the generalized hierarchical product of graphs is
that it is a generalization of the well-studied Cartesian product of graphs. In
particular, within a Cartesian product graph there exists an interesting set of
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subgraphs which possess many of the algebraic properties that the Cartesian
product enjoys. In the literature for product graphs, Godsil and McKay [6] first
defined a rooted product graph in 1978; a class of graphs which is a proper subset
of the class of all generalized hierarchical product graphs. Rooted product graphs
arise throughout the literature in various contexts, some of which can be seen in
[1, 5, 10, 11]. Then in 2009, Barrière, Dalfó, Fiol, and Mitjana [3] introduced the
generalized hierarchical product, which can be used to model scale-free networks
such as the World Wide Web, some metabolic networks, and telephone graphs
[9, 13]. The generalized hierarchical product is actually a generalization of the
rooted product graph as well as a generalization of the Cartesian product.

Sabidussi [14] and Vizing [15] showed independently that not only does every
graph have a prime factor decomposition with respect to the Cartesian product,
but that this prime factorization is unique for connected graphs. An alternate
proof of this property can also be found in [7]. As with any meaningful attempt
at generalizing a set that exhibits some algebraic structure, we must investi-
gate whether each of the important algebraic properties of the Cartesian product
carries over to the generalized hierarchical product. Barrière, Dalfó, Fiol, and
Mitjana [3] showed that indeed the generalized hierarchical product is associa-
tive, but it is not commutative. We now ask whether this new product retains the
very important property from the Cartesian product: unique prime factorization.
For if this product does not exhibit unique prime factorization, then the study of
a large class of parameters within such a product would become meaningless as
we prefer to relate the value of any invariant for a product graph to the values
for the invariant in the product’s underlying factor graphs.

The remainder of this paper is organized as follows. Section 1.1 is dedicated
to notation and preliminary results. In Section 2, we show that although prime
factor decomposition with respect to the generalized hierarchical product need
not be unique in the case of disconnected graphs, it is in fact unique in the class
of connected graphs. In Section 3, we give preliminary results on the domination
number of specific generalized hierarchical products.

1.1. Preliminaries

We consider only finite, simple, and undirected graphs. Given a graph G, we let
V (G) represent the vertex set of G and E(G) represent the edge set of G. The
Cartesian product of graphs G and H, denoted G�H, is the graph whose vertex
set is V (G) × V (H), whereby two vertices (u1, u2) and (v1, v2) are adjacent if
u1v1 ∈ E(G) and u2 = v2, or u1 = v1 and u2v2 ∈ E(H).

Given graphs G1, . . . , Gn and vertex subsets Ui ⊆ V (Gi) for 1 ≤ i ≤ n − 1,
the generalized hierarchical product, denoted G = G1(U1)⊓· · ·⊓Gn−1(Un−1)⊓Gn,
is the graph with vertex set V (G1)× · · · × V (Gn) and adjacencies
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(y1, x2, . . . , xn) if x1y1 ∈ E(G1),

(x1, y2, x3, . . . , xn) if x2y2 ∈ E(G2) and x1 ∈ U1,
...

...

(x1, . . . , xn−1, yn) if xnyn ∈ E(Gn) and xi ∈ Ui,

1 ≤ i ≤ n− 1.

In the above definition, the subset Ui ⊆ V (Gi) is referred to as the root set of
Gi for each 1 ≤ i ≤ n−1, and if each Ui = ∅, then G1(U1)⊓· · ·⊓Gn−1(Un−1)⊓Gn

is the disjoint union of |V (G1)| × · · · × |V (Gn)| disjoint copies of G1. We alert
the reader’s attention to the fact that when |Ui| = 1 for 1 ≤ i ≤ n− 1, G1(U1) ⊓
· · · ⊓Gn−1(Un−1)⊓Gn is a rooted product. Moreover, Barrière, Comellas, Dalfó,
and Fiol [2] first defined the “hierarchical product” to mean the graph G1(U1) ⊓
· · · ⊓Gn−1(Un−1) ⊓Gn when |Ui| = 1 for 1 ≤ i ≤ n− 1, i.e., the rooted product.
In this paper, we will refer to a “generalized hierarchical product” as simply a
“hierarchical product”. That is, we say a graph G1(U1)⊓ · · · ⊓Gn−1(Un−1)⊓Gn

is a hierarchical product, regardless of the cardinality of each Ui.

Figure 1 depicts the hierarchical product K3(U1) ⊓ K3(U2) ⊓ K2, where
V (Kn) = {0, . . . , n− 1} for n ∈ {2, 3} and U1 = U2 = {0, 2}.
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Figure 1. K3(U1) ⊓K3(U2) ⊓K2, where U1 = U2 = {0, 2}.

The role of the Cartesian product is quite important in the proof technique
used in later sections. For this reason, we make a natural association between a
given hierarchical product and a Cartesian product.

