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Abstract

A graph G on n vertices is said to be (k,m)-pancyclic if every set of k
vertices in G is contained in a cycle of length r for each r ∈ {m,m+1, . . . , n}.
This property, which generalizes the notion of a vertex pancyclic graph, was
defined by Faudree, Gould, Jacobson, and Lesniak in 2004. The notion of
(k,m)-pancyclicity provides one way to measure the prevalence of cycles in
a graph. We consider pairs of subgraphs that, when forbidden, guarantee
hamiltonicity for 2-connected graphs on n ≥ 10 vertices. There are exactly
ten such pairs. For each integer k ≥ 1 and each of eight such subgraph
pairs {R,S}, we determine the smallest value m such that any 2-connected
{R,S}-free graph on n ≥ 10 vertices is guaranteed to be (k,m)-pancyclic.
Examples are provided that show the given values are best possible. Each
such example we provide represents an infinite family of graphs.
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1. Introduction

Let G = (V,E) denote a simple graph of order n ≥ 3. We say G is pancyclic if
G contains a cycle of each possible length, from 3 up to n. The notion of vertex
pancyclicity was defined by Bondy in [2]. The graph G is vertex pancyclic if
every vertex of G is contained in a cycle of each possible length. We consider
the property (k,m)-pancyclicity, defined in 2004 by Faudree et al. [8], which is a
generalization of vertex pancyclicity.

Definition (Faudree, Gould, Jacobson and Lesniak [8]). Given integers k and m
with 0 ≤ k ≤ m ≤ n, a graph G of order n is said to be (k,m)-pancyclic if for
any k-set S ⊆ V and any integer r with m ≤ r ≤ n, there exists a cycle of length
r in G that contains S.
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Whenever m > n or k > n, we define (k,m)-pancyclicity to be the same as
hamiltonicity. Note that (k, n)-pancyclicity is hamiltonicity, (0, 3)-pancyclicity
represents pancyclicity, and (1, 3)-pancyclicity is vertex pancyclicity. Note also
that whenever a graph is (k,m)-pancyclic for some k ≥ 1, then it must also be
(k − 1,m)-pancyclic and (k,m+ 1)-pancyclic.

Relationships between hamiltonian-type properties and bounds on the quan-
tity σ2(G) = min{d(x) + d(y) : xy /∈ E(G)} have been studied extensively. Ore
proved in [9] that if σ2(G) ≥ n, then G is hamiltonian. In 1971, Bondy showed
in [3] that the condition σ2(G) ≥ n+ 1 guarantees G is pancyclic. Then in 2004,
Faudree et al. showed that this bound ensures much more than pancyclicity.
Their result uses the notion of (k,m)-pancyclicity, and provides insight into the
prevalence of cycles in such a graph.

Theorem A (Faudree, Gould, Jacobson and Lesniak [8]). Let G be a graph of

order n ≥ 3. If σ2(G) ≥ n+1, then G is (k, 2k)-pancyclic for each integer k ≥ 2.

Another technique that has been employed to ensure hamiltonian-type prop-
erties is the forbidding of a subgraph or subgraphs. Given a graph H, we say G
is H-free if G does not contain H as an induced subgraph. In this context, H is
called a forbidden subgraph. If F is a family of graphs, we say G is F-free if G is
F -free for each F ∈ F.

In 2015, it was shown in [5] that if only claw-free graphs are considered, we
may lower the σ2(G) bound to n in Theorem A and simultaneously guarantee
(k, k + 3)-pancyclicity as opposed to (k, 2k)-pancyclicity.

Theorem B [5]. Let G be a claw-free graph of order n ≥ 3. If σ2(G) ≥ n, then
G is (k, k + 3)-pancyclic for each integer k ≥ 1.

1.1. Pairs of forbidden subgraphs

A number of hamiltonian-type results have been obtained involving forbidden
families of subgraphs. The claw is often a member of these forbidden families, as
well as the graphs Z1, Z2, Z3, B,N , and W , which are pictured in Figure 1.

A characterization of all pairs of subgraphs that, when forbidden, imply
hamiltonicity in 2-connected graphs of order n ≥ 10 was achieved in [7] by Faudree
and Gould. Their result extended an earlier characterization by Bedrossian [1],
which used graphs of small order to eliminate the pair {K1,3, Z3}.

Theorem C (Faudree and Gould [7]). Let R and S be connected graphs (R,S 6=
P3) and let G be a 2-connected graph of order n ≥ 10. Then G is {R,S}-free
implies G is hamiltonian if, and only if, without loss of generality R = K1,3 and

S is one of the graphs C3, P4, P5, P6, Z1, Z2, Z3, B,N , or W .

