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Abstract

In this paper, we introduce a graph operation, namely one-three join.
We show that the graph G admits a one-three join if and only if either G
is one of the basic graphs (bipartite, complement of bipartite, split graph)
or G admits a constrained homogeneous set or a bipartite-join or a join.
Next, we define MH as the class of all graphs generated from the induced
subgraphs of an odd hole-free graph H that contains an odd anti-hole as an
induced subgraph by using one-three join and co-join recursively and show
that the maximum independent set problem, the maximum clique problem,
the minimum coloring problem, and the minimum clique cover problem can
be solved efficiently for MH .
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graphs.
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1. Introduction

Graph operations are very useful in generating various graph classes and produc-
ing polynomial time algorithms to solve optimization problems on those classes
of graphs [9, 15]. All P4-free graphs (or co-graphs) can be generated from a sin-
gle vertex by using the graph operations join and co-join recursively, and these
operations are used to compute the clique number, independence number, and
chromatic number of P4-free graphs efficiently [15]. Chudnovsky and Seymour
proved that every connected claw-free graph can be obtained from one of the ba-
sic claw-free graphs by simple expansion operations [9]. Chudnovsky et al. [11]
introduced two graph operations, namely gluing operation and substitution op-
eration and proved that the closure of a χ-bounded class under these operations
is χ-bounded.
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A hole is a chordless cycle of length at least five and an anti-hole is the com-
plement of a hole. A hole (an anti-hole) is odd if it contains an odd number of
vertices. The complexity status of the recognition problem, maximum indepen-
dent set problem (MISP), and minimum coloring problem are still open for odd
hole-free graphs [8, 13]. In fact, the complexity status of the MISP is unknown
for hole-free graphs though the recognition problem for hole-free graphs can be
solved in polynomial time [12]. Bienstock [3] proved that it is NP-complete to
test whether a graph contains an odd hole passing through a specific vertex. Con-
forti et al. [14] proved that the recognition of odd hole-free graphs with cliques
of bounded size can be done in polynomial time. The Table 1 summarizes the
complexity results for the MISP in some subclasses of odd hole-free graphs.

Graph Class Complexity Citation

(Hole, Co-chair)-free graphs Polynomial time [5]
(Hole, Dart)-free graphs ” [2]
(Hole, Diamond)-free graphs ” [6]
(Hole, Banner)-free graphs ” [7]
(Odd hole, Co-chair)-free graphs ” [5]
(Odd hole, Dart)-free graphs ” [8]
(Odd hole, Bull)-free graphs ” [8]

Table 1. MISP for some subclasses of odd hole-free graphs.

In this paper, we introduce a graph operation one-three join. In Section 2,
we show that the graph G admits a one-three join if and only if either G is one
of the basic graphs (bipartite, complement of bipartite, split graph) or G admits
a constrained homogeneous set or a bipartite-join or a join, and it follows from
a result of Feder et al. [16] that these graphs can be recognized in polynomial
time. In Section 3, we define MH as the class of all graphs generated from the
induced subgraphs of an odd hole-free graph H that contains an odd anti-hole
as an induced subgraph by using one-three join and co-join recursively and show
that the maximum independent set problem, the maximum clique problem, the
minimum coloring problem, and the minimum clique cover problem can be solved
efficiently for MH .

All graphs considered in this paper are finite, simple and undirected. For
graph terminologies, we refer to [22]. For a graph H, we say that a graph G is
H-free if G does not contain H as an induced subgraph. Let G[U ] denote the
subgraph induced by U ⊆ V (G) in the graph G. The complement Gc of a graph
G = (V,E) is the graph with vertex set V and two vertices are adjacent in Gc

if and only if they are non-adjacent in G. A clique (independent set) is a subset
of vertices of a graph G which are pairwise adjacent (respectively, non-adjacent)
in G. For a vertex v in a graph G, N(v) (A(v)) is the set of all vertices adjacent
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(respectively, non-adjacent) to v in G. Let U,W ⊆ V (G). Define N(U) = {x ∈
V (G) \ U : xu ∈ E(G) for some u ∈ U} and NW (U) = N(U) ∩ W . A graph
G = (V,E) is a split graph if there is a partition V = S ∪ K where S is an
independent set and K is a clique. Let A and B be two disjoint subsets of V (G).
We define the set of edges [A,B] = {{a, b} : a ∈ A and b ∈ B}. Often we
denote an edge {a, b} as ab or ba for convenience. The join G1 + G2 of vertex-
disjoint graphs G1 and G2 is a graph with vertex set V (G1)∪V (G2) and edge set
E(G1) ∪ E(G2) ∪ [V (G1), V (G2)]. The co-join G1 ∪G2 of vertex-disjoint graphs
G1 and G2 is a graph with vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2).

