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Abstract

A strong edge-coloring of a graph is a proper edge-coloring where each
color class induces a matching. We denote by χ′

s
(G) the strong chromatic

index of G which is the smallest integer k such that G can be strongly edge-
colored with k colors. It is known that every planar graph G has a strong
edge-coloring with at most 4∆(G) + 4 colors [R.J. Faudree, A. Gyárfás, R.H.
Schelp and Zs. Tuza, The strong chromatic index of graphs, Ars Combin.
29B (1990) 205–211]. In this paper, we show that if G is a planar graph
with g ≥ 5, then χ′

s
(G) ≤ 4∆(G)− 2 when ∆(G) ≥ 6 and χ′

s
(G) ≤ 19 when

∆(G) = 5, where g is the girth of G.

Keywords: strong edge-coloring, strong chromatic index, planar graph, dis-
charging method.
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1. Introduction

All graphs considered are finite, simple and undirected. Let G be a graph. We use
V (G), E(G) and ∆(G) to denote its vertex set, edge set and maximum degree,
respectively. For a planar graph G, F (G) denotes its face set, d(v) denotes the
degree of a vertex v in G. The length or degree of a face f , denoted by d(f), is the
length of a boundary walk around f in G. We call v a k-vertex, or a k+-vertex, or
a k−-vertex if d(v) = k, or d(v) ≥ k, or d(v) ≤ k, respectively and call f a k-face,
or a k+-face, or a k−-face if d(f) = k, or d(f) ≥ k, or d(f) ≤ k, respectively.
Any undefined notation follows that of Bondy and Murty [3].

A proper k-edge-coloring of a graph G is a mapping f : E(G) → {1, 2, . . . , k}
such that any two adjacent edges receive different colors. A strong edge-coloring
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of a graph G is a proper edge-coloring where each color class induces a matching,
i.e., every two edges at distance at most 2 receive distinct colors. We denote by
χ′

s(G) the strong chromatic index of G which is the smallest integer k such that
G can be strongly edge-colored with k colors.

Strong edge-coloring was introduced by Fouquet and Jolivet in 1983 [7, 8].
In 1985, Erdős and Nešetřil posed the following conjecture during a seminar in
Prague (later published in [5]).

Conjecture 1 (Erdős and Nešetřil [5]). For every graph G,

χ′

s(G) ≤

{

5
4∆(G)2, ∆(G) is even;
1
4(5∆(G)2 − 2∆ + 1), ∆(G) is odd.

This conjecture was verified when ∆(G) ≤ 3 [1, 9]. When ∆(G) is large
enough, Bruhn and Joos [4] showed currently the best known upper bound for
the strong chromatic index of graphs by the following theorem

Theorem 2 (Bruhn and Joos [4]). If G is a graph of sufficiently large maximum

degree ∆, then χ′

s(G) ≤ 1.93∆(G)2.

In this paper, we mainly study the strong chromatic index of planar graphs
with lower bounds on girth. The study on the strong chromatic index of planar
graphs was started with the paper of Faudree et al. [6], who presented a con-
struction of planar graphs of girth at least 4 which satisfies χ′

s(G) ≤ 4∆(G)− 4.
Moreover, they proved the following theorem.

Theorem 3 (Faudree et al. [6]). If G is a planar graph, then χ′

s(G) ≤ 4χ′(G).

In the short and simple proof of Theorem 3, the authors used Vizing’s The-
orem and the Four Color Theorem. In particular, by Vizing’s Theorem and
Theorem 3, we can easily obtain that the strong chromatic index of every planar
graph with ∆(G) at least 7 is at most 4∆(G).

Recently, Hudák et al. [10] considered planar graphs with girth at least 6
and obtained the following result.

Theorem 4 (Hudák et al. [10]). If G is a planar graph with girth g ≥ 6, then
χ′

s(G) ≤ 3∆(G) + 6.

Moreover, this result was improved by Bensmail et al. [2] to the following.

Theorem 5 (Bensmail et al. [2]). If G is a planar graph with girth g ≥ 6, then
χ′

s(G) ≤ 3∆(G) + 1.

For smaller values of the girth, they also obtained the following strengthening
in the same paper.
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Theorem 6 (Bensmail et al. [2]). Let G be a planar graph with maximum degree

∆(G) and girth g. If G satisfies one of the following conditions, then χ′

s(G)
≤ 4∆(G).

(1) ∆(G) ≥ 7,

(2) ∆(G) ≥ 5 and g ≥ 4,

(3) g ≥ 5.

In this paper, we mainly improve the upper bound in (3) of Theorem 6 when
∆(G) ≥ 5; we show the following.

