# DISTANCE 2-DOMINATION IN PRISMS OF GRAPHS 

Ferran Hurtado, Mercè Mora ${ }^{1}$<br>Universitat Politècnica de Catalunya<br>Barcelona, Spain<br>e-mail: merce.mora@upc.edu<br>Eduardo Rivera-Campo ${ }^{2}$<br>Universidad Autónoma Metropolitana-Iztapalapa<br>Mexico<br>e-mail: erc@xanum.uam.mx

AND

Rita Zuazua ${ }^{3}$
Universidad Nacional Autónoma de México
Mexico
e-mail: ritazuazua@ciencias.unam.mx

## Dedication

Ferran Hurtado passed away a few months after Eduardo Rivera-Campo and Rita Zuazua visited him and Mercè Mora in Barcelona, where most of this research was made. We all dedicate this final version to Ferran's memory.


#### Abstract

A set of vertices $D$ of a graph $G$ is a distance 2-dominating set of $G$ if the distance between each vertex $u \in(V(G)-D)$ and $D$ is at most two. Let $\gamma_{2}(G)$ denote the size of a smallest distance 2-dominating set of $G$. For any permutation $\pi$ of the vertex set of $G$, the prism of $G$ with respect to $\pi$ is the graph $\pi G$ obtained from $G$ and a copy $G^{\prime}$ of $G$ by joining $u \in V(G)$ with $v^{\prime} \in V\left(G^{\prime}\right)$ if and only if $v^{\prime}=\pi(u)$. If $\gamma_{2}(\pi G)=\gamma_{2}(G)$ for any permutation


[^0]$\pi$ of $V(G)$, then $G$ is called a universal $\gamma_{2}$-fixer. In this work we characterize the cycles and paths that are universal $\gamma_{2}$-fixers.
Keywords: distance 2-dominating set, prisms of graphs, universal fixer.
2010 Mathematics Subject Classification: 05C69.

## 1. Introduction

Let $G=(V(G), E(G))$ be an undirected graph. A set $D \subseteq V(G)$ is a dominating set of $G$ if each vertex of $G$ not in $D$ is adjacent to at least one vertex in $D$. The domination number $\gamma(G)$ is the size of a smallest dominating set of $G$.

For any permutation $\pi$ of the vertex set of $G$, the prism of $G$ with respect to $\pi$ is the graph $\pi G$ obtained from $G$ and a copy $G^{\prime}$ of $G$ with vertex set $V\left(G^{\prime}\right)$ $=\left\{w^{\prime}: w \in V(G)\right\}$, by joining $u \in V(G)$ to $v^{\prime} \in V\left(G^{\prime}\right)$ if and only if $v=\pi(u)$.

A graph $G$ is called a universal $\gamma$-fixer if $\gamma(\pi G)=\gamma(G)$ for all permutations $\pi$ of $V(G)$. Domination in prisms were studied by Mynhardt and Xu [1] for several classes of graphs and it was conjectured that the edgeless graphs $\overline{K_{n}}$ are the only universal $\gamma$-fixers. Wash [5] proved this conjecture.

This concept was generalized for other types of domination. Mynhardt and Schurch [4] introduced the concept of paired domination in prisms. Lemanska and Zuazua [2] studied the concept of convex domination in prisms.

The distance $d_{G}(u, v)$ between two vertices $u$ and $v$ in a graph $G$ is the length of a shortest $u v$-path in $G$. If there is no $u v$-path in $G$, then $d_{G}(u, v)=\infty$. The concept of distance $k$-dominating sets, for $k \geq 1$, was introduced by Meir and Moon [3], under the name $k$-covering. In particular, a set of vertices $D \subseteq V(G)$ is said to be a distance 2-dominating set of $G$ if the distance between each vertex $u \in(V(G)-D)$ and $D$ is at most two. The minimum cardinality of a distance 2-dominating set in $G$ is the distance 2-domination number of $G$ and is denoted by $\gamma_{2}(G)$. A 2-dominating set in $G$ with cardinality $\gamma_{2}(G)$ is called a $\gamma_{2}$-set of $G$.

In this paper we study distance 2-domination in prisms. It is well known that $\gamma(G) \leq \gamma(\pi G) \leq 2 \gamma(G)$ for every graph $G$. However, while the second inequality still holds for distance 2-domination, the first one does not. In Section 2, we give some examples of families of graphs satisfying $\gamma_{2}(\pi G)<\gamma_{2}(G)$ for some permutations.

A graph $G$ is called a universal $\gamma_{2}$-fixer if $\gamma_{2}(\pi G)=\gamma_{2}(G)$ for every permutation $\pi$ of $V(G)$. As our main result, in Section 3 we characterize all paths and cycles that are universal $\gamma_{2}$-fixers.

## 2. Miscellaneous Results

In this section we show the existence of graphs $G$ such that the prism $\pi G$ has
distance 2-domination number less than or equal to the distance 2-domination number of $G$ for some permutations. More precisely, we will see that a graph whose components are universal $\gamma_{2}$-fixers is not necessarily a universal $\gamma_{2}$-fixer (Corollary 3). On the other hand, we show that there are graphs with distance 2 -domination number as large as desired, whereas this number is constant for at least one prism (Theorem 4). For any vertex $u$ of a graph $G$ let $N_{G}(u)=\{v$ : $u v \in E(G)\}$ and $N_{G}[u]=\{u\} \cup N_{G}(u)$. For any subset $S$ of vertices of $G$, let $N_{G}(S)=\bigcup_{u \in S} N_{G}(u)$.
Proposition 1. For all positive integers $r$ and $s$, and each permutation $\pi$, $\gamma_{2}\left(\pi\left(r K_{s}\right)\right) \leq \gamma_{2}\left(r K_{s}\right)$.
Proof. First observe that $\gamma_{2}\left(r K_{s}\right)=r$. Now, let $\pi: V\left(r K_{s}\right) \rightarrow V\left(r K_{s}^{\prime}\right)$ be a bijection and for $i=1,2, \ldots, r$ let $\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, s}\right\}$ be the set of vertices of the $i^{\text {th }}$ copy of $K_{s}$.

