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Abstract

For an r-regular graph G, let ¢ : E(G) — [k] = {1,2,...,k}, k > 3,
be an edge coloring of GG, where every vertex of GG is incident with at least
one edge of each color. For a vertex v of G, the multiset-color ¢, (v) of
v is defined as the ordered k-tuple (a1,as,...,ax) or ajas---ag, where a;
(1 <4 < k) is the number of edges in G colored ¢ that are incident with v.
The edge coloring ¢ is called k-kaleidoscopic if ¢, (1) # ¢ (v) for every two
distinct vertices v and v of G. A regular graph G is called a k-kaleidoscope
if G has a k-kaleidoscopic coloring. It is shown that for each integer k£ > 3,
the complete graph Ky 3 is a k-kaleidoscope and the complete graph K, is
a 3-kaleidoscope for each integer n > 6. The largest order of an r-regular
3-kaleidoscope is (7;1)_ It is shown that for each integer » > 5 such that

r # 3 (mod 4), there exists an r-regular 3-kaleidoscope of order (Tgl).
Keywords: edge coloring, vertex coloring, kaleidoscopic coloring, kaleido-

scope.
2010 Mathematics Subject Classification: 05C15, 05C75.

1. INTRODUCTION

A well-known observation in graph theory concerning the degrees of the vertices
of a graph is that every nontrivial graph contains at least two vertices having the
same degree. Indeed, it is known that for every integer n > 2, there are exactly
two graphs of order n having exactly two vertices of the same degree and these two
graphs are complements of each other. Consequently, in any decomposition of the
complete graph K, of order n into two graphs, necessarily into a graph G and its
complement G, there are at least two vertices u and v such that degg u = degg v


http://dx.doi.org/10.7151/dmgt.1950

712 G. CHARTRAND, S. ENGLISH AND P. ZHANG

(and so degmu = degzv as well). In particular, for every decomposition of a
complete graph K, into two graphs G; and G2 (where then Go = @1) such that
each vertex of K, is incident with at least one edge in each of G; and G, there is
associated with each vertex v of K,, an ordered pair (a, b) of positive integers with
a = degg, v and b = degg, v. Consequently, for each such decomposition of K,
there are at least two vertices with the same ordered pair. In fact, this is not only
true of decompositions of the complete graph into two graphs but decompositions
of every regular graph into two graphs. Indeed, for a given regular graph G, there
is a question of whether there exists a decomposition of G into k > 3 graphs
G1,Ga,...,G such that (1) each vertex of G is incident with at least one edge
of every graph G; and (2) for every two vertices u and v of G, degg, u # degg, v
for some i. By assigning the color ¢ (1 <1i < k) to each edge of G;, we are led to
the following graph coloring concept.

For a positive integer k, let [k] = {1,2,...,k} denote the set of positive
integers that are at most k. For an r-regular graph G, let ¢ : E(G) — [k], k > 3,
be an edge coloring of GG, where every vertex of GG is incident with at least one edge
of each color. Thus, r > k. For a vertex v of G, the set-color cs(v) of v is defined
as the set of colors of the edges incident with v. Thus, ¢s(v) = [k] for every vertex
v of G. That is, each such edge coloring of GG induces a set-reqular vertex coloring
of G (see [5, 370-376]). The multiset-color ¢, (v) of v is defined as the ordered
k-tuple (a1, a2, ...,a) or ajas - - - ax, where a; (1 <1i < k) is the number of edges
in G colored ¢ that are incident with v. Hence, each a; is a positive integer and
Z,’f:l a; = r. Such an edge coloring c is called a k-kaleidoscopic coloring of G if
cm(u) # em(v) for every two distinct vertices u and v of G. That is, each such
edge coloring of G induces a multiset-irreqular vertex coloring of G (see [5, 376—
379]). An edge coloring of G is a kaleidoscopic coloring if it is a k-kaleidoscopic
coloring for some integer k > 3. Thus, a kaleidoscopic coloring is both set-reqular
and multiset-irregular. A regular graph G is called a k-kaleidoscope if G has a
k-kaleidoscopic coloring. Figure 1 shows a 6-regular 3-kaleidoscope G of order 8
together with a 3-kaleidoscopic coloring of G, where the multiset-color of a vertex
v is indicated inside the vertex v.