Theorem 7. If G is a planar graph with ∆(G) ≥ 6 and girth g ≥ 5, then

χ′

s(G) ≤ 4∆(G)− 2.

Theorem 8. If G is a planar graph with ∆(G) = 5 and girth g ≥ 5, then

χ′

s(G) ≤ 19.

Before proving our results we introduce some definitions and notations.

Definition. Two edges are at distance 1 if they share one of their ends and
they are at distance 2 if they are not at distance 1 and there exists an edge
adjacent to both of them. We define N2(e) as the set of edges at distance at
most 2 from the edge e. We denote by SC(N2(e)) the set of colors used by edges
in N2(e). We denote by N(v) the neighborhood of the vertex v, i.e., the set of
its adjacent vertices. We use SC(v) to denote the set of colors used by edges
which are incident to v. A kl-vertex is a k-vertex adjacent to exactly l 2-vertices.
A bad 5-vertex is a 5-vertex adjacent to three 2-vertices, otherwise it is a good

5-vertex. A weak 2-path is a path v1v2v3 such that d(v1) = d(v3) = 2 and v2 is
a bad 5-vertex. A bad 5-cycle is a 5-cycle incident with a weak 2-path.

2. Proof of Theorem 7

We shall argue by contradiction to prove Theorem 7 and assume that G is a
counterexample with |E(G)| as small as possible. Let G′ = G− uv and L = {1,
2, . . . , 4∆(G)−2}. By the minimality of G we can assume that it is connected and
that it has χ′

s(G) ≥ 4∆(G) − 1. In the following two subsections, we first inves-
tigate the structure of the minimal counterexample G and then use discharging
method to obtain a contradiction to complete the proof.

2.1. Structure of minimal counterexample

We first show the structure of minimal counterexample G by the following lemma.
For each configuration of this lemma, we will show a contradiction by extending
a strong (4∆(G) − 2)-edge-coloring φ of G′ to a strong edge-coloring of G to
complete the proof.
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Lemma 9. For a minimal counterexample G, each of the following holds:

1. G does not contain a 1-vertex adjacent to a 4−-vertex.

2. G does not contain a 2-vertex adjacent to a 3−-vertex.

3. G does not contain a 3-vertex adjacent to two 3−-vertices.

4. G does not contain a 4-vertex adjacent to a 2-vertex and a 3−-vertex.

5. G contains neither a 5-vertex adjacent to four 2−-vertices nor a bad 5-cycle.

6. G contains neither a bad 5-vertex adjacent to a 3−-vertex nor a bad 5-vertex

with a 2-neighbor adjacent to a (∆(G)− 1)−-vertex.

7. G does not contain a 52-vertex adjacent to two other 3−-vertices.

8. If k ≥ 5, then G does not contain a k-vertex adjacent to k − 3 1-vertices.
Moreover, if the k-vertex is adjacent to k− 4 1-vertices, then it has no other

2−-neighbor. In particular, if a 5-vertex is adjacent to one 1-vertex, then it

has no other 3−-neighbor.

9. If k ≥ 6, then G does not contain a k-vertex adjacent to k − 1 2−-vertices;
if the k-vertex is adjacent to k − 2 2−-vertices, then each 2−-vertex is not a

1-vertex. Moreover, if the k-vertex is adjacent to k− 2 2-vertices, then it has

no other 3−-neighbor.

10. If k ≥ 6 and 1 ≤ α ≤ k − 4, then G does not contain a k-vertex adjacent to

α 1-vertices and to k − 3 − α vertices of degree 2, such that this k-vertex is

adjacent to another 3−-vertex.

Proof. 1. Suppose G contains a 1-vertex u adjacent to a 4−-vertex v. We can
extend φ to G by coloring uv with a color in L\SCφ(N2(uv)) because
|L\SCφ(N2(uv))| ≥ 4∆(G)− 2− 3∆(G) ≥ 4.

2. Suppose G contains a 2-vertex u adjacent to a 3−-vertex v. W.l.o.g.
assume that d(v) = 3. Since |L\SCφ(N2(uv))| ≥ ∆(G)− 2 ≥ 4, we can extend φ

to G by coloring uv.

3. Suppose G contains a 3-vertex u adjacent to two 3−-vertices v, w. W.l.o.g.
assume that d(v) = d(w) = 3. Since |L\SCφ(N2(uv))| ≥ ∆(G) − 5 ≥ 1, we can
extend φ to G by coloring uv.

4. Suppose G contains a 4-vertex u adjacent to a 2-vertex v and a 3−-vertex
w. W.l.o.g. assume that d(w) = 3. Since |L\SCφ(N2(uv))| ≥ ∆(G) − 5 ≥ 1, we
can extend φ to G by coloring uv.