Let $F_{r}$ be the bipartite graph with vertex set $V\left(F_{r}\right)=\left\{w_{1}, w_{2}, \ldots, w_{r}\right\} \cup$ $\left\{w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{r}^{\prime}\right\}$, where $w_{i} w_{j}^{\prime}$ is an edge of $F_{r}$ if and only if $\pi\left(v_{i, k}\right)=v_{j, l}^{\prime}$ for some $k$ and $l$.

Since $\pi$ is a bijection, $F_{r}$ satisfies Hall's Condition, that is, for any subset $S \subseteq\left\{w_{1}, w_{2}, \ldots, w_{r}\right\}$ we have $\left|N_{F_{r}}(S)\right| \geq|S|$.

Therefore, the graph $F_{r}$ has a perfect matching $w_{1} w_{i_{1}}^{\prime}, w_{2} w_{i_{2}}^{\prime}, \ldots, w_{r} w_{i_{r}}^{\prime}$. By construction of $F_{r}$, this implies the existence of vertices $v_{1, k_{1}}, v_{2, k_{2}}, \ldots, v_{r, k_{r}}$ of the $r$ different copies of $K_{s}$ and $v_{j_{1}, l_{1}}^{\prime}, v_{j_{2}, l_{2}}^{\prime}, \ldots, v_{j_{r}, l_{r}}^{\prime}$ each one of a different copy of $K_{s}^{\prime}$ such that $\pi\left(v_{i, k_{i}}\right)=v_{j_{i}, l_{i}}^{\prime}$. Hence, $\left\{v_{1, k_{1}}, v_{2, k_{2}}, \ldots, v_{r, k_{r}}\right\}$ is a 2-dominating set of $\pi\left(r K_{s}\right)$. Thus, $\gamma_{2}\left(\pi\left(r K_{s}\right)\right) \leq r=\gamma_{2}\left(r K_{s}\right)$.

Theorem 2. For each integer $s \geq 2$ there is a permutation $\pi$ such that

$$
\gamma_{2}\left(\pi\left((3 s-1) K_{s}\right)\right)<\gamma_{2}\left((3 s-1) K_{s}\right) .
$$

Proof. Denote by $G_{s}$ the graph $(3 s-1) K_{s}$. For $i=1,2, \ldots, 3 s-1$ let $\left\{v_{i, 1}, v_{i, 2}\right.$, $\left.\ldots, v_{i, s}\right\}$ be the set of vertices of the $i^{\text {th }}$ copy of $K_{s}$. Let $\pi: V\left(G_{s}\right) \rightarrow V\left(G_{s}^{\prime}\right)$ be a bijection satisfying the following conditions:

$$
\begin{aligned}
& \pi\left(v_{i, 1}\right)=v_{i, 1}^{\prime} \text { for } i=1,2, \ldots, s, \\
& \pi\left(\bigcup_{i=1}^{s}\left\{v_{i, 2}, v_{i, 3}, \ldots, v_{i, s}\right\}\right)=\bigcup_{j=s+1}^{2 s-1}\left\{v_{j, 1}^{\prime}, v_{j, 2}^{\prime}, \ldots, v_{j, s}^{\prime}\right\}, \\
& \pi\left(\bigcup_{i=s+1}^{2 s-1}\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, s}\right\}\right)=\bigcup_{j=2 s}^{3 s-1}\left\{v_{j, 2}^{\prime}, v_{j, 3}^{\prime}, \ldots, v_{j, s}^{\prime}\right\}, \\
& \pi\left(v_{i, 1}\right)=v_{i, 1}^{\prime} \text { for } i=2 s, 2 s+1, \ldots, 3 s-1, \text { and } \\
& \pi\left(\bigcup_{i=2 s}^{3 s-1}\left\{v_{i, 2}, v_{i, 3}, \ldots, v_{i, s}\right\}\right)=\bigcup_{j=1}^{s}\left\{v_{j, 2}^{\prime}, v_{j, 3}^{\prime}, \ldots, v_{j, s}^{\prime}\right\} .
\end{aligned}
$$

It is easy to check that $\left\{v_{1,1}, v_{2,1}, \ldots, v_{s, 1}\right\} \cup\left\{v_{2 s, 1}^{\prime}, v_{2 s+1,1}^{\prime}, \ldots, v_{3 s-1,1}^{\prime}\right\}$ is a 2-dominating set for $\pi G_{s}$ and therefore $\gamma_{2}\left(\pi G_{s}\right) \leq 2 s<3 s-1=\gamma_{2}\left(G_{s}\right)$ (see Figure 1).


Figure 1. The graph $\pi\left((3 s-1) K_{s}\right)$. The set of $s(s-1)$ vertices in gray (resp. lined, squared) rectangles below map to the set of $s(s-1)$ vertices in gray (resp. lined, squared) rectangles above. The set of encircled vertices is a distance 2-dominating set.

Since $\gamma_{2}\left(\pi K_{s}\right)=\gamma_{2}\left(K_{s}\right)=1$ for every permutation $\pi$, the following result holds.

Corollary 3. There exist disconnected graphs where every component is a universal $\gamma_{2}$-fixer while the graph itself is not a universal $\gamma_{2}$-fixer.

Theorem 4. For each positive integer $k$ there exists a graph $H_{k}$ and a permutation $\pi$ of $V\left(H_{k}\right)$ such that $\gamma_{2}\left(H_{k}\right)=k+1$ and $\gamma_{2}\left(\pi H_{k}\right)=2$.