Definition 1. Given a hierarchical product G = G1(U1)⊓· · ·⊓Gn−1(Un−1)⊓Gn,
the Cartesian product associated with G is the graph G� = G1� · · · �Gn.
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In general, given graphs G1, . . . , Gn and graph product operation ∗, for any
index 1 ≤ i ≤ n there is a projection map

pi : G1 ∗ · · · ∗Gn−1 ∗Gn → Gi

defined as pi((x1, . . . , xn)) = xi. We call xi the ith coordinate of the vertex
(x1, . . . , xn). When ∗ represents the hierarchical product operation, then we
must also choose subsets Ui ⊆ V (Gi) for 1 ≤ i ≤ n − 1 so that pi : G1(U1) ⊓
· · · ⊓Gn−1(Un−1)⊓Gn → Gi. We refer to Gi as a factor with respect to its graph
product G1 ∗ · · · ∗Gn.

By definition, when G = G1 ∗ · · · ∗ Gn, if (x1, . . . , xn)(y1, . . . , yn) is an edge
of E(G), then xi = yi or xiyi ∈ E(Gi) for each 1 ≤ i ≤ n. For this reason,
each projection pi is a weak homomorphism. Fix j ∈ {1, . . . , n} and let a =
(a1, . . . , an) ∈ V (G). The Gj-layer through a is the induced subgraph

Ga
j = 〈{x ∈ V (G) | pi(x) = ai for i 6= j}〉.

Notice that if ai ∈ Ui for 1 ≤ i < j, then Ga
j is connected. Moreover, the

restriction pi : G
a
j → Gj is an isomorphism, so Ga

j
∼= Gj . On the other hand, if

ai 6∈ Ui for some i ∈ {1, . . . , j − 1}, then Ga
j is a totally disconnected graph.

As mentioned above, in [3], Barrière, Dalfó, Fiol, and Mitjana show that
the hierarchical product is associative. Thus, it suffices to study the case of two
factors when appropriate. A graph is prime with respect to a given graph product
if it is nontrivial and cannot be represented as the product of two nontrivial
graphs. Letting K1 represent the graph consisting of a single vertex, then a
nontrivial graph G is prime with respect to the hierarchical product if G =
G1(U1) ⊓ G2 implies that G1 or G2 is K1. The result that every graph has a
prime factor decomposition with respect to the Cartesian product was shown
in [7, p. 65], and an analogous proof shows that every graph has a prime factor
decomposition with respect to the hierarchical product.

Proposition 2. Every nontrivial graph G has a prime factor decomposition with

respect to the hierarchical product. The number of prime factors is at most

log2 |V (G)|.

2. Prime Factor Decomposition

We first consider prime factorizations with respect to the hierarchical product
when at least one of the factor graphs is disconnected. In this case, prime fac-
torization is not unique with respect to the Cartesian product. Consequently, it
is not unique with respect to the hierarchical product as the Cartesian product
is a specific type of hierarchical product. We choose a graph which cannot be
represented as a Cartesian product to exemplify this fact.
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Theorem 3. Prime factorization is not unique for the hierarchical product in

the class of possibly disconnected simple graphs.

Proof. First, note that

(K1 +K2)(U1) ⊓K2
∼= K2(W1) ⊓ (K1 +K1 +K1),

where U1 is the isolated vertex of K1 +K2 and W1 = ∅. Figure 2 illustrates the
two factorizations given, where V (K1 +K2) = V (K1 +K1 +K1) = {0, 1, 2} and
V (K2) = {0, 1}. Notice that the cardinality of each of the factors K2, K1 +K2,
and K1 + K1 + K1 is prime. It follows that each of the factors in both prime
factorizations is prime.
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(a) (K1 +K2)(U1) ⊓K2, where U1 = {0}
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(b) K2(∅) ⊓ (K1 +K1 +K1)

Figure 2. Two different prime factorizations of 3K2.

Next we show the uniqueness of prime factorization with respect to the hi-
erarchical product for connected graphs. Throughout the remainder of this sec-
tion, we assume that all graphs are connected. Note that a hierarchical product
G = G1(U1) ⊓ · · · ⊓Gn−1(Un−1) ⊓Gn is connected if and only if each Gi is con-
nected for all 1 ≤ i ≤ n and each Uj 6= ∅ for all 1 ≤ j ≤ n − 1. We generalize
the method of the proof given in [7, pp. 66–68], which was used to prove the
uniqueness of prime factorization with respect to the Cartesian product.

Given a hierarchical product G = G1(U1) ⊓ · · · ⊓Gn−1(Un−1) ⊓Gn and any
two incident edges e and f in E(G), we say that e and f are in different layers

if for some 1 ≤ j < k ≤ n we have pj(e) ∈ E(Gj) and pk(f) ∈ E(Gk). Next
we define two different structures in G, which we call semi-square and square.
Lemma 5 shows that given any two incident edges e and f of G that are contained
in different layers, either e and f belong to a unique semi-square in G or they
belong to a unique square in G.

Definition 4. Let G = G1(U1) ⊓ · · · ⊓Gn−1(Un−1) ⊓Gn, where Ui ⊆ V (Gi) for
1 ≤ i ≤ n − 1. Given some vertex xi ∈ V (Gi) for each 1 ≤ i ≤ n and vertices
yj ∈ V (Gj) \ {xj} and yk ∈ V (Gk) \ {xk} for some 1 ≤ j < k ≤ n, consider the
subgraph H of G induced by the vertices
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u1 = (x1, . . . , xj . . . , xk, . . . , xn),

u2 = (x1, . . . , yj , . . . , xk, . . . , xn),

u3 = (x1, . . . , yj , . . . , yk, . . . , xn),

u4 = (x1, . . . , xj , . . . , yk, . . . , xn).