5. Suppose G contains a 5-vertex u adjacent to four 2-vertices v, w, x and y.
Since |L\SCφ(N2(uv))| ≥ 2∆(G)− 8 ≥ 4, we can extend φ to G by coloring uv.
Let a bad 5-cycle contains a bad 5-vertex u and two 2-vertices v, w. W.l.o.g. as-
sume that N(u) = {v, w, x, y, z}, N(v) = {u, v1}, N(w) = {u,w1}, N(y) = {u, t},
N(x) = {u, x1, x2, . . . , x∆−2, x∆−1}, N(t) = {y, t1, t2, . . . , t∆−2, t∆−1}, N(z) =
{u, z1, z2, . . . , z∆−2, z∆−1}, N(v1) = {v, w1, v

1
1, v

2
1, . . . , v

∆−3
1 , v∆−2

1 }, N(w1) = {v1,
w, w1

1, w
2
1, . . . , w

∆−3
1 , w∆−2

1 } (see Figure 1). Clearly, we have N2(uv) = 3∆(G)+4.
If ∆(G) ≥ 7, there must be a color α ∈ L\SCφ(N2(uv)) since (4∆(G) − 2) −



Strong Edge-Coloring of Planar Graphs 849

(3∆(G) + 4) ≥ 1. We color uv with it such that we get a strong (4∆(G) − 2)-
edge-coloring in G. Then we can extend the coloring φ to a strong (4∆(G)− 2)-
edge-coloring of G, a contradiction. Therefore, we assume that ∆(G) = 6 and
|L\SCφ(N2(uv))| = 0. In this case, we may try to recolor uw. We color uv with
φ(uw) and recolor uw with one color α of φ(v1v

i
1), i = 1, 2, 3, 4. This is possible

because {φ(v1v
i
1)} ∩ {φ(w1w

i
1)} = ∅, i = 1, 2, 3, 4. Then we can extend φ to G.

w1
1 w

2
1 w

∆−3

1
w

∆−2

1

v11 v21 v
∆−3

1
v
∆−2

1
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w

v

u
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y

z

z2z1 z∆−2 z∆−1
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t∆−2

t2

t1

Figure 1. The configuration of Lemma 9.5.

6. Suppose a bad 5-vertex u is adjacent to three 2-vertices v, w, y and a 3−-
vertex x. W.l.o.g. assume that d(x) = 3. Since |L\SCφ(N2(uv))| ≥ 2∆(G)− 9 ≥
3, we can extend φ to G by coloring uv. If a bad 5-vertex u is adjacent to
three 2-vertices v, w, y and one 2-neighbor (say the vertex v) is adjacent to a
(∆(G)− 1)−-vertex, then since |L\SCφ(N2(uv))| ≥ ∆(G)− 5 ≥ 1, we can extend
φ to G by coloring uv.

7. Suppose a 5-vertex u is adjacent to two 2-vertices v, w and two another 3−-
vertices x, y. W.l.o.g. assume that d(x) = d(y) = 3. Since |L\SCφ(N2(uv))| ≥
2∆(G)− 10 ≥ 2, we can extend φ to G by coloring uv.

8. Let k ≥ 5. Suppose G contains a k-vertex u with N(u) = {u1, u2, . . . , uk}
and u1 = v, such that each ui with i ∈ [[k − 3]] is a 1-vertex. Then, we can
extend φ to G by coloring uv because |L\SCφ(N2(uv))| ≥ ∆(G) − k + 2 ≥ 2.
Suppose now that the k-vertex is adjacent to k − 4 1-vertices and a 2−-vertex.
W.l.o.g. assume that d(uk−3) = 2. Since |L\SCφ(N2(uv))| ≥ ∆(G)− k + 1 ≥ 1,
we can extend φ to G by coloring uv. In particular, if a 5-vertex u is adjacent to
a 1-vertex v and a 3−-vertex w, then since |L\SCφ(N2(uv))| ≥ ∆(G)− 5 ≥ 1, we
can extend φ to G by coloring uv.

9. Let k ≥ 6. Suppose G contains a k-vertex u with N(u) = {u1, u2, . . . , uk}
and u1 = v, such that each ui with i ∈ [[k − 1]] is a 2−-vertex. W.l.o.g. assume
that d(v) = d(u2) = · · · = d(uk−1) = 2. Then, we can extend φ to G by coloring
uv because |L\SCφ(N2(uv))| ≥ 2∆(G) − 2k + 2 ≥ 2. Suppose that the k-vertex
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is adjacent to k − 2 2−-vertices and u1 is a 1-vertex. Since |L\SCφ(N2(uv))| ≥
2∆(G)− 2k + 4 ≥ 4, we can extend φ to G by coloring uv. Finally, assume that
the k-vertex is adjacent to k−2 2-vertices and a 3−-vertex uk−1. W.l.o.g. assume
that d(uk−1) = 3. Since |L\SCφ(N2(uv))| ≥ 2∆(G)− 2k + 1 ≥ 1, we can extend
φ to G by coloring uv.