They went on to characterize the forbidden pairs that guarantee pancyclicity
in 2-connected graphs of order n ≥ 10.
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  the claw Z1 Z2 Z3K1,3,
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N, W,

Figure 1. Some graphs that are commonly forbidden.

Theorem D (Faudree and Gould [7]). Let R and S be connected graphs (R,S 6=
P3) and let G (G 6= Cn) be a 2-connected graph of order n ≥ 10. Then G is

{R,S}-free implies G is pancyclic if, and only if, without loss of generality R =
K1,3 and S is one of the graphs P4, P5, P6, Z1, or Z2.

In this paper, we investigate pairs of forbidden subgraphs that guarantee
(k,m)-pancyclicity for integers k ≤ m in 2-connected graphs. Since a (k,m)-
pancyclic graph must be hamiltonian, we need only consider the forbidden pairs
from Theorem C. For each integer k ≥ 1 and each pair {K1,3, S} where S ∈
{C3, P4, Z1, Z2, Z3, B,N,W}, we determine the smallest integer m such that any
2-connected {K1,3, S}-free graph is guaranteed to be (k,m)-pancyclic. A sum-
mary of results is provided at the end of the paper (see Theorem 7). We also give
examples that show the provided values are best possible. Each such example
represents an infinite family of graphs.

1.2. Notation

For terms and notation not defined here, we refer the reader to [4]. For a vertex
v ∈ V , we denote by d(v) the degree of v, and by N(v) the neighborhood of v.
Given a subgraph H of G and a vertex v ∈ V (G), we let NH(v) = N(v)∩ V (H),
and dH(v) = |NH(v)|. For S ⊆ V , let N(S) = {v ∈ V − S : vh ∈ E(G) for some
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h ∈ S}. The independence number of G will be denoted by α(G). For an integer
i ≥ 1 we let Pi denote a path on i vertices, and for an integer j ≥ 3 we let Cj

denote a j-cycle. Given distinct vertices u, v ∈ V (G), a (u, v)-path is any path
from u to v in G. Given a vertex u and a subgraph H such that u /∈ V (H), a
(u,H)-path is any path in G from u to a vertex v ∈ V (H).

Given a path P , we denote by (P ) the set of all internal vertices of P , that
is V (P ) minus the end vertices of P . Given a cycle C and a vertex v ∈ V (C),
we impose an orientation on C and let v− (v+) denote the vertex that appears
directly before (after) v on C. We let xCy denote the path from x to y along
C in the direction of the imposed orientation, while xC−y will denote the path
from x to y in the opposite direction along C. For a set of vertices S ⊆ V , we let
〈S〉G denote the subgraph induced by S in G. If the context is clear, we denote
this induced subgraph by 〈S〉.

2. Forbidden Pairs That Guarantee Cycle Extendability

A non-hamiltonian cycle C is extendable if there exists a cycle C ′ in G such that
V (C ′) = V (C) ∪ {v} for some v ∈ V (G)− V (C). We say G is cycle extendable if
every non-hamiltonian cycle in G is extendable. We will first examine the pairs
of forbidden subgraphs that guarantee cycle extendability in 2-connected graphs.
These pairs were completely characterized in [7].

Theorem E (Faudree and Gould [7]). Let R and S be connected graphs (R,S 6=
P3) and let G be a 2-connected graph of order n ≥ 10. Then G is {R,S}-free
implies G is cycle extendable if, and only if, without loss of generality R = K1,3

and S is one of the graphs C3, P4, Z1, or Z2.

If S = C3 then we must have G = Cn, and so G is (k, n)-pancyclic for all
k in this case. If S = Z1, it is easy to show that either G = Cn or G is a
complete graph minus at most a matching (see [7]). Thus we make the following
observation.

Theorem 1. Let G 6= Cn be a 2-connected {K1,3, Z1}-free graph of order n ≥ 5.
Then each of the following hold:

(i) G is (1, 3)-pancyclic;

(ii) G is (k, 4)-pancyclic for k ∈ {2, 3};

(iii) G is (k, k)-pancyclic for each k ≥ 4.

These results are best possible.

Proof. Since G is isomorphic to Kn minus at most a matching, it is easy to see
that for all k ≥ 4, each k-set lies on a k-cycle. Since G is cycle extendable, part
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(iii) follows. Parts (i) and (ii) follow similarly. The graph H = Kn − uv shows
that part (ii) is best possible, since any 2-set or 3-set of vertices containing {u, v}
in H is not contained in a triangle.

2.1. The pair {K1,3, P4}

Concerning the pair {K1,3, P4}, we show the following.

Theorem 2. Let G be a 2-connected {K1,3, P4}-free graph with n ≥ 10 vertices.