We say that H is a semi-square if E(H) = {u1u2, u2u3, u3u4}. In this case, one
can easily verify that yj ∈ Uj , xjyj ∈ E(Gj), and xkyk ∈ E(Gk). We say that
H is a square if E(H) = {u1u2, u2u3, u3u4, u1u4}. In this case, it follows that
xj , yj ∈ Uj , xjyj ∈ E(Gj), and xkyk ∈ E(Gk).
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(b) U1 = {0, 1}

Figure 3. P3(U1) ⊓ P3, where V (P3) = {0, 1, 2}.

In Figure 3 we illustrate both a semi-square, in Figure 3(a), and a square,
in Figure 3(b), for the graph P3(U1) ⊓ P3. In both figures, the edges of the
square or semi-square are in bold. Note that the following result is an immediate
consequence of Definition 4.

Lemma 5. Given a hierarchical product G = G1(U1) ⊓ · · · ⊓ Gn−1(Un−1) ⊓ Gn,

where Ui ⊆ V (Gi) for 1 ≤ i ≤ n − 1, let e and f be two incident edges that

are in different layers; that is, e is in a Gj-layer and f is in a Gk-layer for

some 1 ≤ j < k ≤ n. Then there exists exactly one semi-square or square in G

containing e and f , which has no diagonals.

Proof. We may write

e = uw = (x1, . . . , xj , . . . , xk, . . . , xn)(x1, . . . , yj , . . . , xk, . . . , xn),

where xi ∈ V (Gi) for 1 ≤ i ≤ n and yj ∈ V (Gj). Clearly, xjyj ∈ E(Gj) and
xi ∈ Ui for 1 ≤ i ≤ j − 1. Similarly, we may write

f = wv = (x1, . . . , yj , . . . , xk, . . . , xn)(x1, . . . , yj , . . . , yk, . . . , xn),



Prime Factorization and Domination ... 879

where yk ∈ V (Gk) and xkyk ∈ E(Gk). Moreover, yj ∈ Uj and xi ∈ Ui for
j+1 ≤ i ≤ k−1. Note that by Definition 4, any square or semi-square containing e
and f must be unique. So we need only to show that e and f are indeed contained
in a square or semi-square. We know

g = zv = (x1, . . . , xj , . . . , yk, . . . , xn)(x1, . . . , yj , . . . , yk, . . . , xn) ∈ E(G)

since xi ∈ Ui for 1 ≤ i ≤ j − 1 and xjyj ∈ E(Gj). If xj ∈ Uj , then uz ∈ E(G),
and we may conclude that there exists a unique square H containing edges e, f, g,
and uz. Otherwise, there exists a unique semi-square H containing edges e, f ,
and g. In either case, H does not contain a diagonal by definition of the edge set
for this product.

Next we focus on connected subgraphs of a given hierarchical product. Of
particular importance are those subgraphs that are also representable as a hi-
erarchical product. Analogous to the notion of subproduct with respect to the
Cartesian product given in [7], we define a subproduct with respect to the hier-
archical product.

Definition 6. Let G = G1(U1) ⊓ · · · ⊓Gn−1(Un−1) ⊓Gn, where Ui ⊆ V (Gi) for
1 ≤ i ≤ n− 1. A subproduct in G is a subgraph of the form

H1(W1) ⊓ · · · ⊓Hn−1(Wn−1) ⊓Hn,

where Hi ⊆ Gi for 1 ≤ i ≤ n and Wj ⊆ Uj for 1 ≤ j ≤ n− 1.

We now wish to determine when a subgraph of a hierarchical product can be
written as a subproduct. Using the notion of unique squares and semi-squares,
we define the following property that will identify such subgraphs. The following
terminology will be used throughout the remainder of this section. Given a
hierarchical product G = G1(U1) ⊓ · · · ⊓Gn−1(Un−1) ⊓Gn, let H be a subgraph
of G and G� be the Cartesian product associated with G. Let a and b be
two distinct vertices of V (H). Since a and b are vertices of V (G� ) and G� is
connected, we let P � represent a G� -path from a to b.

Definition 7. Let H be a subgraph of G = G1(U1)⊓· · ·⊓Gn−1(Un−1)⊓Gn, and
let a and b be two distinct vertices of V (H). We say H is hierarchically convex

if for any shortest G� -path P � between a and b, each Gi-edge of P � contained
in G is also contained in H for 1 ≤ i ≤ n.

For example, consider the hierarchical product G = P3(U1) ⊓ P3, where
V (P3) = {0, 1, 2} and U1 = {1, 2}. In Figure 4, we illustrate two subgraphs
of G, H1 and H2, where the bold edges represent edges of Hi for i ∈ {1, 2} and
the dashed edges represent the missing edges of G contained in G� . H1, depicted
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Figure 4. P3(U1) ⊓ P3, where V (P3) = {0, 1, 2} and U1 = {1, 2}.

in Figure 4(a), is not hierarchically convex, while H2, depicted in Figure 4(b), is
hierarchically convex. We note that this notion of hierarchically convex is merely
an extension of convex as defined in [7].