10. Let k ≥ 6 and 1 ≤ α ≤ k−4. Suppose G contains a k-vertex adjacent to α
1-vertices and to k−3−α vertices of degree 2, such that this k-vertex is adjacent
to a 3−-vertex. W.l.o.g. assume that d(w) = 3. Since |L\SCφ(N2(uv))| ≥
2∆(G)− 2k + α+ 2 ≥ 3, we can extend φ to G by coloring uv.

2.2. Discharging method

In this section, we apply the discharging method to a planar graph G and com-
plete the proof by a contradiction. Since G is a planar graph, we have

∑

v∈V (G)

(

3

2
d (v)− 5

)

+
∑

f∈F (G)

(d (f)− 5) = −10.

We define the initial charge function ch(x) of x ∈ V (G) ∪ F (G). Let ch(v) =
3
2d(v) − 5 if v ∈ V (G) and ch(f) = d(f) − 5 if f ∈ F (G). Note that any
discharging procedure preserves the total charge of G. If we can define suitable
discharging rules to change the initial charge function ch(x) to the final charge
function ch′(x) on V (G) ∪ F (G) such that ch′(x) ≥ 0 for all x ∈ V (G) ∪ F (G),
then 0 ≤

∑

x∈V (G)∪F (G) ch
′(x) =

∑

x∈V (G)∪F (G) ch(x) = −10, a contradiction.

For v ∈ V (G) and f ∈ F (G), we define the discharging rules as follows.

R(1) Every face gives 2 to each incident 1-vertex.

R(2) Every k-face (k ≥ 6) which is incident with a bad 5-vertex, gives k−2ι−5
k−2ι to

each incident 2+-vertex, where ι denoted the number of 1-vertices incident with
the k-face.

R(3) Every 4+-vertex gives 1 to each adjacent 2-vertex. In particular, if a 6+-
face contains a weak 2-path, then the bad 5-vertex in the 6+-face gives 5

6 to each
adjacent 2-vertex which is in the weak 2-path.

R(4) Every 4+-vertex gives 1
4 to each adjacent 3-vertex.

R(5) Every 5+-vertex gives 3
2 to each adjacent 1-vertex.

Let f ∈ F (G) be a k-face. We have k ≥ 5 by the condition on the girth.
Note that if f has ι incident 1-vertices, then k ≥ 5 + 2ι. Since ch(f) = d(f)− 5,
if k = 5 + 2ι, then ch′(f) ≥ k − 5 − 2ι = 0. If k ≥ 6 + 2ι, then ch′(f) ≥
k − 5− 2ι− k−5−2ι

k−2ι × (k − 2ι) ≥ 0 by R(1) and R(2).

We next check the final charge of the vertex v ∈ V (G).
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Suppose v is a 1-vertex. By Lemma 9.1, v is adjacent to a 5+-vertex. Thus v
receives 2 from its incident face by R(1) and 3

2 from its adjacent vertex by R(5).
Hence, ch′(v) ≥ ch(v) + 2 + 3

2 = 0.

Suppose v is a 2-vertex. Then v is adjacent to two 4+-vertices by Lemma
9.2. Thus v receives 1 from each adjacent vertex by R(3). Hence, ch′(v) ≥
ch(v) + 1 × 2 = 0. In particular, if v is in a weak 2-path which is contained in
a 6+-face, then v must be adjacent to a ∆(G)-vertex by Lemma 9.6. Thus, v
receives 5

6 from the bad 5-vertex, at least 1
6 from the 6+-face and 1 from the other

neighbor of v by R(2) and R(3). Hence, ch′(v) ≥ ch(v) + 5
6 + 1

6 + 1 = 0.

Suppose v is a 3-vertex. Then v is adjacent to at least two 4+-vertices by
Lemma 9.3. Thus v receives 1

4 from each adjacent 4+-vertex by R(4). Hence,
ch′(v) ≥ ch(v) + 1

4 × 2 = 0.

Suppose v is a 4-vertex. Then v is adjacent to at most one 2-vertex by Lemma
9.4, and if v is adjacent to a 2-vertex, then v has no other 3−-neighbor. So v gives
1 to its adjacent 2-vertex by R(3). Hence, ch′(v) ≥ ch(v) − 1 = 0. Otherwise,
v has no 2-neighbor, and v gives 1

4 to each adjacent 3-vertex by R(4). Hence,
ch′(v) ≥ ch(v)− 1

4 × 4 = 0.