Then the following hold:

(i) G is (1, 4)-pancyclic;

(ii) G is (k, k + 2)-pancyclic for each integer k ≥ 2.

These results are best possible.

We will use two lemmas from [6] in the proof.

Lemma 3 (Egawa, Fujisawa, Fujita and Ota [6]). Suppose G is a connected non-

complete P4-free graph, and let S be a minimum cutset of G. Then for every two

vertices u and v with u ∈ S and v ∈ V − S, we have uv ∈ E.

The following lemma follows immediately from Lemma 3.

Lemma 4 (Egawa, Fujisawa, Fujita and Ota [6]). Let r ≥ 2, and suppose G is a

connected P4-free graph. Then G is K1,r-free if and only if α(G) ≤ r − 1.

We now prove Theorem 2.

Proof of Theorem 2. Let a ∈ V , and pick a shortest cycle C that contains
a. Such a cycle must exist since G is hamiltonian. Now G is P4-free, so the
length of C must be 3 or 4. Since G is cycle extendable, we have shown that G
is (1, 4)-pancyclic.

To prove part (ii) we first show that, given two vertices u, v ∈ V , there exists
a 4-cycle in G that contains u and v. Since G is 2-connected, we may pick two
internally vertex-disjoint (u, v)-paths P and Q so that (a) |(P )| is as small as
possible, and (b) subject to condition (a), |(Q)| is as small as possible. Then
|(P )| ≤ |(Q)| ≤ 2 because G is P4-free. For the same reason, if |(Q)| = 2, then
|(P )| = 0 and we have a 4-cycle containing u and v. Otherwise if |(P )| ≤ |(Q)| ≤
1, then there exists a 3-cycle or 4-cycle that contains u and v, and as G is cycle
extendable by Theorem E, there must be a 4-cycle containing u and v.

Now let S ⊂ V and |S| = k ≥ 2. We have shown there exists a 4-cycle
that contains at least two vertices from S. We wish to obtain a cycle of length
t ≥ 4 that contains exactly two vertices which are not in S. Now G is cycle
extendable, so if the 4-cycle contains fewer than two vertices that are not in S,
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we may perform cycle extensions until we obtain a cycle C = v1v2 · · · vtv1 with
4 ≤ t ≤ k + 2 that contains exactly two vertices which are not in S.

If t = k + 2 we are done, since G is cycle extendable. So assume t < k + 2,
and let w ∈ S − V (C). We show we may obtain a cycle Ĉ of length t + 1 that
contains w and S∩V (C). Note that such a cycle can contain at most two vertices
which are not in S. Note also that, since G is K1,3-free, we have α(G) ≤ 2 by
Lemma 4.

First, suppose dC(w) ≥ 2. In the following, indices that are not in the set
{1, 2, . . . , t} are taken modulo t. Let vi, vj ∈ NC(w) be such that i < j and
N(w) ∩ {vi+1, vi+2, . . . , vj−1} = ∅. Now wvj+1 /∈ E, or else we have the desired
cycle Ĉ. Hence vi+1vj+1 ∈ E, or else {w, vi+1, vj+1} is an independent set,
contradicting the fact that α(G) ≤ 2. But now viC

−vj+1vi+1Cvjwvi is the desired
cycle Ĉ. Thus we assume dC(w) ≤ 1.

Suppose dC(w) = 1. Without loss of generality, assume wv1 ∈ E. Now
wvj /∈ E for all 2 ≤ j ≤ t, so {v2, v3, . . . , vt} induces a clique since α(G) ≤ 2.
Since G is 2-connected, by Lemma 3 there exists a vertex z 6= v1 such that zw ∈ E
and zvj ∈ E for all j ∈ {2, 3, . . . , t}. There also exists a vertex vm ∈ V (C)−{v1}
that is not in S. If m 6= t, then v1wzvm+1Cvtvm−1C

−v1 is the desired cycle Ĉ.
If m = t, then v1wzvt−1C

−v1 is the cycle Ĉ.

Lastly, suppose dC(w) = 0. Since α(G) ≤ 2, V (C) induces a clique. As
G is 2-connected, by Lemma 3 there exist distinct vertices z1 and z2 such that
wz1, wz2 ∈ E and z1x, z2x ∈ E for all x ∈ V (C). Let V (C) − S = {a, b}. As
〈V (C)〉 is a clique, we may modify the indices of C if necessary so that a = v1
and b = v2. Now v3Cvtz1wz2v3 is the desired cycle Ĉ.

We may repeat this argument as necessary to obtain a cycle containing S
whose length is k, k+1, or k+2. Since G is cycle extendable, this completes the
proof of part (ii).