Lemma 8. If H is a subgraph of a hierarchical product G = G1(U1) ⊓ · · · ⊓
Gn−1(Un−1)⊓Gn that is hierarchically convex, then for any two incident edges e

and f of E(H) that are in different layers, the unique square or semi-square of

G that contains e and f is also in H.

Proof. Let G� be the Cartesian product associated with G. Suppose there exist
incident edges e and f of H that are in different layers. As in Lemma 5, we shall
assume e is in a Gj-layer and f is in a Gk-layer for some 1 ≤ j < k ≤ n. Let
xi ∈ Ui for 1 ≤ i ≤ k − 1 and xi ∈ V (Gi) for k ≤ i ≤ n. Write

e = uw = (x1, . . . , xj , . . . , xk, . . . , xn)(x1, . . . , yj , . . . , xk, . . . , xn),

where xjyj ∈ E(Gj). Similarly, write

f = wv = (x1, . . . , yj , . . . , xk, . . . , xn)(x1, . . . , yj , . . . , yk, . . . , xn),

where xkyk ∈ E(Gk). Letting z = (x1, . . . , xj , . . . , yk, . . . , xn), observe that

P �

1 = uwv and P �

2 = uzv

are shortest G� -paths from u to v. If u,w, v, and z are contained in a square in
G, then the edges of this square are also contained in H since H is hierarchically
convex. If u,w, v and z are contained in a semi-square in G, then xj 6∈ Uj and so
uz 6∈ E(H). However, zv is contained in G, so it is also contained in H. Thus,
the unique square or semi-square in G containing e and f is also contained in H.
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Next we show that a subgraph H that is hierarchically convex in G is nec-
essarily a subproduct. Note that if given two vertices (x1, x2) and (y1, y2) of a
Cartesian product G1�G2, the distance between (x1, x2) and (y1, y2) is given by
d((x1, x2), (y1, y2)) = dG1

(x1, y1) + dG2
(x2, y2) (see [7, p. 51]).

Lemma 9. If G is a hierarchical product and H is a hierarchically convex sub-

graph of G, then H is a subproduct.

Proof. Let H be a subgraph which is hierarchically convex in G. Let a and b

be two distinct vertices of V (H). By associativity of the hierarchical product,
it suffices to prove the lemma when G = G1(U1) ⊓ G2. Write a = (a1, a2)
and b = (b1, b2). We wish to show that (a1, b2) and (b1, a2) are also vertices of
V (H). If a1 = b1, then any shortest G� -path between a and b is of the form
(a1, a2)(a1, x

1
2) · · · (a1, x

k
2)(a1, b2), where xi2 ∈ V (G2) for 1 ≤ i ≤ k. If a1 6∈ U1,

then no edge of this path is contained in G and so the result is trivially true.
If a1 ∈ U1, then every edge of this path is contained in G and consequently
contained in H as well as H is hierarchically convex. So we may assume that
a1 6= b1. If a2 = b2, then any shortest G� -path between a and b is of the form
(a1, a2)(x

1
1, a2) · · · (x

k
1, a2)(b1, a2), where xi1 ∈ V (G1) for 1 ≤ i ≤ k. Each edge of

this path is contained in G and, therefore, H. So we may assume that a2 6= b2.
Let P � be a shortest G� -path between a and b. Every edge of P � is mapped

into a single vertex by one of the projections p1 or p2 and into an edge by the
other. It follows that p1(P

� ) is a shortest path in G1 from a1 to b1 and p2(P
� )

is a shortest path in G2 from a2 to b2. Write p1(P
� ) = a1x

1
1x

2
1 · · ·x

j
1b1, where

xi1 ∈ V (G1) for 1 ≤ i ≤ j. Similarly, write p2(P
� ) = a2x

1
2x

2
2 · · ·x

k
2b2, where

xi2 ∈ V (G2) for 1 ≤ i ≤ k. Define

{a1} × p2(P
� ) = (a1, a2)(a1, x

1
2) · · · (a1, x

k
2)(a1, b2)

and
p1(P

� )× {b2} = (a1, b2)(x
1
1, b2) · · · (x

j
1, b2)(b1, b2).

Note that the concatenation of {a1} × p2(P
� ) and p1(P

� )× {b2} is a path
of length dG1

(a1, b1) + dG2
(a2, b2) making it a shortest G� -path from (a1, a2) to

(b1, b2). Furthermore, the path p1(P
� ) × {b2} is contained in G, which implies

this path is also contained in H since H is hierarchically convex. It follows that
(a1, b2) ∈ V (H). Similarly, we can define

{b1} × p2(P
� ) = (b1, a2)(b1, x

1
2) · · · (b1, x

k
2)(b1, b2)

and
p1(P

� )× {a2} = (a1, a2)(x
1
1, a2) · · · (x

j
1, a2)(b1, a2),

where p1(P
� ) × {a2} is contained in G. Thus, (b1, a2) ∈ V (H), and we may

conclude that H is a subproduct.
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Notice that every layer Ga
j = {a1} ⊓ · · · ⊓Gj ⊓ · · · ⊓ {an}, where ai ∈ Ui for

1 ≤ i < j, is a connected subproduct that is hierarchically convex in G.