Suppose v is a 5-vertex. Then v is adjacent to at most one 1-vertex by Lemma
9.8. So we consider the following two cases.

(a) Assume v is adjacent to a 1-vertex. Then v has no other 3−-neighbor by
Lemma 9.8. Thus v gives 3

2 to its adjacent 1-vertex by R(5). Hence, ch′(v) ≥
ch(v)− 3

2 > 0.

(b) Assume v is not adjacent to a 1-vertex. Then v is adjacent to at most three
2-vertices by Lemma 9.5. If the number of 2-neighbors of v is at most one, v gives
1 to each adjacent 2-vertex and 1

4 to each adjacent 3-vertex by R(3) and R(4).
Hence, ch′(v) ≥ ch(v)−max{1+ 1

4 × 4, 5× 1
4} > 0. If the number of 2-neighbors

of v is two, then v is adjacent to at most one 3-neighbor by Lemma 9.7. Thus v
gives 1 to each adjacent 2-vertex and 1

4 to its adjacent 3-vertex by R(3) and R(4).
Hence, ch′(v) ≥ ch(v) − 1 × 2 − 1

4 > 0. If v is a bad 5-vertex, then v is incident
with at least one 6+-face which contains a weak 2-path and not adjacent to any
other 3−-neighbor by Lemma 9.5–9.7. So v gives 5

6 to each adjacent 2-vertex
which is in the weak 2-path and 1 to the third 2-neighbor and receives at least 1

6
from incident 6+-face by R(2) and R(3). Hence, ch′(v) ≥ ch(v)− 5

6×2−1+ 1
6 = 0.

Suppose v is a 6+-vertex. We consider the following two cases.

(a) Assume v is not adjacent to a 1-vertex. Then v is adjacent to at most
k−2 2-vertices by Lemma 9.9. If the number of 2-neighbors of v is at most k−3,
v gives 1 to each adjacent 2-vertex and 1

4 to its adjacent 3-vertex by R(3) and
R(4). Hence, ch′(v) ≥ ch(v)−1×(k−3)− 1

4×3 > 0. If the number of 2-neighbors
of v is exactly k− 2, then v has no other 3-neighbor by Lemma 9.9. Thus v gives
1 to each adjacent 2-vertex by R(3). Hence, ch′(v) ≥ ch(v)− 1× (k − 2) ≥ 0.

(b) Assume v is adjacent to α 1-vertices with α ≥ 1. And we have α ≤ k− 4
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by Lemma 9.8 and v has no other 3−-neighbor while v is exactly adjacent to
k − 4 1-vertices. Thus v gives 3

2 to each adjacent 1-vertex by R(5). Hence,
ch′(v) ≥ ch(v) − 3

2 × (k − 4) > 0. So we suppose that α ≤ k − 5. If the number
of 2-neighbors of v is at most k− 4−α, then v gives 3

2 to each adjacent 1-vertex,
1 to each adjacent 2-vertex and 1

4 to its adjacent 3-vertex by R(3)–R(5). Thus

ch′(v) ≥ ch(v) − 3
2 × α − 1 × (k − 4 − α) − 1

4 × 4 = (k−α)
2 − 2 > 0. So the the

number of 2-neighbors of v is at least k − 3 − α. And v has exactly k − 3 − α

2-neighbors because v has no k−1−α 2-neighbors by Lemma 9.9 and no k−2−α

2-neighbors also by Lemma 9.9 and α ≥ 1. Thus v gives 3
2 to each adjacent 1-

vertex and 1 to each adjacent 2-vertex by R(3), R(5) and Lemma 9.10. Hence,

ch′(v) ≥ ch(v)− 3
2α− (k − 3− α) = (k−α)

2 − 2 > 0.

Therefore, we have 0 ≤
∑

x∈V (G)∪F (G) ch
′(x) =

∑

x∈V (G)∪F (G) ch(x) < 0.
This contradiction completes the proof of Theorem 7.

3. Proof of Theorem 8

The proof of Theorem 8 in this section is just similar to the one in Section 2. We
include it for completeness. Let G be a counterexample with |E(G)| as small as
possible and L = {1, 2, . . . , 19}. By the minimality of G we can assume that it is
connected and that it has χ′

s(G) ≥ 20.

3.1. Structure of minimal counterexample

The minimal counterexample G in this section also has the structure properties
mentioned in Lemma 9.1–9.4 and Lemma 9.7–9.8. We omit the proofs here for
simplicity. Now we only show the structure which is different from the ones in
Section 2.1 in the following lemmas.