In 1880 Tait [7] thought of an edge coloring approach to solve the Four Color
Problem. He proved that the edges of a bridgeless 3-regular planar graph G can be
colored with three colors so that every two adjacent edges are colored differently
if and only if the regions of G' can be colored with four colors so that every two
adjacent regions are colored differently. Although Tait’s approach never led to a
solution of the Four Color Problem, he was able to prove that such a 3-coloring
of the edges of GG induces an appropriate 4-coloring of the regions of GG. Tait’s
theorem can be considered as the beginning of a class of problems in which some
type of coloring in a graph gives rise to another type of coloring in the graph
possessing a property of interest. In recent years, a variety of edge colorings have
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been introduced which induce, in a number of ways, vertex colorings possessing
desirable properties (see [1, 2, 3, 4, 6], for example). We refer to the book [5] for
graph theory notation and terminology not described in this paper.

Figure 1. A 6-regular 3-kaleidoscope G of order 8.

Kaleidoscopic colorings can be used to model certain situations, one of which
we now describe. Suppose that a hard-line network of n computers is to be
constructed. Each of these computers requires k different types of connections.
There are r locations on the back of each computer at which ports can be placed.
Each computer needs to have at least one connection of each type and, for security
reasons, no two computers can have more than one connection between them.
In order to maximize the number of fail-safe connections, every port is to be
used. Furthermore, it is advantageous for a computer technician to be able to
distinguish the computers based only on the number of types of connections they
have. For which values of n, k and r is such a situation possible?

2. COMPLETE KALEIDOSCOPES

We begin with some observations. Let G be an r-regular k-kaleidoscope of order n.
Then k£ < r < n. First, it is impossible that r = k, for otherwise, any edge coloring
c of G in which every vertex of G is incident with at least one edge of each color
results in ¢, (v) being the k-tuple in which each term is 1. If » = k41, then there
are at most k distinct k-tuples, each of which has 2 as one term and 1 for all
other terms. In this case, n < k, which is impossible. Therefore, r > k+ 2. Since
the number of r-element multisets M whose elements belong to a k-element set

S is (::,16), we have the following bounds involving &, r and n.

Proposition 2.1. If G is an r-regular k-kaleidoscope of order n, then

r—1 r—1
2 < < = .
- _7~<n_(r_k> (k_1>
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Proof. Let c be a k-kaleidoscopic coloring of G. Since we have already observed
that » > k + 2, it remains to show that n < (::}6) The number of r-element
multisets whose elements belong to the k-element set [k] such that each multiset

contains at least one element i for each i (1 < i < k) is ((T_ﬁ)j@k_l) = (7’:]};) =

(,:j) Hence, n < (Zj) n

As Proposition 2.1 indicates, for a given integer k > 3, the smallest possible
value of r for an r-regular k-kaleidoscope is r = k + 2 and the smallest possible
order n of such a graph is n = r+ 1. Obviously, the graph in question is the com-
plete graph Ky 3. We show for each & > 3 that K3 is, in fact, a k-kaleidoscope.

Theorem 2.2. For each integer k > 3, the complete graph Ky is a k-kaleido-
scope.

Proof. We consider two cases, according to whether k is odd or k is even.

Case 1. k is odd. Then k = 2¢ + 1 for some positive integer £. Thus, k+ 3 =
2¢ + 4. It is known that Kop44 can be decomposed into ¢ + 1 Hamiltonian cycles
Hi,Hs,...,Hy1q and a 1-factor F'. For each ¢ with 1 <14 </, let there be given
a proper coloring H; with the two colors 2¢ — 1 and 2¢. Furthermore, we assign
the color 2¢ + 1 to each edge of F'. Currently, each vertex of Koy is incident
with exactly one edge of each of the colors 1,2,...,2¢ + 1 = k and incident with
exactly two edges in Hy41 that have not yet been assigned any color.

Let Hpp1 = C = (v1,v2,...,U2044, V2045 = v1). For 1 <i < /{4 2, assign the
color ¢ to the two edges of C incident with ve;. This completes the edge coloring
¢ of Koy and results in cs(v;) = [k] for 1 < ¢ < k4 3 and ¢, (v;) equaling the
multiset M;, where

e M contains two elements 1, two elements ¢ + 2 and one element of [k]—
{1,¢+2};

e Mo; 11 contains two elements ¢, two elements ¢ + 1 and exactly one element
of [k] —{i,i+ 1} for 1 <i</l+1;

e My; contains three elements i and one element of [k] — {i} for 1 <i < ¢+ 2.