Theorem 10. Let φ be an isomorphism between the connected graphs G and H

that are representable as hierarchical products

G = G1(U1)⊓· · ·⊓Gn−1(Un−1)⊓Gn and H = H1(W1)⊓· · ·⊓Hm−1(Wm−1)⊓Hm

of prime graphs, where Ui ⊆ V (Gi) for i ∈ {1, . . . , n − 1} and Wj ⊆ V (Hj) for

j ∈ {1, . . . ,m − 1}. Then for some a ∈ V (G), there exists a permutation π of

{1, . . . , n} such that φ(Ga
i ) = H

φ(a)
π(i) for 1 ≤ i ≤ n and m = n.

Proof. Fix j ∈ {1, . . . , n} and a = (a1, . . . , an), where ai ∈ Ui for 1 ≤ i < j.
Assume that φ(a) = b = (b1, . . . , bm). As stated above, Ga

j is a connected sub-
graph of G that is hierarchically convex in G. Therefore, φ(Ga

j ) is connected and
is hierarchically convex in H. By Lemma 9, φ(Ga

j ) is a subproduct; hence, we
may write

(b1, . . . , bm) ∈ φ(Ga
j ) = F1(U1) ⊓ · · · ⊓ Fm−1(Wm−1) ⊓ Fm.

Since Gj
∼= Ga

j
∼= φ(Ga

j ) is prime, Fi = {bi} for all except one i, 1 ≤ i ≤ j,
which we denote as π(i). Moreover, φ(Ga

j ) is connected, so bi ∈ Wi for each i ∈

{1, . . . , π(i)−1}. Therefore, φ(Ga
j ) ⊆ F

φ(a)
π(i) . This implies that Ga

j ⊆ φ−1
(

F
φ(a)
π(i)

)

.

Since φ−1
(

F
φ(a)
π(i)

)

is hierarchically convex in G, it is also a subproduct. Moreover,

it is prime so φ−1
(

F
φ(a)
π(i)

)

⊆ Ga
j . Thus, φ(Ga

j ) = F
φ(a)
π(i) . We claim that the map

π : {1, 2, . . . , n} → {1, 2, . . . ,m} is injective. If π(i) = π(j), then

φ(Ga
i ) = F

φ(a)
π(i) = φ(Ga

j ).

Since F
φ(a)
π(i) is nontrivial, it follows that Ga

i and Ga
j have a nontrivial intersection.

This means i = j, so π is injective. Thus, n ≤ m. Repeating this argument for
φ−1 gives m ≤ n, so n = m, and π is a permutation.

3. Preliminary Domination Bounds

Given a graph G, a set D ⊆ V (G) is a dominating set of G if V (G) = N [D].
The domination number of G, denoted γ(G), is the minimum cardinality of a
dominating set of G. Arguably the most well-known conjecture in domination
theory is Vizing’s Conjecture from 1968 that states γ(G�H) ≥ γ(G)γ(H) (see
[4]). As noted in the introduction and motivated by Vizing’s Conjecture, we
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would like to provide bounds for γ(G1(U1) ⊓ G2) as a function of γ(G1) and
γ(G2), which is now possible having shown prime factorization is unique in the
class of connected graphs. Our first observation is that given two graphs G and
H, the domination number of the hierarchical product of G and H is monotonic
with respect to nested root sets.

Observation 11. Given any graph G of order n and any graph H,

γ(G(U1) ⊓H) ≥ γ(G(U2) ⊓H) ≥ · · · ≥ γ(G(Un) ⊓H) = γ(G�H),

where U1 ⊂ U2 ⊂ · · · ⊂ Un and |Uk| = k for 1 ≤ k ≤ n.

Next, we determine bounds for the domination number of G(U)⊓H when G is
a path. Certainly if U = ∅, then Pm(∅)⊓H is simply the disjoint union of |V (H)|
paths, in which case γ(Pm(∅)⊓H) = |V (H)|γ(Pm). We now determine the value
of γ(Pm(U) ⊓H) when U contains a single vertex. Throughout this section, we
will use the following notation. Given a hierarchical product G(U) ⊓ H, we let
Hv = {(v, y) | y ∈ V (H)} and Gy = {(v, y) | v ∈ V (G)}.

Theorem 12. Let G = Pm and U = {xj}, where 1 ≤ j ≤ m. For any graph H

of order n, γ(Pm(U) ⊓H) = nγ(Pm) if either m 6≡ 1 (mod 3) or j 6≡ 1 (mod 3).
Otherwise, γ(Pm(U) ⊓H) = n(γ(Pm)− 1) + γ(H).