Lemma 10. For a minimal counterexample G, each of the following holds:

1. G does not contain a 2-neighbor adjacent to a bad 5-vertex and a 4−-vertex.

2. G does not contain a 2-vertex adjacent to two bad 5-vertices.

3. G does not contain a 2-vertex adjacent to a bad 5-vertex and a 52-vertex
which is adjacent to a 3-vertex.

4. G does not contain a bad 5-vertex adjacent to another 4−-vertex.

Proof. 1. Suppose G contains a 2-neighbor u adjacent to a bad 5-vertex v and a
4−-vertex. Since |L\SCφ(N2(uv))| ≥ 19− (5 + 5+ 2+ 2+ 4) ≥ 1, we can extend
φ to G by coloring uv.

2. Suppose G contains a 2-vertex u adjacent to two bad 5-vertices v and
w. W.l.o.g. assume that N(u) = {v, w}, N(v) = {u, v1, v2, v3, v4}, N(w) = {u,
w1, w2, w3, w4}, N(v1) = {v, v11, v

2
1, v

3
1, v

4
1}, N(v2) = {v, v12, v

2
2, v

3
2, v

4
2}, N(v3) =
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{v, x}, N(v4) = {v, y}, N(x) = {v3, x1, x2, x3, x4}, N(y) = {v4, y1, y2, y3, y4},
N(w3) = {w, z}, N(w4) = {w, t}, N(z) = {w3, z1, z2, z3, z4}, N(t) = {w4, t1, t2, t3,

t4} (see Figure 2). If there exists a color α ∈ L\SCφ(N2(uv)), we color edge
uv with it such that we get a strong edge-coloring in G. Then we can extend
the coloring φ to a strong 19-edge-coloring of G, a contradiction. Otherwise,
|L\SCφ(N2(uv))| = 0. W.l.o.g. we assume that φ(uw) = 1, φ(ww1) = 2,
φ(ww2) = 5, φ(ww3) = 3, φ(ww4) = 4, φ(vv1) = 6, φ(vv2) = 9, φ(vv3) = 7,
φ(vv4) = 8, φ(v3x) = 10, φ(v4y) = 11, φ(v1v

1
1) = 12, φ(v1v

2
1) = 13, φ(v1v

3
1) = 14,

φ(v1v
4
1) = 15, φ(v2v

1
2) = 16, φ(v2v

2
2) = 17, φ(v2v

3
2) = 18, φ(v2v

4
2) = 19. In

this case we may try to recolor ww3. If we cannot, then w.l.o.g. φ(w3z) = 6,
φ(w4t) = 7, φ(zz1) = 8, φ(zz2) = 9, φ(zz3) = 10, φ(zz4) = 11, φ(w1w

1
1) = 12,

φ(w1w
2
1) = 13, φ(w1w

3
1) = 14, φ(w1w

4
1) = 15, φ(w2w

1
2) = 16, φ(w2w

2
2) = 17,

φ(w2w
3
2) = 18, φ(w2w

4
2) = 19, so we try to recolor ww4. If we cannot, then

w.l.o.g. φ(tt1) = 8, φ(tt2) = 9, φ(tt3) = 10, φ(tt4) = 11. We continue to try
to recolor vv3 and vv4. If the recoloring is possible in one of the edges, then we
will have a color free for uv. Otherwise, w.l.o.g. we obtain φ(xx1) = φ(yy1) = 2,
φ(xx2) = φ(yy2) = 3, φ(xx3) = φ(yy3) = 4, φ(xx4) = φ(yy4) = 5. Now we recolor
vv4 and ww3 with 1, uw with 3 and uv with 8. Thus we can extend the coloring
φ to a strong 19-edge-coloring of G, a contradiction.
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Figure 2. The configuration of Lemma 10.2.

3. Suppose G contains a 2-vertex u adjacent to a bad 5-vertex v and a 52-
vertex w which is adjacent to a 3−-vertex. W.l.o.g. assume that N(u) = {v, w},
N(v) = {u, v1, v2, v3, v4}, N(w) = {u,w1, w2, w3, w4}, N(v1) = {v, v11, v

2
1, v

3
1, v

4
1},

N(v2) = {v, v12, v
2
2, v

3
2, v

4
2}, N(v3) = {v, x}, N(v4) = {v, y}, N(x) = {v3, x1, x2, x3,

x4}, N(y) = {v4, y1, y2, y3, y4}, N(w3) = {w,w1
3, w

2
3}, N(w4) = {w, t}, N(t) =

{w4, t1, t2, t3, t4} (see Figure 3). If there exists a color α ∈ L\SCφ(N2(uv)), we
color edge uv with it such that we get a strong edge-coloring in G. Then we can