Thus, c is set-regular and multiset-irregular and so K}, 3 is a k-kaleidoscope when
k is odd.

Case 2. k is even. Then k = 2¢+ 2 for some positive integer £. Thus, k+3 =
204 5. Let G = Kopy5, let v € V(G) and let G' = G — v = Kopy4. As in Case 1,
the graph G’ can be decomposed into ¢ + 1 Hamiltonian cycles Hy, Ha, ..., Hpiq
and a 1-factor F. Color the edges of Hy, Hs,...,Hy and F' as in Case 1. At this
point, each vertex of G’ is incident with exactly one edge of each of the colors
1,2,...,204+1 (and no edges colored 2¢ + 2) and incident with two edges in Hyq
that have not yet been assigned any color.
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Let Hpy1 = C = (v1,v2,...,U9044,v1). For 1 <i < {4 2, assign the color 4
to the edge vo;_1v9; and the color 2¢ + 2 to all other edges of C. This completes
the edge coloring ¢’ of G’ = Ky/y4 and results in ¢(v;) = [k] for 1 < j <20+ 4
and ¢, (v;) = Mj for 1 < j <20+ 4 where My; ; = Mj, contains two elements i
and one element of [k] — {i}. We now consider the graph G. The edge coloring
c: E(G) — [k] is defined by

d(e) if e e E(G'),

1 if e=wvg;_q1forl<i</l+2,
0+2+i ife=ovvyforl <i<l-—1,

2042 if e = wwy; for each i € {¢,{+ 1,0+ 2}.

cle) =

This completes the edge coloring ¢ of G and results in ¢s(z) = [k] for all x € V(G),
cm(v;) = M; and ¢, (v) = M, where

e Ms; 4 is the only multiset containing three elements i for 1 <1i < £+ 2,

e My, is the only multiset containing exactly two elements ¢ for 1 < ¢ < £+ 2
and

e M is the only multiset containing exactly one element i for each ¢ with
1<i<i+2.

This is illustrated in Figure 2 for k = 10, where ¢}, (v;) = M] is indicated inside
the cycle C and ¢, (v;) = M; is indicated outside the cycle C' for each ¢ with
1 <4 < 12. Thus, c is set-regular and multiset-irregular and so G = Kj13 is a
k-kaleidoscope when k is even. [

Not only is K3 a k-kaleidoscope but it is believed that every larger complete
graph is also a k-kaleidoscope.

Conjecture 2.3. For integers n and k with n > k+ 3 > 6, the complete graph
K, is a k-kaleidoscope.

In the case where k = 3, Conjecture 2.3 suggests that K, is a 3-kaleidoscope
when n > 6. We verify this special case of the conjecture. First, we make
an observation. It is sometimes useful to look at kaleidoscopic colorings from
another point of view. For a connected graph G of order n > 3 and a k-tuple
factorization F = {F1, Fy, ..., Fi.} of G, where each F; has no isolated vertices for
1 <4 < k, we associate the ordered k-tuple ajas - - - ax with a vertex v of G where
degp, v =a; for 1 <i < k. Thus Zle degp, v = degg v. If distinct vertices have
distinct k-tuples, then we can assign the color ¢ (1 < i < k) to each edge of F;
and obtain a k-kaleidoscopic coloring of G for which the multiset-color ¢, (v) of
v is aiasg - - - ap. In this case, the factorization F is called irregular. Conversely,
every k-kaleidoscopic coloring of G gives rise to an irregular k-tuple factorization
F ={F1, Fy,...,F} of G where the edges of F; are those edges of G colored 17
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Figure 2. Illustrating a 10-kaleidoscopic coloring of K3 in the proof of Theorem 2.2.

and each F; has no isolated vertices for 1 < ¢ < k. Hence, an edge coloring of a
graph G is a kaleidoscopic coloring if and only if the corresponding factorization
of G is irregular. Therefore, a graph G has a k-kaleidoscopic coloring if and only
if G has an irregular k-tuple factorization.

Theorem 2.4. For each integer n > 6, the complete graph K, is a 3-kaleidoscope.