Proof. Let $H_{k}$ be the graph with $V\left(H_{k}\right)=\left\{z, x_{1}, x_{2}, \ldots, x_{5 k}, y_{1}, y_{2}, \ldots, y_{5 k}\right\}$ for $k \geq 3$, and $E\left(H_{k}\right)=\left\{z x_{i}: 1 \leq i \leq 5 k\right\} \cup\left\{z y_{1}\right\} \cup\left\{y_{j} y_{j+1}: 1 \leq j \leq 5 k-1\right\}$ and let $\pi$ the permutation given by $\pi(z)=z^{\prime}, \pi\left(x_{i}\right)=y_{i}^{\prime}$ and $\pi\left(y_{i}\right)=x_{i}^{\prime}$ for $1 \leq i \leq 5 k$. The graph $H_{k}$ satisfies $\gamma_{2}\left(H_{k}\right)=k+1$ and $\gamma_{2}\left(\pi H_{k}\right)=2$, since $D=\left\{z, z^{\prime}\right\}$ is a dominating $\gamma_{2}$-set of $\pi H_{k}$ (see Figure 2).


Figure 2. The graph $\pi H_{k}$. The set $\left\{z, z^{\prime}\right\}$ is a distance 2-dominating set.

## 3. Paths and Cycles

This section is devoted to the charaterization of all paths and cycles that are universal $\gamma_{2}$-fixers. For any vertex $u$ of a graph $G$, the 2 -neighborhood of $u$, denoted by $N_{G}^{2}[u]$, is the set of vertices $v$ of $G$ for which $d_{G}(u, v) \leq 2$.

Observation 5. Let $G$ be a path or a cycle. Then $\gamma_{2}(G) \leq \gamma_{2}(\pi G)$ for all permutation $\pi$.

Proof. If $G$ has $n$ vertices, then $\gamma_{2}(G)=\left\lceil\frac{n}{5}\right\rceil$. Moreover, if $v \in V(\pi G)$, then $\left|N_{\pi G}^{2}[v]\right| \leq 10$. Therefore, for all permutations $\pi$ of $V(G), \gamma_{2}(\pi G) \geq\left\lceil\frac{2 n}{10}\right\rceil=$ $\left\lceil\frac{n}{5}\right\rceil=\gamma_{2}(G)$.

Observation 6. If $P_{n}$ is a universal $\gamma_{2}$-fixer, then $C_{n}$ is a universal $\gamma_{2}$-fixer.
Proof. If a set of vertices of $\pi P_{n}$ is a $\gamma_{2}$-set of $\pi P_{n}$, then the corresponding set of vertices of $\pi C_{n}$ is a $\gamma_{2}$-set of $\pi C_{n}$.

Our main result is the following.
Theorem 7. The path $P_{n}$ is a universal $\gamma_{2}$-fixer if and only if $n \in\{1,2,3,6\}$. The cycle $C_{n}$ is a universal $\gamma_{2}$-fixer if and only if $n \in\{3,6,7\}$.

In what follows, if $G$ is a path or a cycle of order $n$, we denote the vertices of two copies of $G$ by $\{1,2, \ldots, n\}$ and by the first $n$ letters of the alphabet, $\{a, b, c, \ldots\}$, respectively. For any permutation $\pi:\{1, \ldots, n\} \longrightarrow\{a, b, c, \ldots\}$, the prism $\pi G$ has vertex set $\{1,2, \ldots, n\} \cup\{a, b, c, \ldots\}$. The set of edges is $E\left(\pi P_{n}\right)=\{\{i, i+1\}: i=1, \ldots, n-1\} \cup\{\{i, \pi(i)\}: i=1, \ldots, n\} \cup\{\{a, b\},\{b, c\}$, $\{c, d\}, \ldots\}$, when $G$ is the path of order $n$, and $E\left(\pi C_{n}\right)$ is obtained from $E\left(\pi P_{n}\right)$ by adding the edges joining the end-vertices of the two copies of the path of order $n$. We denote by $x y$ the edge $\{x, y\}$ if it is not misleading.

Theorem 7 is a consequence of the following propositions and corollaries.
Proposition 8. If $P_{n}$ or $C_{n}$ is a universal $\gamma_{2}$-fixer, then $n \in\{1,2,3,4,6,7,8,11$, $12,16\}$.

Proof. Let $G$ be a path or a cycle with $n$ vertices and let $\pi=I$ be the identity permutation. If $v \in V(I G)$, then $\left|N_{I G}^{2}[v]\right| \leq 8$ which implies that $8 \gamma_{2}(I G) \geq 2 n$. If $G$ is a universal $\gamma_{2}$-fixer, then $\gamma_{2}(I G)=\gamma_{2}(G)=\left\lceil\frac{n}{5}\right\rceil$. Therefore, $8\left\lceil\frac{n}{5}\right\rceil \geq 2 n$.

If $n=5 m$, then $8\left\lceil\frac{n}{5}\right\rceil \geq 2 n$ becomes $8 m \geq 10 m$ which implies $m=0$. If $n=5 m+p$, with $1 \leq p \leq 4$, then $8\left\lceil\frac{n}{5}\right\rceil \geq 2 n$ becomes $8(m+1) \geq 2(5 m+p)$ which implies $m \leq 3$ for $p=1, m \leq 2$ for $p=2, m \leq 1$ for $p=3$, and $m=0$ for $p=4$. Therefore $n \in\{1,2,3,4,6,7,8,11,12,16\}$.

Proposition 9. The paths $P_{1}, P_{2}, P_{3}$ and $P_{6}$ are universal $\gamma_{2}$-fixers.

Proof. The cases $P_{1}, P_{2}$ and $P_{3}$ are trivial.
If $n=6$, then $V\left(P_{6}\right)=\{1,2,3,4,5,6\}$. For any permutation $\pi$, we have $\{1,2,3, \pi(1), \pi(2), \pi(3)\} \subseteq N_{\pi P_{6}}^{2}[2]$ and $\{4,5,6, \pi(4), \pi(5), \pi(6)\} \subseteq N_{\pi P_{6}}^{2}[5]$. Therefore $D=\{2,5\}$ is a $\gamma_{2}$-set of $\pi P_{6}$ and $\gamma_{2}\left(\pi P_{6}\right)=2=\gamma_{2}\left(P_{6}\right)$ for each permutation $\pi$ of $V\left(P_{6}\right)$. Hence $P_{6}$ is a universal $\gamma_{2}$-fixer.