To see that part (ii) is best possible, let n ≥ k + 2 and construct the graph
H1 in Figure 2 by removing k − 1 edges incident to some vertex v in a copy of
Kn. Now H1 is 2-connected and {K1,3, P4}-free, but the k-set S = V (H1)−N(v)
is not contained in a cycle of length k + 1.

To see that part (i) is best possible, construct a graph G as follows. Let
H = Kn−3, and add vertices x, y, and a such that NG(x) = NG(y) = V (H)∪{a}
and NG(a) = {x, y}. Then G is 2-connected and {K1,3, P4}-free, but the vertex
a is not contained in a triangle.

2.2. The pair {K1,3, Z2}

We now consider {K1,3, Z2}, the only remaining pair from Theorem E that guar-
antees cycle extendability in 2-connected graphs. We prove the following.
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Figure 2. The k-set V (H1)−N(v) is not contained in a (k + 1)-cycle.

Theorem 5. Let G 6= Cn be a 2-connected {K1,3, Z2}-free graph with n ≥ 10
vertices. Then the following hold:

(i) G is (1, 4)-pancyclic;

(ii) G is (k, 3k)-pancyclic for each integer k ≥ 2.

These results are best possible.

Proof. We first prove part (i). Let w ∈ V . If w is contained in a triangle, then
w is contained in a 4-cycle since G is cycle extendable. Thus we assume that w
is not contained in a triangle. Since G is 2-connected and G 6= Cn, there exists a
vertex of degree at least 3. This implies G contains a triangle, since G is claw-free.

As G is 2-connected, we let s be the smallest integer such that there exists
a triangle H and a pair of (w,H)-paths (P,Q) which are vertex-disjoint (except
for w) with P having length s. Now pick a triangle T so that there exists a pair
of (w, T )-paths (PT , QT ) that are vertex-disjoint (except for w), PT has length s,
and QT has minimum possible length.

Let T = axya, and without loss of generality let PT = xx1x2 · · ·xs and
QT = yy1y2 · · · yt, where xs = w = yt. Note that PT and QT are each induced
paths and s ≤ t.

Suppose s ≥ 2. Now yx1 /∈ E, for otherwise w is connected to the triangle
xyx1x by QT and a path x1x2 · · ·xs that is shorter than PT , violating the min-
imality of s. Similarly, ax1 /∈ E. Also ax2 /∈ E by the minimality of s. Now we
must have yx2 ∈ E or else {y, a, x, x1, x2} induces a Z2. But then x2 6= w by
the minimality of t ≥ 2. Therefore s ≥ 3, and avoiding a claw centered at x2,
we must have yx3 ∈ E. This is a contradiction, since the triangle yx2x3y now
violates the minimality of s.
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Hence we must have s = 1. We may assume t ≥ 3, for otherwise w is
contained in a C3 or C4. First note that xy1 /∈ E, or else the minimality of
t is violated via the triangle xyy1x. Also ayi /∈ E for all 2 ≤ i ≤ t, by the
minimality of t. Furthermore ay1 /∈ E, for otherwise {a, y, y1, y2, y3} induces a
Z2. But now xy2 ∈ E since otherwise {x, a, y, y1, y2} induces a Z2. This implies
t = 3, for otherwise {x,w, y2, y} induces a claw centered at x. We now have a
contradiction, since w is contained in a triangle.

Therefore w must be contained in a 4-cycle. Since G is cycle extendable,
we have shown that G is (1, 4)-pancyclic. To see that part (i) is best possible,
construct a graph G as follows. Remove an edge uv from a copy of Kn−1, and
add a new vertex w such that NG(w) = {u, v}. Now G fulfills the assumptions of
Theorem 5, but G is not (1, 3)-pancyclic since w is not contained in a triangle.

Our proof of part (ii) will be by induction on k. We begin with a claim that
will serve as the base case.

Claim. Any set of two vertices is contained in a 6-cycle in G.

Proof. Let w, z ∈ V . We consider two cases.

Case 1. Suppose z is contained in a triangle. If there is a triangle in G that
contains both w and z, then the claim holds as G is cycle extendable. Thus
suppose there is no triangle in G that contains both w and z.

As G is 2-connected, we let s be the smallest integer such that there exists
a triangle H containing z and a pair of (w,H)-paths (P,Q) which are vertex-
disjoint (except for w) with P having length s. Now pick a triangle T containing
z so that there exists a pair of (w, T )-paths (PT , QT ) that are vertex-disjoint
(except for w), PT has length s, and QT has minimum possible length.

We may assume

(1) |(PT )|+ |(QT )| ≥ 3,

since otherwise we have the desired 6-cycle (using the fact that G is cycle ex-
tendable). Let T = axya, and let PT = xx1x2 · · ·xs and QT = yy1y2 · · · yt, where
xs = w = yt. Note that PT and QT are each induced paths and s ≤ t.