Proof. By Theorem 2.2, Kg is a 3-kaleidoscope. Figure 3 shows that K7 and Kg
are also 3-kaleidoscopes. Hence, we may assume that n > 9. Let V(K,,) = {v1,
v2,...,vn} and let F' be the unique connected graph of order n containing exactly
two vertices with equal degree. Without loss of generality, we may assume that

1 i if 1<i<|%],
EPET ot i nr1<i<n

Thus, V|2 and U|z |4 are the only two vertices of F' having the same degree L%J .

To define an irregular factorization {Fi, Fs, F3} of K,,, we consider two cases,
according to whether n is even or n is odd.
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Figure 3. A 3-kaleidoscopic coloring for each of K7 and K.

Case 1. n is even. Then n = 2p for some integer p > 5. Let
M = {vavn_1,v3Vn-2, .. ., VpUpy1} = {ViVn—it1:2 <01 < p}
be a matching of size p — 1 in F. Let
Fy = F — {v3vy, v40p, vpvp } — M,

F, =F+ UpUy, — {v1V3, V104, V1Vp, V3V },
Fy = K, — E(Fy) — E(Fy).

Hence, E(F3) = {v1v3,v104, V10p, v304} U {v30n, 040} U M. In Fy, degp v1 =
degp, v2 = degp, v3 = 1 and degp, v,—2 = degp, v, = n — 4, while the remaining
vertices have distinct degrees in Fj. Since

degp, v1 =n — 5, degp, v2a = n — 3, degp, v3 =n — 6,

degp, vp—2 = 1 and degp, v, = 2,
it follows that {F1, F», F3} is an irregular factorization of K,,. By assigning color 4
to each edge in F; for i = 1,2, 3, we obtain a 3-kaleidoscopic coloring ¢ for K.
Figure 4 illustrates such a factorization for Ko, where the bold edges in F' and

in F play a special role in the creation of Fy, F,, F3. With this coloring ¢, the
multiset-colors of the vertices of K¢ are

em(v1) = 153, e (ve) = 171, ¢ (v3) = 144, ¢ (vy4) = 234, ¢ (v5) = 342,
em(ve) = 441, e (v7) = 531, e (vg) = 621, ¢ (vg) = T11, ¢ (v19) = 612.
Case 2. n is odd. Then n = 2p + 1 for some integer p > 4. Let

M = {vovp_1,v3Un_2, ..., 0pUps2} = {VVp_it1 : 2 < i < p}
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Figure 4. An irregular factorization F = {Fy, Fy, F3} of Kyp.

be a matching of size p — 1 in F. Let

o =F- {U3vn7v4vnavp+lvn} - M,
Fy = F + vp 10, — {0103, 0104, V1Vp 41, U2Up41, V304 },
F3; = K, — E(Fl) — E(FQ)

Hence, E(F3) ={v1v3, V104, V1Vp11, V2Vp41, V304 } U{v30p, V40, }UM. Observe that

(1) degp, v1 = degp, v2 = degp, v3 = 1,

(2) if n =9 (or p = 4), then degp, v4 = 2 and degp, vs = 3; while if n > 11 (or
p > 5), then degp, v, = degp, vpr1 =p —1,

(3) degp, vy—2 = degp, v, =n — 4 and

(4) the remaining vertices have distinct degrees in F.

Since

degp, v1 =n — 5, degp, vo = n — 4, degp, v3 =n — 6,

degp, vp = p, degp, vpy1 =p — 1, degp, vy—2 = 1 and degp, v, = 2,

it follows that {F1, F», F3} is an irregular factorization of K,,. By assigning color 7
to each edge in F; for i = 1, 2,3, we obtain a 3-kaleidoscopic coloring ¢ for K.
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Figure 5 illustrates such a factorization for Ki;, where the bold edges in F' and
in F' play a special role in the creation of Fi, F5, F3. With this coloring ¢, the
multiset-colors of the vertices of Ky are

em(v1) = 163, cm(v2) = 172, ¢ (v3) = 154, ¢y (v4) = 244,
cm(vs) = 451 e (ve) = 442, ¢ (v7) = 541, ¢ (vg) = 631,
em(vg) = 721, ¢ (v10) = 811, ¢ (v11) = T12.