By Observation 6, we obtain the following.
Corollary 10. $C_{3}$ and $C_{6}$ are universal $\gamma_{2}$-fixers.
Proposition 11. The cycle $C_{4}$ is not a universal $\gamma_{2}$-fixer.
Proof. If $\pi$ is the identity permutation $I$, then for any vertex $v \in V\left(I C_{4}\right)$ there exists a vertex $w \in V\left(I C_{4}\right)$ such that $d_{I C_{4}}(v, w)=3$, therefore $\gamma_{2}\left(I C_{4}\right) \geq 2>$ $1=\gamma_{2}\left(C_{4}\right)$. Hence $C_{4}$ is not a universal $\gamma_{2}$-fixer.

Again by Observation 6, we obtain the following.
Corollary 12. The path $P_{4}$ is not a universal $\gamma_{2}$-fixer.
Proposition 13. The path $P_{7}$ is not a universal $\gamma_{2}$-fixer.
Proof. We will prove that $\gamma_{2}\left(\pi P_{7}\right)>2=\gamma_{2}\left(P_{7}\right)$ for some permutation $\pi$ of $V\left(P_{7}\right)$. Let $V\left(P_{7}\right)=\{1,2, \ldots, 7\}, V\left(P_{7}^{\prime}\right)=\{a, b, \ldots, g\}$ and consider the permutation

$$
\pi=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
f & b & c & d & e & a & g
\end{array}\right)
$$

(see Figure 3).


Figure 3. The graph $\pi P_{7}$.

Suppose $D=\{x, y\}$ is a $\gamma_{2}$-set of $\pi P_{7}$. By definition of distance 2-dominating set, $D \cap N_{\pi P_{7}}^{2}[7] \neq \emptyset$. Without loss of generality we assume $x \in N_{\pi P_{7}}^{2}[7]=$ $\{5,6,7, a, f, g\}$. Furthermore, by the symmetry of $\pi P_{7}$, we can also assume $x \in$ $\{a, 5,6,7\}$.

1. If $x=a$, then $S=V\left(\pi P_{7}\right)-N_{\pi P_{7}}^{2}[a]=\{1,3,4, d, e, f, g\}$ has to be $2-$ dominated by a vertex in $D$, say $y$, other than $x$. Therefore $y \in \bigcap_{v \in S} N_{\pi P_{7}}^{2}[v]$. But, $N_{\pi P_{7}}^{2}[3] \cap N_{\pi P_{7}}^{2}[4] \cap N_{\pi P_{7}}^{2}[g]=\emptyset$.
2. If $x=5$, then $S=V\left(\pi P_{7}\right)-N_{\pi P_{7}}^{2}[5]=\{1,2, b, c, g\}$ has to be 2-dominated by a vertex in $D$, say $y$, other than $x$. Therefore $y \in \bigcap_{v \in S} N_{\pi P_{7}}^{2}[v]$. But, $N_{\pi P_{7}}^{2}[b] \cap N_{\pi P_{7}}^{2}[c] \cap N_{\pi P_{7}}^{2}[g]=\emptyset$.
3. If $x=6$, then $S=V\left(\pi P_{7}\right)-N_{\pi P_{7}}^{2}[6]=\{1,2,3, c, d, f\}$ has to be 2-dominated by a vertex in $D$, say $y$, other than $x$. Therefore $y \in \bigcap_{v \in S} N_{\pi P_{7}}^{2}[v]$. But, $N_{\pi P_{7}}^{2}[1] \cap N_{\pi P_{7}}^{2}[2] \cap N_{\pi P_{7}}^{2}[3]=\{1,2,3, b\}$ and $N_{\pi P_{7}}^{2}[c] \cap N_{\pi P_{7}}^{2}[d] \cap N_{\pi P_{7}}^{2}[f]=$ $\{d, e\}$ which are disjoint sets.
4. If $x=7$, then $S=V\left(\pi P_{7}\right)-N_{\pi P_{7}}^{2}[7]=\{1,2,3,4, b, c, d, e\}$ has to be $2-$ dominated by a vertex in $D$, say $y$, other than $x$. Therefore $y \in \bigcap_{v \in S} N_{\pi P_{7}}^{2}[v]$. But, $N_{\pi P_{7}}^{2}[1] \cap N_{\pi P_{7}}^{2}[2] \cap N_{\pi P_{7}}^{2}[3] \cap N_{\pi P_{7}}^{2}[4]=\{2,3\}$ and $N_{\pi P_{7}}^{2}[b] \cap N_{\pi P_{7}}^{2}[c] \cap$ $N_{\pi P_{7}}^{2}[d] \cap N_{\pi P_{7}}^{2}[e]=\{c, d\}$ which are disjoint sets.

Proposition 14. The cycle $C_{7}$ is a universal $\gamma_{2}$-fixer.
Proof. Let $V\left(C_{7}\right)=\{1,2, \ldots, 7\}, V\left(C_{7}^{\prime}\right)=\{a, b, \ldots, g\}$ and $\pi: V\left(C_{7}\right) \rightarrow V\left(C_{7}^{\prime}\right)$ be a permutation. We will prove $\gamma_{2}\left(\pi C_{7}\right)=2$ by showing that, for all possible cases, there exists a $\gamma_{2}$-set of $\pi C_{7}$ of cardinality 2. By Observation 5 , this implies $\gamma_{2}\left(\pi C_{7}\right)=\gamma_{2}\left(C_{7}\right)=2$. By the symmetry of $\pi C_{7}$, we may assume that $\pi(1)=a$. The proposition is a consequence of the following claims.