For each i with 2 ≤ i ≤ s, we have axi /∈ E, for otherwise the minimality of s
is violated. Similarly ayi /∈ E for all i with 2 ≤ i ≤ t, by the minimality of t. By
inequality (1), we know t ≥ 3. Now ay1 /∈ E or else {a, y, y1, y2, y3} induces a Z2.

Suppose yxi ∈ E for some i ∈ {2, 3, . . . , s}. Note that i < s since yw /∈ E.
Then yxi+1 ∈ E, or else {a, x, y, xi, xi+1} induces a Z2. But by induction, this
implies that yxi+2, yxi+3, . . . , yxs ∈ E, which is a contradiction since yxs /∈ E.
Therefore yxi /∈ E for each i ∈ {2, 3, . . . , s}. We now consider four subcases.

Case 1.1. Let |(PT )| = 0 and z ∈ {x, y}. By our choice of T and the mini-
mality of t, we have xy1 /∈ E. Inequality (1) implies t ≥ 4. Now xy2 /∈ E or else
{x, y, y2, w} induces a claw centered at x. But then {a, x, y, y1, y2} induces a Z2.
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Case 1.2. Suppose |(PT )| = 0 and z /∈ {x, y}. We have z = a, and again
t ≥ 4. Now aw /∈ E or else z and w are contained in the triangle axwa. Note
that xyt−1 ∈ E, for otherwise {a, y, x, w, yt−1} induces a Z2. Also xyt−2 /∈ E
since {x,w, yt−2, y} cannot induce a claw. Avoiding a Z2 induced by the set
{x,w, yt−1, yt−2, yt−3}, we must have xyt−3 ∈ E. But now {x, a, yt−3, w} induces
a claw centered at x.

Case 1.3. Let |(PT )| ≥ 1 and z ∈ {x, y}. First suppose z = x. Note that
ax1 /∈ E, or else the minimality of s is violated by the triangle axx1a. Similarly
yx1 /∈ E. This is a contradiction, since {y, a, x, x1, x2} now induces a Z2.

Therefore we must have z = y. Now yx1 /∈ E, or else the minimality of s
is violated. Thus ax1 ∈ E since otherwise {y, a, x, x1, x2} induces a Z2. Then
w = x2, since {a, x, x1, x2, x3} cannot induce a Z2. Now xyt−1 /∈ E, or else
the paths P = xyt−1w and Q = ax1w violate the minimality of t ≥ 3. Then
x1yt−1 ∈ E or else {a, x, x1, w, yt−1} induces a Z2. But now {yt−1, w, x1, x, y}
induces a Z2.

Case 1.4. Suppose |(PT )| ≥ 1 and z /∈ {x, y}. We have z = a. Now ax1 /∈ E,
since otherwise the minimality of s is violated via the triangle axx1a. Hence yx1 ∈
E, or else {y, a, x, x1, x2} induces a Z2. This implies w = x2, since otherwise
{y, x, x1, x2, x3} induces a Z2. Now xyt−1 /∈ E, or else the paths P = xyt−1w
and Q = yx1w violate the minimality of t ≥ 3. Thus x1yt−1 ∈ E, since {y, x, x1,
w, yt−1} cannot induce a Z2. This is a contradiction, since now {yt−1, w, x1, x, a}
induces a Z2. Therefore the claim holds for Case 1.

Case 2. Suppose neither z nor w is contained in a triangle. By part (i), we
know that z is contained in a 4-cycle. Also, since G is 2-connected and claw-free,
we must have d(w) = d(z) = 2. Now let s be the smallest integer such that there
exists a 4-cycleH containing z and a pair of (w,H)-paths (P,Q) which are vertex-
disjoint (except for w) with P having length s. Now pick a 4-cycle C containing
z so that there exists a pair of (w,C)-paths (PC , QC) that are vertex-disjoint
(except for w), PC has length s, and QC has minimum possible length.