V11 v1 V11 V1
] @
v
v17 \.UQ V10 2
v9 K v3 V9 v3
8 V4 v8 O v4
v vs 70 O Us
7
Ve V6
Fy Iy I3

Figure 5. An irregular factorization {Fy, F», F5} of K.

Therefore, the complete graph K, is a 3-kaleidoscope for each integer n > 6. =

3. 3-KALEIDOSCOPES OF MAXIMUM ORDER

According to Proposition 2.1, the largest possible order of an r-regular 3-kaleido-
scope is (’;1). If » > 7 is an odd integer such that » = 3 (mod 4), then (’El) is

Tgl) exist for such odd integers r. On

odd and so no r-regular graphs of order (
the other hand, there exists an r-regular 3-kaleidoscope of order (Tgl) for every

integer r > 5 when r # 3 (mod 4).
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Theorem 3.1. For each integer r > 5 such that r # 3 (mod 4), there exists an
r-reqular 3-kaleidoscope of order (Tgl).

Proof. Let r > 5 be an integer with  #Z 3 (mod 4); so either r is even or r = 1
(mod 4). We consider these two cases.

Case 1. r > 6 s even. We begin by constructing an r-regular graph G,
of order (7"51). For1 <i<r—2, let V; be aset of r — 1 — i vertices and let

V(G,) = U=} V;. Thus, the order of G, is

r—2 r—2 r—2 r—1
Ve =Y m=r-i-n=3i=(","),

i=1 i=1 i=1
For 1 <i<r—2letV;={v;;:1<j<r—1-—1i}. The vertices of G, are
placed in a triangular array such that for each ¢ with 1 <1¢ < r—2, the vertices of
each set V; are placed in a row where consecutive vertices are equally spaced two
units apart, such that Vi, Vs, ..., V,._o are placed from top to bottom with each
successive row of vertices one unit below the preceding. For r = 6, the vertices
of G, = G¢ are thus drawn as indicated in Figure 6.

v1,1 V1,2 V1,3 V1,4
i le) o o o
V2,1 V2,2 V2,3
Vs o o o
V3,1 v3,2
V3 o o
V4,1
Vy e}

Figure 6. The location of the vertices of the graph Gg.

For 1 <4 <r — 2, we now construct a subgraph H; of G, with vertex set V;.
The graph H,_o is the trivial graph; while for 1 < i < r — 3, the graph H; is the
unique connected graph of order r — 1 — 4 containing exactly two vertices of the
same degree such that

degp, viy < degy, vig < -+ < degy, Vir—1--
For1 <i<r—2,let
Ui = {vi1,vi2, -+ Vi [(r—2—i)/2] }>
Wi = {Ui,f(r—Q—i)/Q]7Ui,f(r—2—i)/2'\+1>--->Ui,r717i}-

Then H;[U;] is empty and H;[W;] is complete. We now add additional edges to
obtain a subgraph of G, which we denote by F5. Since r > 6 is even, it follows
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that r = 2p + 2 for some integer p > 2. Let A be an independent set of “slanted
edges”, defined by

Ao { {Ul,p+2i—1 V2 p4+2i—2 - 1 < 1 < (p + 1)/2} ifp is Odd,

{vip2i vopi2i-1:1 <i <p/2} if p is even.

For each integer p and 1 < j < |p/2], let E; be an independent set of “vertical
edges”, defined by

E; = {viopro—i—2j Vita2pr1—i—2j 1 1 < i < 2p+2—4j}.

We now add the edges in A and the edges in E; (1 < j < |p/2]) to those in the
subgraphs H; (1 <i < r—2) where all edges are straight line segments. All edges
in each subgraph H; are therefore “horizontal edges” for 1 < ¢ < r — 3. This
completes the construction of F». The graph F5 is illustrated for both » = 6 and
r = 8 in Figure 7, where each slanted edge is indicated by a bold line and each
vertical edge is indicated by a dashed line. Observe that degp, v;; = j for all 4
and j.

Figure 7. The subgraph F5 for r = 6 and r = 8.