Claim 1. If $\{\pi(4), \pi(5)\} \cap\{d, e\} \neq \emptyset$, then $\gamma_{2}\left(\pi C_{7}\right)=2$.
Proof. Let $A=\{1,2,3,6,7, a, b, g\} \subseteq N_{\pi C_{7}}^{2}[1]$ and let $B=V\left(\pi C_{7}\right)-A=\{4,5$, $c, d, e, f\}$. If $d \in\{\pi(4), \pi(5)\}$, then $B \subseteq N_{\pi C_{7}}^{2}[d]$ and $D=\{1, d\}$ is a $\gamma_{2}$-set of $\pi C_{7}$. Similarly, if $e \in\{\pi(4), \pi(5)\}$, then $B \subseteq N_{\pi C_{7}}^{2}[e]$ and $D=\{1, e\}$ is a $\gamma_{2}$-set of $\pi C_{7}$.

Claim 2. If $\pi(2)=b$ and $\pi(7)=g$, then $\gamma_{2}\left(\pi C_{7}\right)=2$.
Proof. If there exists an edge of the form $\{3 c, 3 d, 4 c, 4 d, 4 e, 5 d, 5 e, 5 f, 6 e, 6 f\}$, then Claim 1 can be applied by renaming the vertices in $V\left(\pi C_{7}\right)$. So, we only have to consider the case where $\pi(4)=f$ and $\pi(5)=c$ which, in turn, implies $\pi(3)=e$ and $\pi(6)=d$. Observe that $N_{\pi C_{7}}^{2}[2]=\{1,2,3,4,7, a, b, c, e\}$ and $N_{\pi C_{7}}^{2}[7]=$ $\{1,2,5,6,7, a, d, f, g\}$, therefore $D=\{2,7\}$ is $\gamma_{2}$-set of $\pi C_{7}$.

Claim 3. If $\pi(2)=b, \pi(3) \neq c$ and $\pi(7) \neq g$, then $\gamma_{2}\left(\pi C_{7}\right)=2$.
Proof. If there exists an edge of the form $\{4 d, 4 e, 5 d, 5 e, 5 f, 6 e, 6 f\}$, then Claim 1 can be applied by renaming the vertices in $V\left(\pi C_{7}\right)$. So, we only have to consider the cases where $\pi(5) \in\{c, g\}$ and $\pi^{-1}(e) \in\{3,7\}$. Without loss of generality we may assume $\pi(5)=g$ which implies $\pi(4) \in\{c, f\}$. This gives the following cases.

1. The permutation $\pi$ is given by $\pi(1)=a, \pi(2)=b, \pi(3)=e, \pi(4)=c, \pi(5)=$ $g, \pi(6)=d, \pi(7)=f$.
We have $N_{\pi C_{7}}^{2}[a]=\{1,2,5,7, a, b, c, f, g\}$ and $N_{\pi C_{7}}^{2}[d]=\{3,4,5,6,7, b, c, d, e$, $f\}$, therefore $D=\{a, d\}$ is $\gamma_{2}$-set of $\pi C_{7}$.
2. The permutation $\pi$ is given by $\pi(1)=a, \pi(2)=b, \pi(3)=e, \pi(4)=f, \pi(5)=$ $g$ and $\{\pi(6), \pi(7)\}=\{c, d\}$.
In this case we can apply Claim 2 by renaming the vertices in $V\left(\pi C_{7}\right)$.
3. The permutation $\pi$ is given by $\pi(1)=a, \pi(2)=b, \pi(3)=f, \pi(4)=c, \pi(5)=$ $g, \pi(6)=d, \pi(7)=e$.
We have $N_{\pi C_{7}}^{2}[a]=\{1,2,5,7, a, b, c, f, g\}$ and $N_{\pi C_{7}}^{2}[c]=\{2,3,4,5,6, a, b, c, d$, $e\}$, therefore $D=\{a, c\}$ is $\gamma_{2}$-set of $\pi C_{7}$.
4. The permutation $\pi$ is given by $\pi(1)=a, \pi(2)=b, \pi(4)=f, \pi(5)=g, \pi(7)=$ $e$, and $\{\pi(3), \pi(6)\}=\{c, d\}$.
We have $N_{\pi C_{7}}^{2}[1]=\{1,2,3,6,7, a, b, e, g\}$ and $N_{\pi C_{7}}^{2}[3]=\{1,2,3,4,5, b, c, d, f\}$, therefore $D=\{1,3\}$ is $\gamma_{2}$-set of $\pi C_{7}$.

Claim 4. If $\pi(6)=f$ and $\pi(7) \neq g$, then $\gamma_{2}\left(\pi C_{7}\right)=2$.
Proof. If there exists an edge of the form $\{2 b, 2 g, 5 e, 5 g, 7 b, 7 e\}$, then Claim 3 applies by renaming the vertices in $V\left(\pi C_{7}\right)$. Therefore $\pi(7) \in\{c, d\}$ and $\pi^{-1}(g) \in\{3,4\}$. In any case, we have $\{1,2,5,6,7, a, c, d, f\} \subseteq N_{\pi C_{7}}^{2}[7]$ and $\{3,4,6$, $a, b, e, f, g\} \subseteq N_{\pi C_{7}}^{2}[g]$. Hence $D=\{7, g\}$ is a $\gamma_{2}$-set of $\pi C_{7}$.

Claim 5. For every permutation $\pi: V\left(C_{7}\right) \rightarrow V\left(C_{7}^{\prime}\right)$ the graph $\pi\left(C_{7}\right)$ has $\gamma_{2}\left(\pi C_{7}\right)=2$.

Proof. By the symmetry of $\pi\left(C_{7}\right)$, we may assume that $\pi(1)=a$. The cases where $\pi(7)=e, \pi(7)=f, \pi(7)=g$ are symmetrical cases to $\pi(7)=d, \pi(7)=$ $c, \pi(7)=b$, respectively. By Claim 3, if there is the edge $7 g$, then $\gamma_{2}\left(\pi C_{7}\right)=2$. So, we suppose $\pi(7) \in\{e, f\}$.

If $\pi(7)=f$ and there exists an edge of the form $\{3 b, 3 c, 4 b, 4 c, 4 d, 4 e, 5 d, 5 e\}$, then we can apply Claim 1 after renaming the vertices of $\pi C_{7}$. Therefore we can assume $\pi(4)=g$ and $\pi(3) \in\{d, e\}$.