We may assume

(2) |(PC)|+ |(QC)| ≥ 2

since otherwise we clearly have the desired 6-cycle. Since z is not contained in
a triangle, C must be an induced 4-cycle. Let PC = xx1x2 · · ·xs and QC =
yy1y2 · · · yt, where xs = w = yt. Note that PC and QC are induced paths.
By inequality (2), we have t ≥ 2. Since d(z) = 2, we know z /∈ {x, y}. Let
V (C)−{x, y, z} = {a}. For each i with 2 ≤ i ≤ s, we have axi /∈ E, for otherwise
the minimality of s is violated. Similarly ayi /∈ E for all 2 ≤ i ≤ t, by the
minimality of t. We now consider three subcases corresponding to the possible
positions of x and y relative to z on C.
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Case 2.1. Suppose C = zaxyz. Now xy1 ∈ E or else {y, z, x, y1} induces a
claw. Note that xyi /∈ E for all 2 ≤ i ≤ t, since otherwise {x, a, y, yi} induces a
claw. But now w = y2, for otherwise {x, y, y1, y2, y3} induces a Z2. By inequal-
ity (2) and the minimality of s, we must have w = x2. Since w is not contained
in a triangle, we know x1y1 /∈ E. Also ay1 /∈ E, or {y1, y, a, w} induces a claw
centered at y1. Then ax1 ∈ E, for otherwise {x, a, y1, x1} induces a claw centered
at x. But now ax1wy1yza is the desired 6-cycle.

Case 2.2. Suppose C = zayxz. We have yx1 ∈ E, for otherwise {x, z, y, x1}
induces a claw. Since yw /∈ E, we know s ≥ 2. If yxi ∈ E for some i ≥ 2, then
{y, a, x, xi} induces a claw. Hence yxi /∈ E for all 2 ≤ i ≤ s. But now w = x2,
for otherwise {y, x, x1, x2, x3} induces a Z2.

Since w is not contained in a triangle, we have x1yt−1 /∈ E. Also xyt−1 /∈ E,
or {x, z, x1, yt−1} induces a claw centered at x. But then we must have w = y2,
for otherwise {y, x, x1, w, yt−1} induces a Z2. Then ay1 ∈ E, since otherwise
{y, a, x, y1} induces a claw centered at y. But now ay1wx1xza is the desired
6-cycle.

Case 2.3. Suppose C = zxayz. We know s ≥ 2 since {x, z, a, w} cannot
induce a claw. Now ax1 ∈ E, or else {x, z, a, x1} induces a claw. But then
w = x2, for otherwise {a, x, x1, x2, x3} induces a Z2. This implies t ≥ 3, or else
yy1wx1xzy is the desired cycle of length six.

Now x1yt−1 /∈ E since w is not contained in a triangle. Also xyt−1 /∈ E, since
otherwise the pair of paths Q = xyt−1w and P = ax1w violate the minimality of
t. But now {a, x, x1, w, yt−1} induces a Z2. This contradiction completes Case 2,
and the proof of the claim.

We now proceed with the inductive step of the proof for part (ii) of Theo-
rem 5. Given an integer k ≥ 2 with 3k ≤ n, suppose that any set of k vertices is
contained in a cycle of length 3k in G. Let S ⊂ V be a set of k + 1 vertices with
3(k + 1) ≤ n, and let C be a 3k-cycle that contains at least k vertices of S. We
wish to prove there exists a (3k + 3)-cycle containing S. Now if S ⊂ V (C), then
since G is cycle extendable, there exists a cycle of length 3k+ 3 that contains S.
Therefore we assume S − V (C) = {w}.

Let F be the set of pairs of paths in G defined by: {P,Q} ∈ F if and only if P
and Q are (w,C)-paths that are vertex-disjoint (except for w) and |(P )|+ |(Q)|
is minimal among all such pairs of (w,C)-paths. Since G is 2-connected, F is
nonempty. Now pick a pair of paths {P,Q} ∈ F so that P and Q have endpoints
that are as close as possible on C. Let x and y denote the endpoints of P and Q,
respectively, on C. Let P = xx1x2 · · ·xs and Q = yy1y2 · · · yt, where xs = w = yt.
By their definition, P and Q are induced paths. We now consider two cases.

Case 1. Assume x and y occur consecutively on C. Let y = x+. If |(P )| +
|(Q)| ≤ 2, then since G is cycle extendable, we may clearly extend C to obtain a
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cycle of length 3(k + 1) that contains S. Therefore suppose |(P )|+ |(Q)| ≥ 3.

Without loss of generality we may assume that |(P )| ≥ |(Q)|, and hence
|(P )| ≥ 2. For each i with 2 ≤ i ≤ s, we have x−xi, y

+xi /∈ E by the minimality
of |(P )|+ |(Q)|. Now x−x1 /∈ E, or else {x−, x, x1, x2, x3} induces a Z2.

Suppose |(P )| ≥ 3. Further, suppose yx2 ∈ E. Then xy+ ∈ E, since oth-
erwise {y, x, y+, x2} induces a claw. But now yx3 ∈ E, or else {x, y+, y, x2, x3}
induces a Z2. Also yx4 ∈ E, for otherwise {x, y+, y, x3, x4} induces a Z2. This
yields a contradiction since now {y, x, x2, x4} induces a claw centered at y. Thus
yx2 /∈ E.