For convenience, we use the following notation: Let A and B be two disjoint
subsets of V (G). We say A⊕ B if ab ∈ E(G) for all a ∈ A and for all b ∈ B. In
addition, A ⊖ B if ab /∈ E(G) for all a ∈ A and for all b ∈ B. In particular, if
A = {x}, then we simply denote {x}⊕B by x⊕B. Similarly, {x}⊖B by x⊖B.

A homogeneous set in a graph G is a set C of vertices of G such that each
vertex in V (G) \ C is adjacent either to all or to none of the vertices of C and
2 ≤ |C| ≤ |V (G)|−1. Next, we define the notion of constrained homogeneous set
and bipartite-join. A graph G admits a constrained homogeneous set if G admits
a vertex partition V (G) = A ∪B ∪ C where A 6= ∅ is a clique or an independent
set, B 6= ∅ is an independent set, and G[C] contains at least one edge such that
C ⊕ A and C ⊖ B in G. A graph G admits a bipartite-join if G admits a vertex
partition V (G) = A1 ∪A2 ∪B1 ∪B2 such that (a) each Ai 6= ∅ is an independent
set in G, (b) G[Bi] contains at least one edge in G for all i ∈ {1, 2}, and (c)
Ai⊕Bi, B1⊕B2, and Ai⊖Bj in G, for i 6= j and i, j ∈ {1, 2}. That is, removal of
the bipartite graph G[A1∪A2] results in the join of two graphs, namely G[B1] and
G[B2]. In Figure 1, the single line across the parts represent complete adjacency
(all possible edges), the dotted line represent complete non-adjacency (no edges),
and the wave implies that there are no restriction on the edges between the parts.
The circle filled with dots represents an independent set.

A1 A2

B1 B2

(a)

A B

C

(b)

Figure 1. (a) Bipartite-join and (b) constrained homogeneous set.

By a result of Feder et al. [16], the graphs that admit a constrained homo-
geneous set (or a bipartite-join) can be recognized in polynomial time. It can be
vertified that the time complexity to recognize (i) a constrained homogeneous set
is O(n6) and (ii) a bipartite-join is O(mn8).
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2. One-Three Join

In this section, we introduce a graph operation one-three join and characterize
the class of graphs that admit a one-three join.

Let H1, H2 be two vertex-disjoint graphs. A one-three join of H1 and H2

is a graph H with V (H) = V (H1) ∪ V (H2) and E(H) = E(H1) ∪ E(H2) ∪ F
where F ⊆ [V (H1), V (H2)] such that for every vertex x ∈ V (Hi) and for every
non-independent set (a set which induces at least one edge) {y1, y2, y3} ⊆ V (Hj),
H[{x, y1, y2, y3}] contains a triangle for i, j ∈ {1, 2}, i 6= j (see Figure 2). A
graph H admits a one-three join if the vertex set of H can be partitioned as
V (H) = V1∪V2 such that H is a one-three join of H[V1] and H[V2], where Vi 6= ∅
for i ∈ {1, 2}. For convenience, let {[a], [b, c, d]} denote the graph induced by
{a, b, c, d} in H such that a ∈ V (H1) and {b, c, d} ⊆ V (H2). Also, let {[a, b, c], [d]}
denote the graph induced by {a, b, c, d} in H such that {a, b, c} ⊆ V (H1) and
d ∈ V (H2).

x1 x2 x3 x4

H1

y1 y2 y3 y4

H2

x1 x2 x3 x4

y1 y2 y3 y4

H

Figure 2. A one-three join H of H1 and H2.