1. If $\pi(3)=d, \pi(4)=g$ and $\pi(7)=f$, then $\{1,2,3,6,7, a, b, f, g\} \subseteq N_{\pi C_{7}}^{2}[1]$ and $\{1,2,3,4,5, c, d, e\} \subseteq N_{\pi C_{7}}^{2}[3]$. Hence $D=\{1,3\}$ is $\gamma_{2}$-set of $\pi C_{7}$.
2. If $\pi(3)=e, \pi(4)=g, \pi(7)=f$ and $\pi(2) \in\{b, d\}$, then Claim 3 applies by renaming the vertices of $\pi C_{7}$. Therefore we may assume that $\pi(2)=$ $c$ in which case $\{1,2,3,6,7, a, b, c, f, g\} \subseteq N_{\pi C_{7}}^{2}[1]$ and $\{1,2,3,4,5, d, e\} \subseteq$ $N_{\pi C_{7}}^{2}$ [3]. Hence $D=\{1,3\}$ is $\gamma_{2}$-set of $\pi C_{7}$.
If $\pi(7)=e$ and there exists an edge of the form $\{2 b, 3 b, 4 b, 4 d, 4 e, 5 d, 5 e, 6 d$, $6 f\}$, then either Claim 1 or Claim 3 applies after renaming the vertices of $\pi C_{7}$.

Hence, we can assume $\pi^{-1}(d) \in\{2,3\}$. By the symmetry of $\pi\left(C_{7}\right)$, the case $\pi(2)=c$ is equivalent to the case $\pi(7)=f$, and $\pi(2)=g$ is equivalent to the case $\pi(2)=b$, so we may assume $\pi(2) \in\{d, f\}$.

1. If $\pi(2)=f, \pi(3)=d$ and $\pi(7)=e$, then $\{1,2,3,6,7, a, b, e, f, g\} \subseteq N_{\pi C_{7}}^{2}[1]$ and $\{1,2,3,4,5, c, d, e\} \subseteq N_{\pi C_{7}}^{2}[3]$. Hence $D=\{1,3\}$ is $\gamma_{2}$-set of $\pi C_{7}$.
2. If $\pi(2)=d, \pi(7)=e$ and there exists an edge of the form $\{5 g, 6 g\}$, then Claim 1 applies after renaming the vertices of $\pi C_{7}$. Likewise, if $3 c$ is an edge of $\pi C_{7}$, then Claim 3 applies, and if there exist a edge of the form $\{4 f, 5 c\}$, then Claim 4 applies. Therefore $\pi^{-1}(4) \in\{c, g\}$ and $\pi^{-1}(5) \in\{b, f\}$.
(a) If $\pi(4)=c, \pi(5)=b$ or $\pi(4)=g, \pi(5)=f$, then Claim 3 applies after renaming the vertices of $\pi C_{7}$.
(b) If $\pi(2)=d, \pi(4)=c, \pi(5)=f, \pi(7)=e$. Then $\{1,2,3,6,7, a, b, e, d, g\} \subseteq$ $N_{\pi C_{7}}^{2}[1]$ and $\{2,3,4,5,6, c, d, f\} \subseteq N_{\pi C_{7}}^{2}[4]$. Hence $D=\{1,4\}$ is $\gamma_{2}$-set of $\pi C_{7}$.
(c) Suppose $\pi(2)=d, \pi(4)=g, \pi(5)=b, \pi(7)=e$. Then $D=\{1, a\}$ is $\gamma_{2^{-}}$ set of $\pi C_{7}$ because $\{1,2,3,6,7, a, b, e, d, g\} \subseteq N_{\pi C_{7}}^{2}[1]$ and $\{4,5, b, c, f, g\}$ $\subseteq N_{\pi C_{7}}^{2}[a]$.

By Claims 1-5, the proposition follows.
Proposition 15. The cycle $C_{8}$ is not a universal $\gamma_{2}$-fixer.
Proof. Since $\gamma_{2}\left(C_{8}\right)=2$, it suffices to prove that there is a permutation $\pi \in S_{8}$ such that $\gamma_{2}\left(\pi C_{8}\right)>2$. Consider the permutation

$$
\pi=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
a & b & f & e & d & c & g & h
\end{array}\right)
$$



Figure 4. The graph $\pi C_{8}$.
Due to the symmetry of the graph $\pi C_{8}$, we may assume that $D$ contains one of the vertices $1,2,3$ or 4 . If $1 \in D$, then $V\left(\pi C_{8}\right) \backslash N_{\pi C_{8}}^{2}[1]=\{4,5,6, c, d, e, f, g\}$.

However, no vertex of $\pi C_{8} 2$-dominates $\{4,5,6, c, d, e, f, g\}$. If $2 \in D$, then $V\left(\pi C_{8}\right) \backslash N_{\pi C_{8}}^{2}[2]=\{5,6,7, d, e, g, h\}$. However, no vertex of $\pi C_{8}$ 2-dominates $\{5,6,7, d, e, g, h\}$. A similar argument shows that if $3 \in D$, then no vertex of $\pi C_{8}$ 2-dominates $V\left(\pi C_{8}\right) \backslash N_{\pi C_{8}}^{2}[3]$, and if $4 \in D$, then no vertex of $\pi C_{8}$ 2-dominates $V\left(\pi C_{8}\right) \backslash N_{\pi C_{8}}^{2}[4]$.
Proposition 16. The cycle $C_{11}$ is not a universal $\gamma_{2}$-fixer.
Proof. Since $\gamma_{2}\left(C_{11}\right)=3$, it suffices to prove that there is a permutation $\pi \in S_{11}$ such that $\gamma_{2}\left(\pi C_{11}\right)>3$. Consider the permutation

$$
\pi=\left(\begin{array}{llllllllllc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
j & d & 3 & b & g & f & e & i & h & a & k
\end{array}\right)
$$



Figure 5. The graph $\pi C_{11}$.
Suppose that $D$ is a 2 -dominating set of $\pi C_{11}$. Since there is at least one vertex in $D$ at distance 2 from vertex $3, D$ contains at least one vertex in $N_{\pi C_{11}}^{2}[3]=\{1,2,3,4,5, b, c, d\}$. Due to the symmetry of $\pi C_{11}$, we may assume that $D$ contains one vertex in $S=\{1,2,3\}$.