Proof. We let (a1, a2) = (m (mod 3), j (mod 3)) represent the combination
of congruence classes of m and j modulo 3. Since G(∅) ⊓ H is a subgraph of
Pm(U) ⊓ H, we know that γ(Pm(U) ⊓ H) ≤ nγ(Pm), which shows the upper
bound when (a1, a2) 6= (1, 1). If (a1, a2) = (1, 1), then given any minimum
dominating set DH of H, let

D1 = {(xj , y) | y ∈ DH},

and

D2 = {(xi, y) | i ≡ 0 (mod 3) if i > j, i ≡ 2 (mod 3) if i < j, y ∈ V (H)}.

One can easily verify that D1∪D2 is a dominating set of Pm(U)⊓H of order
γ(H) + n(γ(Pm)− 1).

Next, suppose that D is any dominating set of Pm(U) ⊓ H and let Dx =
D ∩Hxj

. We first consider the projection of Dx onto H. Let D∗ = {y ∈ V (H) |
(xj , y) ∈ D}. Notice that for each y ∈ D∗, each vertex of V (Gy) − {(xj−1, y),
(xj , y), (xj+1, y)} is dominated from within its G-layer. It follows that

|D ∩Gy| ≥ 1 + γ(Pj−2) + γ(Pm−j−2).

One can easily verify that 1 + γ(Pj−2) + γ(Pm−j−2) ≥ γ(Pm) depending on
(a1, a2).
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If y 6∈ D∗, then |D ∩Gy| ≥ γ(Pj−1) + γ(Pm−j). We leave it to the reader to
verify that

γ(Pj−1) + γ(Pm−j) =

{

γ(Pm)− 1 if (a1, a2) = (1, 1),

γ(Pm) otherwise.

Therefore, if (a1, a2) 6= (1, 1), we have

|D| =
∑

y∈V (H)

|D ∩Gy|

≥ |D∗|(1 + γ(Pj−2) + γ(Pm−j−2)) + (n− |D∗|)(γ(Pj−1) + γ(Pm−j))

≥ |D∗|γ(Pm) + (n− |D∗|)γ(Pm) = nγ(Pm).

So assume that (a1, a2) = (1, 1). Let A = NH(D∗) \D∗ and let B = V (H) \
(A ∪ D∗). Note that if y ∈ B, then |D ∩ Gy| ≥ γ(Pm). Moreover, D∗ ∪ B is a
dominating set of H so |D∗|+ |B| ≥ γ(H). This implies that |A| ≤ n−γ(H) and
we have

|D| =
∑

y∈V (H)

|D ∩Gy| ≥ |D∗|γ(Pm) + |B|γ(Pm) + |A|(γ(Pm)− 1)

= nγ(Pm)− |A| ≥ nγ(Pm)− (n− γ(H)) = n(γ(Pm)− 1) + γ(H).

We can use the above result to find a lower bound for the domination number
of Pm(Ui) ⊓H for U1 ⊂ U2 ⊂ · · · ⊂ Un and |Uk| = k for 1 ≤ k ≤ n as a function
of γ(Pi) and γ(Pm−i). In what follows, we let P0 represent the empty graph.

Theorem 13. For any m ∈ N, any s ∈ {1, . . . ,m}, and any graph H of order n,

γ(Pm(Us) ⊓H) ≥ γ(H)γ(Ps) + (n− γ(H))γ(Pm−s),

where Us = {x1, . . . , xs}.

Proof. Let H be any fixed graph with order n. We proceed by induction on m

with base cases m = 1, 2, or 3.

Case 1. Suppose m = 1 and consider the graph P1(U1) ⊓H. It follows that

γ(P1(U1) ⊓H) = γ(P1�H) ≥ γ(H)γ(P1).

Case 2. Suppose m = 2. Notice that when s = 1, Theorem 12 guarantees
that

γ(P2(U1) ⊓H) ≥ nγ(P2) = γ(H)γ(P1) + (n− γ(H))γ(P1).
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On the other hand, when s = 2, we have

γ(P2(U2) ⊓H) = γ(P2�H) ≥ γ(H) = γ(H)γ(P2) + (n− γ(H))γ(P0).

Thus, the result holds when m = 2.

Case 3. Suppose m = 3. Notice that when s = 1, Theorem 12 guarantees
that

γ(P3(U1) ⊓H) ≥ nγ(P3) = (n− γ(H))γ(P3) + γ(H)γ(P3)

= γ(H)γ(P1) + (n− γ(H))γ(P2).

Next, assume that s = 2 and consider the graph P3(U2) ⊓ H. Let D be any
dominating set of P3(U2) ⊓ H and set D∗ = {y ∈ V (H) | (x2, y) ∈ D}. Note
that if y ∈ D∗, then |D ∩Gy| ≥ 1 and if y 6∈ D∗, then (x3, y) ∈ D. Therefore, in
both cases we know |D ∩Gy| ≥ 1 so that

|D| =
∑

y∈V (H)

|D ∩Gy| ≥ n = (n− γ(H)) + γ(H)

= (n− γ(H))γ(P1) + γ(H)γ(P2).

Finally, assume that s = 3 and consider the graph P3(U3)⊓H. Then γ(P3(U3)⊓
H) = γ(P3�H) ≥ γ(H) = γ(H)·1+(n−γ(H))·0 = γ(H)γ(P3)+(n−γ(H))γ(P0).