Lemma 1. A graph H admits a one-three join if H is one of the following:

(i) a bipartite graph,

(ii) a complement of a bipartite graph,

(iii) a split graph,

(iv) a join of two graphs,

(v) H admits a constrained homogeneous set or a bipartite-join.

Proof. If H is a bipartite graph with vertex partition V1 and V2 (V1 and V2 are
independent sets), then H is a one-three join of H[V1] and H[V2]. Similarly, if
H is either complement of a bipartite graph or a split graph or a join of two
graphs, then H is a one-three join of the graphs induced by the corresponding
partitions. If H admits a constrained homogeneous set with vertex partition
V (H) = A ∪ B ∪ C satisfying the conditions in the definition of constrained
homogeneous set, then we prove that H is a one-three join of H[A] and H[B∪C].
Since A is either a clique or an independent set in H, every non-independent set
of three vertices in A induces a triangle in H. Hence, for all u ∈ B ∪ C and
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a non-independent set {w1, w2, w3} ⊆ A, {[w1, w2, w3], [u]} contains a triangle
in H.

Claim 1. Every edge in H[B ∪ C] has both end vertices in C.

Proof. Since B ⊖ C in H and B is an independent set, every edge in H[B ∪ C]
has both end vertices in C. �

Consider a vertex x ∈ A and a non-independent set {u1, u2, u3} in H[B ∪C]
with an edge u1u2. By Claim 1, u1, u2 ∈ C. Since A ⊕ C in H, {x, u1, u2} is a
clique in H and {[x], [u1, u2, u3]} contains a triangle in H. Hence H is a one-three
join of H[A] and H[B ∪ C].

If H admits a bipartite-join with vertex partition V (H) = A1 ∪A2 ∪B1 ∪B2

satisfying the conditions in the definition of bipartite-join, then we prove that H
is a one-three join of H[A1 ∪B2] and H[A2 ∪B1].

Claim 2. Every edge in H[Ai ∪Bj ] has both end vertices in Bj for 1 ≤ i, j ≤ 2,
i 6= j.

Proof. Since Ai⊖Bj in H and Ai is an independent set, every edge in H[Ai∪Bj ]
has both end vertices in Bj for 1 ≤ i, j ≤ 2, i 6= j. �

Consider a vertex v ∈ Ai ∪ Bj and a non-independent set {w1, w2, w3} in
H[Aj ∪ Bi] with an edge w1w2 for 1 ≤ i, j ≤ 2, i 6= j. By Claim 2, w1, w2 ∈ Bi.
Since (Ai ∪ Bj) ⊕ Bi in H, {v, w1, w2} is a clique in H. So H[{v, w1, w2, w3}]
contains a triangle in H for 1 ≤ i, j ≤ 2, i 6= j. Hence H is a one-three join of
H[A1 ∪B2] and H[A2 ∪B1].

2.1. Characterization of graphs that admit one-three join

In this section, we prove that a graph H admits a one-three join if and only
if either H is one of the basic graphs (bipartite, complement of bipartite, split
graph) or H admits a constrained homogeneous set or a bipartite-join or a join.
Next, we discuss some observations on H.

Observation 1. If a graph H is a one-three join of H1 and H2 such that no edge

in H has one end vertex in H1 and other in H2 (i.e., E(H)∩[V (H1), V (H2)] = ∅),
then V (Hi) is either an independent set or a clique for all i ∈ {1, 2}.

[Hint: If not, any three vertices {u1, u2, u3} in Hi induces P3 or K2 ∪ K1. For
any v ∈ V (Hj) (i 6= j), applying one-three join on {[u1, u2, u3], [v]} leads to a
contradiction.]

Observation 2. If a graph H is a one-three join of H1 and H2 such that Hi is a

disconnected graph that contains only non-trivial components for some i ∈ {1, 2},
then H is a join of H1 and H2.
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Proof. Follows using one-three join and since for every non-trivial component
Mr of Hi, y ⊕ V (Mr), for every y ∈ V (Hj).