Now suppose yx1 ∈ E. Then yx3 ∈ E or else the set {y, x, x1, x2, x3} induces
a Z2. But now xy+ ∈ E, since otherwise {y, x, y+, x3} induces a claw centered at
y. This yields a contradiction, since now {x, y+, y, x3, x2} induces a Z2. Hence
yx1 /∈ E. Avoiding a claw centered at x, we then have yx− ∈ E. But this is a
contradiction, since {x−, y, x, x1, x2} now induces a Z2.

Therefore |(P )| = 2. Also |(Q)| ≥ 1 since |(P )|+|(Q)| ≥ 3. Note that w = x3.
First suppose yx1 ∈ E. Then yx2 ∈ E, for otherwise {y, x, x1, x2, w} induces a Z2.
In order to avoid a claw induced by {y, x, y+, x2}, we must have xy+ ∈ E. This
is a contradiction, since now {x, y+, y, x2, w} induces a Z2. Therefore yx1 /∈ E
must hold. Then x−y ∈ E, since otherwise {x, x−, y, x1} induces a claw. We
must also have yx2 ∈ E, for otherwise {x−, y, x, x1, x2} induces a Z2. But now
{x−, x, y, x2, w} induces a Z2. This contradiction completes Case 1.

Case 2. Assume x and y do not occur consecutively on C. Suppose the
length of xCy is less than or equal to the length of yCx.

For each i with 2 ≤ i ≤ s, we have x+xi, x
−xi /∈ E or else the minimality

of |(P )| + |(Q)| is violated. We must have x+x1 /∈ E, for otherwise the pair
{x+x1Pw,Q} ∈ F has endpoints that are closer together on C than x and y.

Suppose |(P )| ≥ 2. Now x−x1 /∈ E or else {x, x−, x1, x2, x3} induces a Z2.
Since G is claw-free, we must have x−x+ ∈ E. But now {x−, x+, x, x1, x2} induces
a Z2. So we must have |(P )| ≤ 1. By symmetry we also have |(Q)| ≤ 1.

Suppose |(P )| = 1. If x−x1 /∈ E, then x−x+ ∈ E in order to avoid a claw,
and then {x−, x+, x, x1, w} induces a Z2. Hence x−x1 ∈ E. If |(Q)| = 1, then by
symmetry y+y1 ∈ E. Therefore in any case, it is clear we may extend C to obtain
a cycle C ′ with vertex set V (C)∪ (P )∪ (Q) that satisfies |V (C ′)−V (C)| ≤ 2 and
|N(w) ∩ V (C ′)| ≥ 2.

Relabel the vertices so that C ′ = u1u2 · · ·umu1, where u1, ui ∈ N(w) for
some i > 1 with N(w) ∩ {u2, u3, . . . , ui−1} = ∅ and i as small as possible. If
u1 and ui occur consecutively on C ′, then u1wu2C

′umu1 is a cycle of length at
most 3(k + 1) that contains S. Thus we assume that u1 and ui do not occur
consecutively on C ′.

Since G is claw-free, we must have umu2, ui−1ui+1 ∈ E. If i = 3, then
u1wu3C

′umu2u1 is a cycle of length at most 3(k + 1) that contains S. If i = 4,
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then u1wu4u3u5C
′umu2u1 is a cycle of length at most 3(k + 1) that contains S.

Hence we assume i ≥ 5.
Now uiu2 /∈ E, since otherwise u1wuiu2C

′ui−1ui+1C
′umu1 is the desired

cycle. Also uium /∈ E by symmetry. Therefore u1ui ∈ E, since {um, u2, u1, w, ui}
cannot induce a Z2. Note that uiu3 /∈ E, or else u1wuiu3C

′ui−1ui+1C
′umu2u1

is the desired cycle. But now u1u3 ∈ E, or else {ui, w, u1, u2, u3} induces a
Z2. We may assume i > 5, for otherwise u1wu5u4u6C

′umu2u3u1 is the desired
cycle. Note that uiu4 /∈ E, or else u1wuiu4C

′ui−1ui+1C
′umu2u3u1 is the desired

cycle. Now we have u1u4 ∈ E, or else {ui, w, u1, u3, u4} induces a Z2. An easy
inductive argument now verifies that u1uj ∈ E for all 2 ≤ j ≤ i − 2. But then
u1wuiui−1ui+1C

′umu2C
′ui−2u1 is the desired cycle.

We have shown that there must exist a cycle of length at most 3(k+1) which
contains S. Since G is cycle extendable, this completes Case 2.