The subgraph F} is obtained by rotating the subgraph F5 clockwise through
an angle of 27 /3 radians; while the subgraph F3 is obtained by rotating the
subgraph Fy counter-clockwise through an angle of 27/3 radians (or by rotating
the subgraph F» clockwise through an angle of 47/3 radians). This completes the
construction of G,.. This is illustrated in Figure 8 for Gg, where each edge in F} is
indicated by a thin solid line, each edge in F5 is indicated by a dashed line and each
edge in Fj is indicated by a bold line. In Figure 8, the label ¢5k inside the vertex
v;,j indicates that degp, v;; = i, degp, v;; = j and degp, v;j =k =6 — (i + 7).

We now verify that in the rotation of F5 into F1 and Fj, every pair of adjacent
vertices in F5 is rotated into a pair of nonadjacent vertices of F, and, consequently,
G, is decomposed into Fi, F5 and F3. Let each vertex v; ; of G, be denoted by
v; .k as well, where k = 7 — (4 j). Then the vertex set of G, can be decomposed
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V4,1

Figure 8. The subgraphs Fy, F» and F3 in Gg.

into [(r —1)/3] triangular sets X, (1 < ¢ < [(r —1)/3]) of vertices. For each
such ¢, the set X, consists of all those vertices v; ;; such that ¢ = min{z, j, k}.
In Figure 9, the sets X1, Xo, X3 are shown for G1g; while X; and X5 are shown
for GGg, where the vertices in X are indicated by solid vertices, the vertices
in Xy are indicated by open vertices and the vertices in X3 are indicated by
double-circled vertices. The order of Gg, for example, is (g) =36 = Zlei =
142+3+4+5+6+ 7+ 8. The number of vertices in X7 is 8+ 7+ 6 =21, in

Xoisb+4+3=12andin X3is2+1+0=3.

v1,1,8 v1,8,1 V1,1,6 v1,6,1
e © o o o o o o ° e o o o o
® O o o O o ° ° (e} O o °
e O ©O© © O e e O o e
V(Go) : e 0 ©@ o o V(Gs) : ° O o
® o) le) ) U5,1,2 @ ® U521
e O ° °
v7,1,2 ® ® V72 6,1,1
°
v8,1,1

Figure 9. The triangular sets X, for G19 and Gg.
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The edges of G, that join two vertices of Xy (1 < /¢ < |(r —1)/3]) are those
in Hy (together with the edge v1,_21v2,-31 for ¢ = 1), which is illustrated in
Figure 10. Thus, during the rotations of F» into F} and F3, every two adjacent
vertices of Fy are rotated into nonadjacent vertices in F} or F3. All other edges
of F5 join two different triangular sets.

in Xo

in X,

Figure 10. Edges in the two triangular sets X; and X3 for Gg.

The “vertical edges” in Fy are rotated into edges of slopes —3 and 3; while
the “slanted edges” are rotated into edges of slopes —1 and 0. This is illustrated
in Figure 11. For example, the vertical edge vy 5v3 4 in F5 is rotated into the edge
v4,105,2 in Fy (of slope —3) and the edge vq 3v2,1 in F3 (of slope 3). Furthermore,
the slanted edge v1 6v25 in F5 is rotated into the edge vs 1v6,1 in Fy (of slope —1)
and the edge vy 1v1 2 in F3 (of slope 0). Hence, each edge of G, belongs to exactly
one of Fl, FQ, F3.

By the construction of Fi, F» and F3, it follows that

i if t=1,
degFt Vijk = _] if t= 2,
ko if t=3.

Furthermore, if degp, v;jr = degp, vap . (and so j = b), then degp v r #
degp, vapc (that is, i # a). Hence, {F1, I, F3} is an irregular factorization of G.
Assigning the color ¢t (1 <t < 3) to each edge of F};, we obtain a 3-kaleidoscopic
coloring of G, for which the multiset-color ¢, (v; ;) = ijk for all triples 1, j, k.
Therefore, G, is an r-regular 3-kaleidoscope.

Case 2. 7> 5 and r =1 (mod 4). Since Kg is a 5-regular 3-kaleidoscope by
Theorem 2.4, we may assume that » > 9. We now construct an r-regular graph



724 G. CHARTRAND, S. ENGLISH AND P. ZHANG
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V2,1 ! O V2,5

| |
| |
| |
V3,1 Ome— V3 2 ; V3,3 : (@] V3,4
! |
! |
V4,1 ? ! va,3 F

Figure 11. Vertical and slanted edges in Gs.