Let H be a one-three join (not a join) of two vertex-disjoint graphs H1 and
H2. SinceH is not a join ofH1 andH2, there exists a vertex v1 ∈ V (H1) such that
AH2

(v1) 6= ∅ where AH2
(v1) = {u ∈ V (H2) : uv1 /∈ E(H)}. Let v2 ∈ AH2

(v1), and
let Ni be the neighbours of vi in Hi for i ∈ {1, 2}. Let Ii and Ci be the set of all
vertices which belong to the trivial and non-trivial components of Hi \ (Ni∪{vi})
for i ∈ {1, 2}, respectively. So V (Hi) = Ni ∪ {vi} ∪ Ii ∪ Ci, i ∈ {1, 2} (see Figure
3). We adhere to the above notations whenever H is a one-three join (not a join)
of H1 and H2. Note that the graph H in Figure 2(c) is not a join of H1 and
H2. With respect to the non-adjacent vertices x3 ∈ V (H1) and y1 ∈ V (H2) in
H, N1 = {x2, x4}, I1 = {x1}, C1 = ∅, N2 = {y2, y3, y4}, I2 = ∅, and C2 = ∅.

v1 v2

N1 N2

C1 C2I1 I2

V (H1) V (H2)

Figure 3. A schematic representation of the graph H used in Lemma 2.

Lemma 2. If H is a one-three join (not a join) of H1 and H2, then

(a) Ni is a clique in H for i ∈ {1, 2}.

(b) Ni ⊕ (V (Hi) \Ni) in Hi for i ∈ {1, 2}. Moreover, H is a join of H[Ni] and
H \Ni provided Ni 6= ∅ and Ii ∪ Ci 6= ∅ for some i ∈ {1, 2}.

(c) If Ci 6= ∅, then Ci ⊕ V (Hj) for i, j ∈ {1, 2}.

In Figure 3, the circle filled with dots and cross lines represent independent set

and clique in H, respectively.

Proof. (a) First we prove that N1 is a clique in H. On the contrary, suppose
that there exist x, y ∈ N1 such that xy /∈ E(H). By one-three join of H1 and
H2, {[x, v1, y], [v2]} contains a triangle in H, a contradiction to the fact that
v1v2 /∈ E(H). Hence N1 is a clique in H. Similarly, N2 is a clique in H.

(b) On the contrary, suppose that there exist x ∈ N1 and y ∈ V (H1) \ N1

such that xy /∈ E(H). Clearly, y 6= v1 and H[v1, x, y] contains exactly one edge
v1x. Since H is a one-three join of H1 and H2, {[v1, x, y], [v2]} contains a triangle
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in H, a contradiction to the fact that v1v2 /∈ E(H). Hence N1 ⊕ (V (H1) \N1) in
H1. Similarly, N2 ⊕ (V (H2) \N2) in H2. Suppose N1 6= ∅ and y ∈ I1 ∪ C1 6= ∅;
we prove that N1 ⊕ V (H2) in H. Take any x ∈ N1 and w ∈ V (H2). Clearly,
H[v1, x, y] induces a P3 with middle vertex x. Since H is a one-three join of H1

and H2, {[v1, x, y], [w]} contains a triangle in H and wx ∈ E(H). So, N1⊕V (H2)
in H. In addition, N1 ⊕ (V (H1) \N1) in H. Hence, N1 ⊕ (V (H) \N1) in H and
H is a join of H[N1] and H \N1.

(c) Assume i = 1 (a similar argument holds for i = 2). Consider an edge
x1x2 ∈ E(H[C1]) and a vertex y ∈ V (H2). Clearly, H[v1, x1, x2] contains ex-
actly one edge x1x2. Since H is a one-three join of H1 and H2, {[v1, x1, x2], [y]}
contains a triangle in H and yx1, yx2 ∈ E(H). So, y ∈ V (H2) is adjacent to
both end vertices of every edge in H[C1]. Since H[C1] contains only non-trivial
components, C1 ⊕ V (H2) in H.

Lemma 3. A disconnected graph H admits a one-three join if and only if H is

either bipartite, complement of bipartite, split graph or H admits a constrained

homogeneous set.

Proof. (⇒) Let H be a one-three join of two vertex-disjoint graphs H1 and
H2. If E(H) ∩ [V (H1), V (H2)] = ∅, then H is either a bipartite graph (union
of independent sets), a split graph (union of an independent set and a clique)
or a complement of bipartite graph (union of two cliques) by Observation 1. So
E(H) ∩ [V (H1), V (H2)] 6= ∅. Let Xi and Yi be the set of all vertices that belong
to the trivial and non-trivial components of Hi, respectively for i ∈ {1, 2} (see
Figure 4).