854 W.-Y. Song and L.-Y. Miao

extend the coloring φ to a strong 19-edge-coloring of G, a contradiction. Other-
wise, |L\SCφ(N2(uv))| = 0. W.l.o.g. we assume that φ(uw) = 1, φ(ww1) = 2,
φ(ww2) = 5, φ(ww3) = 3, φ(ww4) = 4, φ(vv1) = 6, φ(vv2) = 9, φ(vv3) = 7,
φ(vv4) = 8, φ(v3x) = 10, φ(v4y) = 11, φ(v1v

1
1) = 12, φ(v1v

2
1) = 13, φ(v1v

3
1) = 14,

φ(v1v
4
1) = 15, φ(v2v

1
2) = 16, φ(v2v

2
2) = 17, φ(v2v

3
2) = 18, φ(v2v

4
2) = 19. In

this case we may try to recolor ww4. If we cannot, then w.l.o.g. φ(w3w
1
3) = 6,

φ(w3w
2
2) = 7, φ(w4t) = 8 φ(tt1) = 9, φ(tt2) = 10, φ(tt3) = 11, φ(tt4) = 12.

φ(w1w
1
1) = 13, φ(w1w

2
1) = 14, φ(w1w

3
1) = 15, φ(w1w

4
1) = 16, φ(w2w

1
2) = 17,

φ(w2w
2
2) = 18, φ(w2w

3
2) = 19. We continue to try to recolor vv3 and vv4. If

the recoloring is possible in one of the edges, then we will have a color free for
uv. Otherwise, w.l.o.g. we obtain φ(xx1) = φ(yy1) = 2, φ(xx2) = φ(yy2) = 3,
φ(xx3) = φ(yy3) = 4, φ(xx4) = φ(yy4) = 5. Now we recolor vv4 and ww4 with
1, uw with 4 and uv with 8. This is possible since the color of w2w

4
2 is not 1

or 4. Thus we can extend the coloring φ to a strong 19-edge-coloring of G, a
contradiction.
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Figure 3. The configuration of Lemma 10.3.

4. Suppose G contains a bad 5-vertex u adjacent to a 4−-vertex w. W.l.o.g.
assume d(w) = 4 and v is one 2-neighbor of the bad 5-vertex. Since |L\SCφ

(N2(uv))| ≥ 19− (5+4+2+2+5) ≥ 1. We can extend φ to G by coloring uv.

3.2. Discharging method

Now we apply the discharging method to a planar graph G and complete the
proof by a contradiction. Since G is a planar graph, we have

∑

v∈V (G)

(

3

2
d (v)− 5

)

+
∑

f∈F (G)

(d (f)− 5) = −10.
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We define the initial charge function ch(x) of x ∈ V (G) ∪ F (G). Let ch(v) =
3
2d(v) − 5 if v ∈ V (G) and ch(f) = d(f) − 5 if f ∈ F (G). Note that any
discharging procedure preserves the total charge of G. If we can define suitable
discharging rules to change the initial charge function ch(x) to the final charge
function ch′(x) on V (G) ∪ F (G) such that ch′(x) ≥ 0 for all x ∈ V (G) ∪ F (G),
then 0 ≤

∑

x∈V (G)∪F (G) ch
′(x) =

∑

x∈V (G)∪F (G) ch(x) = −10, a contradiction.

For v ∈ V (G) and f ∈ F (G), we define the discharging rules as follows.

R(1) Every face gives 2 to each incident 1-vertex.

R(2) Every 4-vertex gives 1 to its adjacent 2-vertex.

R(3) Every 4-vertex gives 1
4 to each adjacent 3-vertex.

R(4) Every good 5-vertex gives:

R(4.1) 3
2 to each adjacent 1-vertex.

R(4.2) 7
6 to each adjacent 2-vertex if this 2-vertex is adjacent to a bad 5-vertex,

otherwise 1 to each adjacent 2-vertex.

R(4.3) 1
4 to each adjacent 3-vertex.

R(5) Every bad 5-vertex gives 5
6 to each adjacent 2-vertex.

Let f ∈ F (G) be a k-face. We have k ≥ 5 by the condition on the girth.
Note that if f has ι incident 1-vertices, then k ≥ 5 + 2ι. Since ch(f) = d(f)− 5,
ch′(f) ≥ k − 5− 2ι ≥ 0 by R(1).

We next check the final charge of the vertex v ∈ V (G).

Suppose v is a 1-vertex. Then v is adjacent to a 5-vertex by Lemma 9.1 and
Lemma 9.8. Thus v receives 2 from its incident face and 3

2 from its adjacent
5-vertex by R(1) and R(4.1). Hence, ch′(v) ≥ ch(v) + 2 + 3

2 = 0.