Likewise, the set $D$ must contain a vertex in $N_{\pi C_{11}}^{2}[9]=\{7,8,9,10,11, a, g$, $h, i\}$. We will see that no set $D$, with cardinality 3 , containing a vertex in $S$ and a vertex in $N_{\pi C_{11}}^{2}[9]$ can 2-dominate the graph $\pi C_{11}$. To prove this, we will consider the 27 cases that arise combining one vertex of $S$ with a vertex of $N_{\pi C_{11}}^{2}[9]$.

If there is a 2 -dominating set of cardinality 3 , for one of the 27 cases there must be a vertex that 2-dominates all the vertices not dominated by at least one of the two vertices considered in the corresponding case. Therefore, for at least one of the cases considered, the intersection of all the 2-neighborhoods of the vertices not dominated by at least one of the two vertices considered should be non-empty. For this purpose, for each $i \in\{1,2, \ldots, 27\}$ let

$$
x_{i}= \begin{cases}1, & \text { if } 1 \leq i \leq 9 \\ 2, & \text { if } 10 \leq i \leq 18 \\ 3, & \text { if } 19 \leq i \leq 27\end{cases}
$$

and let

$$
y_{i}= \begin{cases}a, & \text { if } i \in\{1,10,19\} ; \\ g, & \text { if } i \in\{2,11,20\} ; \\ h, & \text { if } i \in\{3,12,21\} ; \\ i, & \text { if } i \in\{4,13,22\} ; \\ 7, & \text { if } i \in\{5,14,23\} ; \\ 8, & \text { if } i \in\{6,15,24\} ; \\ 9, & \text { if } i \in\{7,16,25\} ; \\ 10, & \text { if } i \in\{8,17,26\} ; \\ 11, & \text { if } i \in\{9,18,27\} .\end{cases}
$$

For each $i, 1 \leq i \leq 27$, we calculate the set $S_{i}$ of vertices not 2-dominated by the two vertices $\left(x_{i}, y_{i}\right)$ and show that there is no vertex contained in the intersection of all the 2-neighborhoods of vertices in $S_{i}$.

The sets $N_{\pi C_{11}}^{2}[x]$ for $x \in V\left(\pi C_{11}\right)$ are shown in Table 1 and the results obtained in each case are shown in Table 2.

| $x$ | $N_{\pi C_{11}}^{2}[x]$ |
| :---: | :---: |
| 1 | $\{1,2,3,10,11, d, i, j, k\}$ |
| 2 | $\{1,2,3,4,11, c, d, e, j\}$ |
| 3 | $\{1,2,3,4,5, b, c, d\}$ |
| 4 | $\{2,3,4,5,6, a, b, c, g\}$ |
| 5 | $\{3,4,5,6,7, b, f, g, h\}$ |
| 6 | $\{4,5,6,7,8, e, f, g\}$ |
| 7 | $\{5,6,7,8,9, d, e, f, i\}$ |
| 8 | $\{6,7,8,9,10, e, h, i, j\}$ |
| 9 | $\{7,8,9,10,11, a, g, h, i\}$ |
| 10 | $\{1,8,9,10,11, a, b, h, k\}$ |
| 11 | $\{1,2,9,10,11, a, j, k\}$ |


| $x$ | $N_{\pi C_{11}}^{2}[x]$ |
| :---: | :---: |
| $a$ | $\{4,9,10,11, a, b, c, j, k\}$ |
| $b$ | $\{3,4,5,10, k, a, b, c, d\}$ |
| $c$ | $\{2,3,4, a, b, c, d, e\}$ |
| $d$ | $\{1,2,3,7, b, c, d, e, f\}$ |
| $e$ | $\{2,6,7,8, c, d, e, f, g\}$ |
| $f$ | $\{5,6,7, d, e, f, g, h\}$ |
| $g$ | $\{4,5,6,9, e, f, g, h, i\}$ |
| $h$ | $\{5,8,9,10, f, g, h, i, j\}$ |
| $i$ | $\{1,7,8,9, g, h, i, j, k\}$ |
| $j$ | $\{1,2,8,11, a, h, i, j, k\}$ |
| $k$ | $\{1,10,11, a, b, i, j, k\}$ |

Table 1. $N_{\pi C_{11}}^{2}[x]$ for $x \in V\left(\pi C_{11}\right)$.

Proposition 17. The cycle $C_{12}$ is not a universal $\gamma_{2}$-fixer.
Proof. Since $\gamma_{2}\left(C_{12}\right)=3$, we only need to prove that $\gamma_{2}\left(I C_{12}\right)>3$, where

$$
I=\left(\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
a & b & c & d & e & f & g & h & i & j & k & l
\end{array}\right) .
$$

Observe that each vertex belonging to $\{1,2, \ldots, 12\}$ 2-dominates 5 vertices in $\{1,2, \ldots, 12\}$ and 3 vertices in $\{a, b, \ldots, l\}$, and that each vertex in $\{a, b, \ldots, l\}$