We have thus shown by induction that every set S of k ≥ 2 vertices is
contained in a 3k-cycle whenever 3k ≤ n. Since G is cycle extendable, this
completes the proof of part (ii).
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H2 :

u1

u2

u3

u4

v1

v2

vk

Kn−k

u2k−1

u2k

u2k+1

u2k+2

un−k

Figure 3. The set {v1, v2, . . . , vk} is not contained in a (3k − 1)-cycle.

To see that part (ii) is best possible, construct the graph H2 in Figure 3 as
follows. Given n ≥ 3k, take a copy of Kn−k with vertex set {u1, u2, . . . , un−k}.
Let H2 be the graph obtained by adding k distinct vertices v1, v2, . . . , vk such
that N(vi) = {u2i−1, u2i} for all i with 1 ≤ i ≤ k. Then H2 is 2-connected and
{K1,3, Z2}-free, but the set S = {v1, v2, . . . , vk} is not contained in a cycle of
length 3k − 1.
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3. Four Pairs for Which Hamiltonicity Is Best Possible

Given an integer k ≥ 1, the forbidden pairs in the following theorem do not
guarantee (k,m)-pancyclicity for any integer m < n under the given conditions.

Theorem 6. Let G be a 2-connected K1,3-free graph on n vertices.

(i) If n ≥ 5 and G is M -free for some M ∈ {B,N,W}, then G is (k, n)-
pancyclic for all k ≥ 1.

(ii) If n ≥ 10 and G is Z3-free, then G is (k, n)-pancyclic for all k ≥ 1.

These results are best possible.

Proof. For part (i), we construct a graph H3 (see Figure 4) with |V (H3)| = n ≥
k ≥ 1 as follows. Let r ≥ 1 be an integer. Pick integers l1, l2, . . . , lr ≥ 1 such that
Σr
i=1li ≤ k, and let Ai = Kli for each i with 1 ≤ i ≤ r. Add 2r distinct vertices

x1, y1, x2, y2, . . . , xr, yr such that for each i ∈ {1, 2, . . . , r}, we have xiw, yiw ∈ E
for all w ∈ V (Ai). For each i with 1 ≤ i ≤ r− 1, add a path Qi with |V (Qi)| ≥ 2
such that yiQixi+1 is an induced path. Lastly, add a path Qr with |V (Qr)| ≥ 2
such that yrQrx1 is an induced path. Now H3 is 2-connected and {K1,3,M}-free
for each M ∈ {B,N,W}, but any k-set S ⊆ V (H3) with

⋃r
i=1

V (Ai) ⊆ S is not
contained in a cycle of length n− 1.

...

...

...

...
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.
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. .
.

H3 :

x1y1

A2

A1

A3

Ar

Q1

x2

y2

Q2

x3
y3

xryr

Qr

Figure 4. The set
⋃r

i=1
V (Ai) is not contained in an (n− 1)-cycle.

Regarding part (ii), for some integer t with 0 ≤ t ≤ k−1, construct the graph
H4 in Figure 5 as follows. Let G1 = Kt+2r for some integer r with 4r ≥ k− t, and
let V (G1) = {u1, u2, . . . , ut+2r}. Add a matching M = {x1y2, x3y4, . . . , x2r−1y2r}
such that xiut+i ∈ E for all odd i with 1 ≤ i ≤ 2r−1, and yiut+i ∈ E for all even
i with 2 ≤ i ≤ 2r. Let S ⊆ V (H4) be any k-set satisfying {u1, u2, . . . , ut+1} ⊆ S.
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The graph H4 is 2-connected and {K1,3, Z3}-free, but there is no cycle of length
n− 1 = t+ 4r − 1 that contains S.
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.
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.

.

H4 :

u1

u2

ut

ut+1

ut+2

ut+3

ut+4

ut+2r−1

ut+2r

Kt+2r

x1

y2

x3

y4

x2r−1

y2r

Figure 5. The set {u1, u2, . . . , ut+1} is not contained in an (n− 1)-cycle.

The following theorem summarizes results from this paper.

Theorem 7. Let G be a 2-connected K1,3-free graph of order n ≥ 10, and let

k ≥ 2.

(i) If G 6= Cn is Z1-free, then G is (k, k)-pancyclic for all k ≥ 4.

(ii) If G is P4-free, then G is (k, k + 2)-pancyclic.

(iii) If G 6= Cn is Z2-free, then G is (k, 3k)-pancyclic.

(iv) If G is C3-free, then G is (k, n)-pancyclic.

(v) If G is Z3-free, then G is (k, n)-pancyclic.

(vi) If G is B-free, then G is (k, n)-pancyclic.

(vii) If G is N -free, then G is (k, n)-pancyclic.

(viii) If G is W -free, then G is (k, n)-pancyclic.

These results are best possible under the given conditions.
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