Suppose for some fixed k and all m ∈ {1, . . . , k} that the statement of the
theorem is true. Consider the graph Pm(Us) ⊓H, where m = k + 1. We proceed
by induction on s with the base case s = 1. From Theorem 12, we know that if
m ≡ 0, 2 (mod 3), then

γ(Pm(U1) ⊓H) ≥ nγ(Pm) = (n− γ(H))γ(Pm) + γ(H)γ(Pm)

= (n− γ(H))γ(Pm−1) + γ(H)γ(Pm)

≥ (n− γ(H))γ(Pm−1) + γ(H)γ(P1).

Similarly, if m ≡ 1 (mod 3), then

γ(Pm(U1) ⊓H) ≥ n(γ(Pm)− 1) + γ(H) = nγ(Pm−1) + γ(H)γ(P1)

≥ (n− γ(H))γ(Pm−1) + γ(H)γ(P1).

So assume that for some fixed j ∈ {1, . . . ,m− 1} that for all 1 ≤ s ≤ j, we have

γ(Pm(Us) ⊓H) ≥ γ(H)γ(Ps) + (n− γ(H))γ(Pm−s).

Consider s = j + 1 and let D be any dominating set of Pm(Us) ⊓H. Let D∗ =
{y ∈ V (H) | (xs, y) ∈ D}, let A = NH(D∗) \D∗, and let B = V (H) \ (A∪D∗).
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First, assume that s = m. Thus, m > 3 and we may define G′ to be the
subgraph of Pm(Us) ⊓H induced by the set

{ (xi, y) | 1 ≤ i ≤ s− 3, y ∈ V (H) } .

If y ∈ D∗, then |D ∩Gy| ≥ |D ∩G′
y| + |D ∩ {(xs−2, y), (xs−1, y)}| + 1. If y ∈ A,

then |D∩Gy| ≥ |D∩G′
y|+ |D∩{(xs−2, y), (xs−1, y)}|. If y ∈ B, then |D∩Gy| ≥

|D ∩G′
y|+ |D ∩ {(xs−2, y)}|+ 1. Thus,

|D| =
∑

y∈V (H)

|D ∩Gy| ≥ |D ∩G′|+ |D ∩Hxs−2
|+ |D ∩Hxs−1

|+ |D∗|

≥ γ(Ps−3�H) + |B|+ |D∗|.

Since D∗ ∪B is a dominating set of H, |B|+ |D∗| ≥ γ(H) and

|D| ≥ γ(Ps−3�H) + γ(H).

Finally, note that s − 3 = j − 2 and by the inductive hypothesis, we know that
for m = j − 2 and Uj−2,

γ(Pj−2(Uj−2) ⊓H) = γ(Pj−2�H)

≥ γ(H)γ(Ps−3) + (n− γ(H))γ(P0) = γ(H)γ(Ps−3).

Therefore,

|D| ≥ γ(Ps−3�H) + γ(H) ≥ γ(H)γ(Ps−3) + γ(H) ≥ γ(H)γ(Pm).

Next, assume that s < m and let G′′ be the graph induced by the set

{ (xi, y) | 1 ≤ i ≤ s− 2, y ∈ V (H) }.

Notice that if y ∈ D∗, then

|D ∩Gy| ≥ |D ∩G′′
y |+ |D ∩ {(xs−1, y)}|+ γ(Pm−s−1) + 1

≥ |D ∩G′′
y |+ |D ∩ {(xs−1, y)}|+ γ(Pm−s).

On the other hand, if y 6∈ D∗, then

|D ∩Gy| ≥ |D ∩G′′
y |+ |D ∩ {(xs−1, y)}|+ γ(Pm−s).

Summing over all y ∈ V (H), we have

|D| ≥
∑

y∈V (H)

|D ∩G′′
y |+ |D ∩ {(xs−1, y)}|+ γ(Pm−s)

= |D ∩G′′|+ |D ∩Hxs−1
|+ nγ(Pm−s) ≥ γ(Ps−2�H) + nγ(Pm−s).



Prime Factorization and Domination ... 887

Notice that s − 2 = j − 1 and by the inductive hypothesis, we know that for
m = j − 1 and Uj−1,

γ(Pj−1(Uj−1) ⊓H) = γ(Pj−1�H)

≥ γ(H)γ(Ps−2) + (n− γ(H))γ(P0) = γ(H)γ(Ps−2).

Therefore,

|D| ≥ γ(H)γ(Ps−2) + nγ(Pm−s)

= γ(H)γ(Ps−2) + (n− γ(H))γ(Pm−s) + γ(H)γ(Pm−s)

≥ γ(H) (γ(Ps)− 1) + (n− γ(H))γ(Pm−s) + γ(H)

= γ(H)γ(Ps) + (n− γ(H))γ(Pm−s).

We would like to point out that although Jacobson and Kinch [8], and inde-
pendently, Meir and Moon [12] proved γ(Pm�H) ≥ γ(Pm)γ(H) for any m ∈ N,
the above argument includes a unique proof for this same result. We also note
that similar arguments may be used when considering Pm(U)⊓H where U induces
a disconnected graph.