Suppose v is a 2-vertex. Then v is adjacent to two 4+-vertices by Lemma 9.2.
If v is adjacent to at most one 5-vertex, then v receives 1 from its each neighbor
by R(2) and R(4.2). Hence, ch′(v) ≥ ch(v) + 1× 2 = 0. Otherwise, v is adjacent
to two 5-vertices. And v is not adjacent to two bad 5-vertices by Lemma 10.2.
Then v receives 7

6 from its good 5-neighbor and 5
6 from its bad 5-neighbor by

R(4.2) and R(5). Hence, ch′(v) ≥ ch(v) + 5
6 + 7

6 = 0.

Suppose v is a 3-vertex. Then v is adjacent to at least two 4+-vertices by
Lemma 9.3. So v receives 1

4 from each neighbor by R(3) and R(4.3) and Lemma
10.4. Hence, ch′(v) ≥ ch(v) + 1

4 × 2 = 0.

Suppose v is a 4-vertex. Then v is adjacent to at most one 2-vertex and
v has no other 3−-neighbor while v is adjacent to a 2-vertex by Lemma 9.4.
Thus v gives 1 to its adjacent 2-vertex by R(2). Hence, ch′(v) ≥ ch(v) − 1 = 0.
If v has no 2-neighbor, v gives 1

4 to each adjacent 3-vertex by R(3). Hence,
ch′(v) ≥ ch(v)− 1

4 × 4 = 0.
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Suppose v is a 5-vertex. If v is a bad 5-vertex, then v has no other 4−-
neighbor by Lemma 10.4. Thus v gives 5

6 to each adjacent 2-vertex by R(5).
Hence, ch′(v) ≥ ch(v) − 5

6 × 3 = 0. Otherwise, we may assume v is a good
5-vertex. So v is adjacent to at most two 2-vertices. If v is adjacent to exactly
two 2-vertices, v is adjacent to at most one another 3−-vertex by Lemma 9.7. In
particular, if one of the two 2-neighbors of v is adjacent to a bad 5-vertex, then
v has no other adjacent 3−-vertex by Lemma 10.3. So v gives 7

6 to each adjacent
2-vertex by R(4.2). Hence, ch′(v) ≥ ch(v) − 7

6 × 2 > 0. Otherwise, v gives 1
to each adjacent 2-vertex and 1

4 to its adjacent 3-vertex by R(4.2) and R(4.3).
Hence, ch′(v) ≥ ch(v) − 1 × 2 − 1

4 > 0. If the number of 2-neighbors of v is at
most one, then ch′(v) ≥ ch(v)−max{7

6 + 1
4 × 4, 14 × 5} > 0 by R(4).

Therefore, we have 0 ≤
∑

x∈V (G)∪F (G) ch
′(x) =

∑

x∈V (G)∪F (G) ch(x) < 0.
This contradiction completes the proof of Theorem 8.

4. Discussion

As mentioned in introduction, we summarize all the results from Theorem 3 to
Theorem 7 and show in the following table (see Table 1).

Girth ∆ ≥ 7 ∆ = 6 ∆ = 5 ∆ = 4

No girth restriction 4∆ 4∆+ 4 4∆ + 4 4∆ + 4
g ≥ 4 4∆ 4∆ 4∆ 4∆+ 4
g ≥ 5 4∆− 2 4∆− 2 4∆− 1 4∆
g ≥ 6 3∆ + 1 3∆ + 1 3∆ + 1 3∆ + 1

Table 1. Known upper bounds on the strong chromatic index of planar graphs mentioned
in this paper.

Faudree et al. [6] presented a construction of planar graphs of girth 4 which
satisfies χ′

s(G) ≤ 4∆(G)− 4. Thus, the bounds we have shown in this paper are
not tight. However, we could easily obtain the following corollary.

Corollary 11. Let G be a planar graph with girth g = 5 and ∆ ∈ {5, 6}. Then

χ′

s(G) ≤ 3∆(G) + 4.

In [10], Hudák et al. proposed the following conjecture.

Conjecture 12. There exists a constant C such that for every planar graph G

of girth k (where k ≥ 5) χ′

s(G) ≤
⌈

2k(∆(G)−1)
k−1

⌉

+ C.

Combined with the above conjecture and Theorem 5, we propose the follow-
ing natural questions which we could not find an answer.
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Question 1. Let G be a planar graph with girth g = 5 and ∆ ∈ {5, 6}. Is it
true that χ′

s(G) ≤ 3∆(G) + 1?

Question 2. Let G be a planar graph with girth g = 5 and ∆ ≥ 7. Is it true
that χ′

s(G) ≤ 3∆(G) + 4?
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