G, of order (Tgl). Although the proof of this case is similar to the one employed
in Case 1, we provide a discussion here for completion. For 1 < i < r — 2, let
Vi be a set of r — 1 — 4 vertices and let V(G,) = (J/_{ V;. Thus, the order of
G, is (T_l). The vertices of G, are placed in a triangular array such that for

2
each 7 with 1 < ¢ < r — 2, the vertices of each set V; are placed in a row where
consecutive vertices are equally spaced two units apart, such that Vi, Vs, ..., V.o

are placed from top to bottom with each successive row of vertices one unit below
the preceding.

As proceed in Case 1, for 1 < i < r—2, we now construct a subgraph H; of G,
with vertex set V;. The graph H,_» is the trivial graph; while for 1 <i <r — 3,
the graph H; is the unique connected graph of order » — 1 — ¢ containing exactly
two vertices of the same degree such that

degy, vi1 < degy, vio < -+ < degy, Vip—1--

We now add additional edges to obtain a subgraph of G,, which we denote by
F,. Since 7 > 9 and r = 1 (mod 4), it follows that » = 4p + 1 for some integer
p > 2. Let A be an independent set of “slanted edges”, defined by

A = {v12p+2i+1 V22p+2i 1 1 <P <p—1}

For each integer p and 1 < j < p, let E; be an independent set of “vertical edges”,
defined by

E; = {viapr1—i—2j Vig24p—i—2j 1 1 <1 <4dp+1—4j}.

We now add the edges in A and the edges in E; (1 < j < p) to those in the
subgraphs H; (1 < i < r — 2) where all edges are straight line segments. All
edges in each subgraph H; are therefore “horizontal edges” for 1 < i < r — 3.
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This completes the construction of F,. The graph F; is illustrated for r = 9 in
Figure 12, where each slanted edge is indicated by a bold line and each vertical
edge is indicated by a dashed line. Observe that degp, v; ; = j for all i and j.

e ——

° : em—— /

Figure 12. The subgraph F5 for r = 9.

The subgraph F} is obtained by rotating the subgraph F5 clockwise through
an angle of 27 /3 radians; while the subgraph F3 is obtained by rotating the
subgraph F, counter-clockwise through an angle of 27/3 radians (or by rotating
the subgraph F» clockwise through an angle of 47 /3 radians). This completes
the construction of G,..

Next, we show that in the rotation of Fh into F; and F3, every pair of
adjacent vertices in F5 is rotated into a pair of nonadjacent vertices of Fy and,
consequently, G is decomposed into Fy, Fy and F3. Let each vertex v; j of G, be
denoted by v; j . as well, where k = 7 — (i 4 j). Then the vertex set of G, can be
decomposed into |r/3] triangular sets X, (1 < ¢ < |r/3]) of vertices. For each
such /, the set X, consists of all those vertices v; ;; such that ¢ = min{4, j, k}.
The order of Gy, for example, is (g) =28 = 21‘7:17; =14+2+3+4+5+6+7.
The number of vertices in X7 is 7+6+5=18,in Xois44+3+2 =9 and in X3
is 1.

The edges of G, that join two vertices of Xy (1 < ¢ < [r/3]) are those in Hy
(together with the edge vy ,—21v2,—31 for £ = 1), which is illustrated in Figure
13 for X;. Thus, during the rotations of Fy into F} and F3, every two adjacent
vertices of Fy are rotated into nonadjacent vertices in F} or F3. All other edges
of F; join two different triangular sets.
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Figure 13. Edges in the triangular set X; for Gy.

The “vertical edges” in Fy are rotated into edges of slopes —3 and 3; while
the “slanted edges” are rotated into edges of slopes —1 and 0. This is illustrated
in Figure 14. For example, the vertical edge vy gv3 5 in F5 is rotated into the edge
vs,106,2 in Fy (of slope —3) and the edge v1 3v2,1 in F3 (of slope 3). Furthermore,
the slanted edge v1 7v2,6 in F5 is rotated into the edge ve 1v7,1 in Fy (of slope —1)
and the edge vy jv1 2 in F3 (of slope 0). Hence, each edge of G, belongs to exactly
one of Fi, Fo, F3. An argument similar to the one in Case 1 shows that G, is an
r-regular 3-kaleidoscope. [
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