Finally, we give a general lower bound for γ(G(U) ⊓ H) when G and H

are arbitrary graphs. The following lemma allows us to partition V (G) prior to
considering the hierarchical product. Recall that given a graph G, a clique is a
subset of vertices in G such that its induced subgraph is complete.

Lemma 14. Let G be any graph with γ(G) = k. There exists a partition A1, . . . ,

Ak of V (G) such that

(i) Ai is a clique for 1 ≤ i ≤ k − 1,

(ii) for each v ∈ Ak, there exists w ∈ Ai such that vw 6∈ E(G) for 1 ≤ i ≤ k− 1,
and

(iii) for each v ∈ Ai 1 ≤ i ≤ k − 1, there exists w ∈ Ak such that vw 6∈ E(G).

Proof. Let D = {x1, . . . , xk} be a γ-set of G. Choose a maximal clique from
N [x1]\ (D−{x1}) that contains x1 and call it A1. Next, choose a maximal clique
from N [x2]\(D−{x2}∪A1) that contains x2 and call it A2. Continue this process
until A1, . . . , Ak−1 have been chosen and let Ak = V (G) \ (

⋃k−1
i=1 Ai). Note that

for some 2 ≤ i ≤ k − 1, Ai may only contain the vertex xi.
Let w ∈ Ai for some 1 ≤ i ≤ k − 1. If w is adjacent to every vertex of Ak,

then
⋃

j 6∈{i,k}{xj} ∪ {w} is a dominating set of G, contradicting γ(G) = k. So
there exists some v ∈ Ak such that wv 6∈ E(G).

On the other hand, if there exists u ∈ Ak that is adjacent to every vertex of
Ai for some 1 ≤ i ≤ k − 1, then Ai was not a maximal clique. Thus, there exists
some v ∈ Ai such that uv 6∈ E(G).
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Using the partition in Lemma 14, the following two results give lower bounds
for γ(G(U) ⊓H) when γ(G) = 3 or γ(G) = 4.

Theorem 15. Let G be any graph with γ(G) = 3, and let A1, A2, A3 be any

partition of V (G) satisfying the conditions of Lemma 14. For any graph H of

order n, γ(G(U) ⊓H) ≥ 2n, where U ⊆ A1 or U ⊆ A2.

Proof. Assume that U ⊆ A1. Let D be any minimum dominating set of G(U)⊓
H. Let E represent the vertices of πH(D) that have exactly two pre-images in
D. First note that if v ∈ V (H) \ πH(D), then each vertex of {(x, v) | x ∈ A3}
is not dominated by D, which cannot happen. So πH(D) = V (H). Suppose
there exists v ∈ πH(D) where v has only one pre-image in D, call it (x, v). If
x ∈ A1, then there exists some vertex w ∈ A2 ∪ A3 that is not adjacent to x for
otherwise γ(G) = 1. However, this implies D does not dominate (w, v) which is a
contradiction. If x ∈ A3, then by the choice of A1, A2, and A3, there exists w ∈ A2

that is not adjacent to x, another contradiction. If x ∈ A2 and x is adjacent to
each vertex of A3, then {x, z} dominates G for any z ∈ A1. However, this
contradicts γ(G) = 3 so there exists w ∈ A3 that is not adjacent to x. It follows
that for each y ∈ V (H), |D∩Gy| ≥ 2. Therefore, |D| ≥ 2|E|+3|V (H)\E| ≥ 2n.
A similar argument shows the same result holds when U ⊆ A2.

Theorem 16. Let G be any graph with γ(G) = 4, and let A1, A2, A3, A4 be any

partition of V (G) satisfying the conditions of Lemma 14. For any graph H of

order n, γ(G(U) ⊓H) ≥ 3n, where U ⊆ Ai for some 1 ≤ i ≤ 3.

Proof. Assume U ⊆ A1 and let D be any minimum dominating set of G(U)⊓H.
Let E represent the vertices of πH(D) that have exactly two pre-images in D. As
in the proof of Theorem 15, πH(D) = V (H) and no vertex of πH(D) has exactly
one pre-image in D. Suppose that v ∈ E and let (x, v) and (y, v) represent the
pre-images of v in D. Note that {x, y} must dominate G \ A1 since each vertex
of the form (w, v), where w ∈ A2 ∪ A3 ∪ A4, is dominated by either (x, v) or
(y, v). However, this implies that {a, x, y} dominates G for any a ∈ A1 as A1 is
a clique. This contradiction shows that no such v ∈ E exists so E = ∅. It follows
that |D| ≥ 3n. A similar argument shows the same result holds when U ⊆ A2 or
U ⊆ A3.

We point out that the above argument can be generalized for any graph G

with domination number k ≥ 5. Yet there exist many open questions regarding
domination in the hierarchical product. For instance, given two graph G and H,
where γ(G) = 3, can we partition V (G) into three sets A1, A2, A3 in a slightly
different way in order to obtain a lower bound for G(U) ⊓ H when U is not
restricted to precisely one of Ai? In general, can we find a lower bound for
G(U) ⊓ H regardless of the structure of G or choice of U? Is it possible to
determine the gap between γ(G�H) and γ(G(U)⊓H) based on the choice of U?
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