Y1 Y2

X1 X2

V (H1) V (H2)

Figure 4. A disconnected graph H in Lemma 3.

Claim. X1 ∪X2 6= ∅.

Proof. On the contrary, suppose X1 ∪X2 = ∅. There are two cases.

(a) Hi is disconnected for some i ∈ {1, 2}. Then by Observation 2.1, H is a join
of H1 and H2, a contradiction to the fact that H is disconnected.

(b) Hi is connected for all i ∈ {1, 2}. Since E(H) ∩ [V (H1), V (H2)] 6= ∅, H is
connected, a contradiction. So X1 ∪X2 6= ∅. �
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W.l.o.g. assume X1 6= ∅. Let w ∈ X1. There are two cases.

Case 1. Y1 6= ∅. First we prove that Y1⊕V (H2) inH. For an edge uv ∈ E(H1)
and y ∈ V (H2), {[w, u, v], [y]} contains a triangle in H and uy, vy ∈ E(H). So
every vertex in V (H2) is adjacent to both end vertices of every edge in H1. Since
Y1 contains only non-trivial components, y ⊕ Y1 in H for all y ∈ V (H2). Hence
V (H2) ⊕ Y1 in H. Next, we prove that V (H2) is either an independent set or
a clique. On the contrary, suppose that V (H2) is neither an independent set
nor a clique in H. Then there exists a set of vertices {u1, u2, u3} in H2 which
induces either P3 or K2 ∪ K1. For any v ∈ X1, by one-three join of H1 and
H2, {[v], [u1, u2, u3]} contains a triangle in H and v has neighbours in H2. So,
every vertex v ∈ X1 has neighbours in H2. Indeed, Y1 ⊕ V (H2) in H. So H is a
connected graph, a contradiction. Hence, V (H2) is either an independent set or a
clique. Clearly, H admits a constrained homogeneous set with V (H) = A∪B∪C
where A = V (H2), B = X1, C = Y1 (refer Figure 5(a)).

Y1

X1

V (H1) V (H2)
(a)

Y2

X2

V (H1) = X1 V (H2)
(b)

Figure 5. Constrained homogeneous set.

Case 2. Y1 = ∅. There are three subcases.

Case 2.1. Y2 = ∅. Then H is a bipartite graph with partition X1 ∪X2.

Case 2.2. Y2 6= ∅ and X2 6= ∅. Then by Case 1, H admits a constrained
homogeneous set with V (H) = A ∪ B ∪ C where A = X1, B = X2 and C = Y2
(refer Figure 5(b)).

Case 2.3. Y2 6= ∅ and X2 = ∅. Clearly, H2 is connected. If not, by Observa-
tion 2, H is a join ofH1 andH2, a contradiction to the fact thatH is disconnected.
Hence H2 is connected. Next, we prove that V (H2) is a clique in H. On the con-
trary, suppose that there exists a pair of non-adjacent vertices x, y in H2. Since
H2 is connected, there exists a path P (x, y) : (x =)x1 − x2 − x3 − · · · − xk(= y)
in H2 where k ≥ 3. Clearly, {x1, x2, x3} induces a P3 in H2. For any v ∈ V (H1),
by one-three join of H1 and H2, {[v], [x1, x2, x3]} contains a triangle in H and v
has neighbours in H2. So, every vertex in H1 has neighbours in H2. Since H2
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is connected, H is connected, a contradiction to the fact that H is disconnected.
Hence, H is a split graph with partition X1 ∪ Y2 (refer Figure 5(b)).

(⇐) It follows from Lemma 1.

Next, we prove a characterization theorem for the graphs that admit one-
three join.

Theorem 4. A graph H admits a one-three join if and only if H is one of the

following:

(i) a bipartite graph,

(ii) a complement of a bipartite graph,

(iii) a split graph,

(iv) a join of two graphs,

(v) H admits a constrained homogeneous set or a bipartite-join.

Proof. (⇒) Let H be a one-three join of two vertex-disjoint graphs H1 and
H2. If H is disconnected, then the result follows from Lemma 3. If Hc is not
connected, then H admits (iv). So H and Hc are connected. Since H is not a
join of H1 and H2, there exists a vertex v1 ∈ V (H1) such that AH2

(v1) 6= ∅, say
v2 ∈ AH2

(v1) (see Figure 3). Next, we consider three cases:

Case 1. N1 ∪N2 = ∅. There are three subcases.

Case 1.1. If C1 ∪ C2 = ∅, then H is a bipartite graph with vertex partition
{v1} ∪ I1 and {v2} ∪ I2.

Case 1.2. If C1 = ∅ and C2 6= ∅ (a similar argument follows for C1 6= ∅ and
C2 = ∅), then by Lemma 2(c), C2⊕V (H1) in H. Hence, H admits a constrained
homogeneous set with vertex partition A = {v1}∪ I1, B = {v2}∪ I2, and C = C2.

Case 1.3. If C1 6= ∅ and C2 6= ∅, then by Lemma 2(c), Ci ⊕ V (Hj) in H
for i, j ∈ {1, 2}, i 6= j. Hence, H admits a bipartite-join with vertex partition
A1 = {v1} ∪ I1, A2 = {v2} ∪ I2, B1 = C2 and B2 = C1.

Case 2. N1 6= ∅ and N2 = ∅ (similar argument follows for N1 = ∅ and
N2 6= ∅). Clearly, I1 ∪ C1 = ∅, else by Lemma 2(b), H is a join of two graphs, a
contradiction with the fact that Hc is connected. There are two subcases.

Case 2.1. C2 = ∅. Then by Lemma 2(a), H is a split graph with partition
N1 ∪ {v1} and I2 ∪ {v2}.

Case 2.2. C2 6= ∅. Then by Lemma 2(c), C2⊕V (H1) in H. Hence, H admits
a constrained homogeneous set with partition A = {v1} ∪N1, B = {v2} ∪ I2 and
C = C2.

Case 3. N1 6= ∅ and N2 6= ∅. We prove that Ii ∪ Ci = ∅ for every i ∈ {1, 2}.
If not, w.l.o.g. assume that I1 ∪ C1 6= ∅. Then, by Lemma 2(b), H is join of
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H[N1] and H \N1, a contradiction with the fact that Hc is connected. Hence by
Lemma 2(a), H is a complement of a bipartite graph with partition N1 ∪ {v1}
and N2 ∪ {v2}.

(⇐) It follows from Lemma 1.

As an implication of Theorem 4, Lemma 1, and by the known results of Feder
et al. [16], observe that the graph admitting one-three join can be recognized in
polynomial time (O(mn8)).

3. Applications

In this section, we solve a few optimization problems on a subclass of odd hole-free
graphs defined using one-three join and co-join. The following two observations
follows from the definition of one-three join.

Observation 3. If H1 and H2 are vertex-disjoint odd hole-free graphs, then a

one-three join H of H1 and H2 is also odd hole-free.

[Hint: Suppose M = {v1, v2, . . . , v2k+1} induces an odd hole in H. Then it is
easy to verify that for every vr ∈ V (Hi) ∩M , both vr−1, vr+1 belongs to V (Hj),
1 ≤ i, j ≤ 2, i 6= j for r mod (2k + 1).]

Observation 4. If H1 and H2 are vertex-disjoint odd anti-hole-free graphs, then

a one-three join H of H1 and H2 is also odd anti-hole-free.

The class MH

Let H be an odd hole-free graph which contains an odd anti-hole as an induced
subgraph and let MH be the class of all graphs generated from the induced
subgraphs of H by using one-three join and co-join recursively. By Observation
3, MH is a subclass of odd hole-free graphs. Note that every P4-free graph can
be generated by repeated application of join and co-join starting from a single
vertex. Since every graph in the class MH is generated by either co-join or one-
three join (note that join is a special case of one-three join), it contains all P4-free
graphs. Note that MH contains all complete graphs and its complements. Let
G1 and G2 be two vertex-disjoint complete graphs (or a complete graph and an
edgeless graph). Adding any edge between V (G1) and V (G2) preserves one-three
join. Hence, MH contains the complement of all bipartite graphs (respectively,
all split graphs). Similarly, MH contains all bipartite graphs (if G1 and G2 are
edgeless graphs). The Strong Perfect Graph Theorem [10] states that a graph is
perfect if and only if it is odd hole-free and odd anti-hole-free. So, MH contains
some imperfect graphs (by the definition of the class MH). An imperfect graph
G in Figure 6 is a member of MC7

c which is neither a join nor a co-join of two
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graphs. Note that G admits a one-three join with partitions V1 = V (Cc
7) ∪ {v9}

and V2 = {v8, v10}. Hence MH is odd hole-free, contains all P4-free graphs, all
bipartite graphs, complement of all bipartite graphs, all split graphs, and some
imperfect graphs.

Next, we prove that MH is induced hereditary.

Theorem 5. If K ∈ MH , then every induced subgraph U of K belongs to MH .

Proof. Let us prove by induction on the number of vertices n of the graph K.
For n = 1, 2, 3, 4, the result is obvious. If n = 5, then every induced subgraph U
of K contains at most 4 vertices and hence is a member of MH .

v9 v10

Cc
7

v8

Figure 6. An imperfect graph G in MC7
c .

Induction hypothesis: Assume the result for n = k.
Induction step: We prove the result for n = k + 1. For a graph K containing
k + 1 vertices, let U be an induced subgraph of K. If K is an induced subgraph
of H, then U ∈ MH . Else, there exists G1, G2 ∈ MH such that K is either a
one-three join or a co-join of G1 and G2. Then there are two cases:

(i) V (Gi) ∩ V (U) 6= ∅ for all i ∈ {1, 2}. Let V (Ui) = V (Gi) ∩ V (U). Clearly,
|V (Gi)| ≤ k and hence by induction hypothesis, Ui ∈ MH for all i ∈ {1, 2}. So
U is either a one-three join or a co-join of U1 and U2 and hence U ∈ MH .

(ii) V (Gi) ∩ V (U) 6= ∅ for exactly one i where i ∈ {1, 2}. W.l.o.g. assume
V (U) ⊆ V (G1). Since |V (G1)| ≤ k, by induction hypothesis, U ∈ MH .

Recall that a clique (independent set) is a subset of vertices of a graph G
which are pairwise adjacent (respectively, non-adjacent) in G. Next, we solve the
maximum independent set problem, the maximum clique problem, the minimum
coloring problem, and the minimum clique cover problem for the class MH . The
MISP for a graph G is to find an independent set with maximum cardinality in
G and the maximum weight independent set problem (MWISP) for a weighted
graph G is to find an independent set with maximum total weight in G. Let
αw(G) denotes the weighted independence number of G. The MWISP reduces
to MISP if the weight of each vertex in the graph is equal to 1. The MISP is
NP-hard in general, but solvable in polynomial time on various graph classes [2,
4–8, 20, 21]. The maximum clique problem for a graph G is to find a clique with
maximum cardinality in G. The minimum coloring problem for a graph G is to
determine the smallest number of colors in a vertex coloring of G. The minimum
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clique cover problem for a graph G is to determine the smallest number of cliques
of G required to cover V (G).

For a graph H and U ⊆ V (H), a graph H
′

is obtained by contracting U in H
if V (H

′

) = V (H \U) ∪ {u} and E(H
′

) = E(H \U) ∪E′ where E′ = {uw : w ∈
N(U) in H}. Let H be a graph that admits a constrained homogeneous set
(V (H) = A ∪ B ∪ C). Let Hc be the graph obtained from H by contracting C
(contracted to c) where V (Hc) = (V (H) \ C) ∪ {c} (see Figure 7(a)). Similarly,
for a graph H that admits a bipartite-join (V (H) = A1∪A2∪B1∪B2), define Hb

as a graph obtained from H by contracting Bi (contracted to bi) with V (Hb) =
(V (H) \ (B1 ∪B2)) ∪ {b1, b2} for i ∈ {1, 2} (see Figure 7(b)).

A B

c

(a)

A1 A2

b1 b2

(b)

Figure 7. (a) Hc and (b) Hb.

Observation 5. (a) If H admits a constrained homogeneous set, then Hc is

either a bipartite graph or a split graph with vertex partition A and B ∪ {c}.
(b) If H admits a bipartite-join, then Hb is a bipartite graph with vertex partition

A1 ∪ {b2} and A2 ∪ {b1}.

For a graph H that admits a constrained homogeneous set, let Hα
c be a

weighted graph obtained from Hc with vertex weights w(v) = 1 if v 6= c and
w(c) = α(H[C]). Clearly, α(H) = αw(H

α
c ). Similarly, if H admits a bipartite-

join, then let Hα
b be a weighted graph obtained from Hb with vertex weights

w(v) = 1 if v 6= bi and w(bi) = α(H[Bi]) for every i ∈ {1, 2}. Also, α(H) =
αw(H

α
b ). Hence the maximum independent set problem for H can be solved

efficiently since MWISP can be efficiently solved for split and bipartite graphs [1,
5, 18, 19] where H either admits a constrained homogeneous set or a bipartite-
join, provided α(H[C]) and α(H[Bi]) is known for all i ∈ {1, 2}. In a similar
manner, Hω

c and Hω
b are defined by replacing α by ω in the definition of the

graphs Hα
c and Hα

b , respectively.
Note that the MWISP for (a) bipartite graphs can be solved in O(n4) time

[1] (b) for split graphs and co-bipartite graphs can be solved in linear time [5, 18].

Theorem 6. The MISP for MH can be solved efficiently.

Proof. Every graph K in MH is either an induced subgraph of H or obtained
by co-join or one-three join of two graphs in MH . If K is an induced subgraph
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of H, then MISP can be solved in O(1) time [4] (graphs with constant size). If
K is a co-join of two graphs say U1 and U2, then α(K) = α(U1) + α(U2). The
MISP for K can be solved efficiently provided α(U1) and α(U2) can be computed
efficiently. If K is a one-three join of two graphs say U1 and U2, then by Theorem
4, K is one of the following.

Case (i) If K is a bipartite graph or complement of a bipartite graph or a
split graph, then the MISP for K can be solved efficiently [1, 5, 18, 19] since U1

and U2 are either independents or cliques.

Case (ii) If K is a join of U1 and U2, then α(K) = max{α(U1), α(U2)}. So,
the MISP for K can be solved efficiently if α(U1) and α(U2) can be computed
efficiently.

Case (iii) If K admits a constrained homogeneous set, then Kα
c is either a

weighted bipartite graph or a weighted split graph. Hence, the MWISP for Kα
c

can be solved efficiently provided the MISP for K[C] can be solved efficiently.

Case (iv) If K admits a bipartite-join, then Kα
b is a weighted bipartite graph.

Hence, the MWISP for Kα
b can be solved efficiently provided MISP for K[B1] and

K[B2] can be solved efficiently.
Note that the graphs U1, U2,K[C],K[B1],K[B2] ∈ MH (by Theorem 5).

Repeat the above procedure for these graphs, until we obtain an induced subgraph
of H. Hence, the recursive decomposition leads to a binary tree with at most
n− 1 internal nodes and at most n leaves. Note that the tree can be constructed
in O(mn9) time as the recognition problem for one-three join can be solved in
O(mn8) time. Using bottom-up approach, we solve the MISP or MWISP for
each internal node of the tree. Since the graph induced by each node is either
a join of two graphs or a (weighted) bipartite graph or (weighted) complement
of a bipartite graph or a (weighted) split graph, the MISP or MWISP for the
graph induced by each internal node can be solved in O(n4) time. So, the time
complexity to solve MISP or MWISP for all the internal nodes is O(n5). Since the
construction of the tree and solving the MISP for all internal nodes are executed
in parallel, the MISP for K can be solved in O(mn9) time.

By the same arguments as in Theorem 6, we obtain the following theorem.

Theorem 7. The maximum independent set problem, maximum clique problem,

minimum coloring problem and minimum clique cover problem for MH can be

solved efficiently.

4. Conclusions

We studied some algorithmic graph problems such as maximum independent set
problem, the maximum clique problem, the minimum coloring problem, and the
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minimum clique cover problem for the classMH of graphs (a subclass of odd hole-
free graphs) obtained by the graph operation one-three join. The main result of
the paper is the characterization of graphs that admit one-three join, which is
useful in the recognition problem.
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