| Case | $\left(x_{i}, y_{i}\right)$ | $S_{i}$ | $T_{i}$ |
| :---: | :---: | :---: | :---: |
| 1 | $(1, a)$ | $\{5,6,7,8, e, f, g, h\}$ | $\{8, e, f, h\}$ |
| 2 | $(1, g)$ | $\{7,8, a, b, c\}$ | $\{7, a, c\}$ |
| 3 | $(1, h)$ | $\{4,6,7, a, b, c, e\}$ | $\{7, a, c\}$ |
| 4 | $(1, i)$ | $\{4,5,6, a, b, c, e, f\}$ | $\{a, f\}$ |
| 5 | $(1,7)$ | $\{4, a, b, c, g, h\}$ | $\{c, h\}$ |
| 6 | $(1,8)$ | $\{4,5, a, b, c, f, g\}$ | $\{a, f\}$ |
| 7 | $(1,9)$ | $\{4,5,6, b, c, e, f\}$ | $\{6, b, e\}$ |
| 8 | $(1,10)$ | $\{4,5,6,7, c, e, f, g\}$ | $\{5, c, f\}$ |
| 9 | $(1,11)$ | $\{4,5,6,7,8, b, c, e, f, g, h\}$ | $\{c, h\}$ |
| 10 | $(2, a)$ | $\{5,6,7,8, f, g, h, i\}$ | $\{5,7, h, i\}$ |
| 11 | $(2, g)$ | $\{7,8,10, a, b, k\}$ | $\{7, b, k\}$ |
| 12 | $(2, h)$ | $\{6,7, a, b, k\}$ | $\{6, k\}$ |
| 13 | $(2, i)$ | $\{5,6,10, a, b, f\}$ | $\{5,6,10\}$ |
| 14 | $(2,7)$ | $\{10, a, b, g, h, k\}$ | $\{a, g, k\}$ |
| 15 | $(2,8)$ | $\{5, a, b, f, g, k\}$ | $\{a, g\}$ |
| 16 | $(2,9)$ | $\{5,6, b, f, k\}$ | $\{6, k\}$ |
| 17 | $(2,10)$ | $\{5,6,7, f, g, i\}$ | $\{6,7, g, i\}$ |
| 18 | $(2,11)$ | $\{5,6,7,8, b, f, g, h, i\}$ | $\{b, h, i\}$ |
| 19 | $(3, a)$ | $\{6,7,8, e, f, g, h, i\}$ | $\{6,7, g, i\}$ |
| 20 | $(3, g)$ | $\{7,8,10,11, a, j, k\}$ | $\{7, a, k\}$ |
| 21 | $(3, h)$ | $\{6,7,11, a, e, k\}$ | $\{6, k\}$ |
| 22 | $(3, i)$ | $\{6,10,11, a, e, f\}$ | $\{a, f\}$, |
| 23 | $(3,7)$ | $\{10,11, a, g, h, j, k\}$, | $\{a, g, k\}$ |
| 24 | $(3,8)$ | $\{11, a, f, g, k\}$ | $\{a, f\}$ |
| 25 | $(3,9)$ | $\{6, e, f, j, k\}$ | $\{6, k\}$ |
| 26 | $(3,10)$ | $\{6,7, e, f, g, i, j\}$ | $\{6,7, g, i\}$ |
| 27 | $(3,11)$ | $\{6,7,8, e, f, g, h, i\}$ | $\{6,7, g, i\}$ |

Table 2. In each case the set $S_{i}=V \backslash\left(N_{\pi C_{11}}^{2}\left[x_{i}\right] \cup N_{\pi C_{11}}^{2}\left[y_{i}\right]\right)$ and a subset $T_{i}$ of $S_{i}$ satisfying $\bigcap_{v \in T_{i}} N_{\pi C_{11}}^{2}[v]=\emptyset$ are given.

2-dominates 5 vertices in $\{a, b, \ldots, l\}$ and 3 vertices in $\{1,2, \ldots, 12\}$. Suppose on the contrary that there exists a 2 -dominating set $D$ with 3 vertices, $r$ of them in $\{1,2, \ldots, 12\}$ and the remaining $s$ in $\{a, b, \ldots, l\}$. Since each vertex of $I C_{12}$ must be 2-dominated, then $r, s$ must be integers satisfying:

$$
\begin{aligned}
5 r+3 s & =12 \\
3 r+5 s & =12 \\
r+s & =3
\end{aligned}
$$

From the previous equations we derive that $r, s$ are integers satisfying $r=s$ and $r+s=3$, which is a contradiction.

Proposition 18. The cycle $C_{16}$ is not a universal $\gamma_{2}$-fixer.
Proof. Since $\gamma_{2}\left(C_{16}\right)=4$, it suffices to prove that there is a permutation $\pi \in S_{16}$ such that $\gamma_{2}\left(\pi C_{16}\right)>4$. Consider the permutation

$$
\pi=\left(\begin{array}{cccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
n & b & c & d & e & f & g & h & i & j & k & l & m & a & p & o
\end{array}\right)
$$

We remark that each vertex in $\{1,2, \ldots, 16\}$ 2-dominates exactly 5 vertices in $\{1,2, \ldots, 16\}$ and at most 4 vertices in $\{a, b, \ldots, p\}$. Moreover, vertices in $\{3,4, \ldots, 12,15,16\}$ and vertices in $\{c, d, \ldots, l, o, p\}$ 2-dominate exacty 3 vertices in $\{a, b, \ldots, o\}$ and in $\{1,2, \ldots, 16\}$, respectively. Likewise, each vertex in $\{a, b, \ldots, o\}$ 2-dominates exactly 5 vertices in $\{a, b, \ldots, o\}$ and at most 4 vertices in $\{1,2, \ldots, 16\}$ (see Figure 6 ).


Figure 6. The graph $\pi C_{16}$.

We will prove that it is not possible to 2 -dominate $\pi C_{16}$ with 4 vertices. Suppose on the contrary that there exists a 2 -dominating set $D$ with 4 vertices.

Let $S=\{1,2,13,14, a, b, m, n\}$. We claim that if $D$ is a 2 -dominating set of $\pi C_{16}$ with 4 vertices, then one of the following cases holds:
(i) all vertices are 2-dominated by exactly one vertex in $D$,
(ii) all vertices are 2-dominated by exactly one vertex in $D$, except at most two vertices that are 2-dominated by two vertices in $S$,
(iii) all vertices are 2-dominated by exactly one vertex in $D$, except one vertex that is 2 -dominated by three vertices in $S$.

To see this, observe that there are 12 vertices not lying in the union of the 2-neighborhoods of the vertices in $S$, hence $D$ contains at most two vertices of $S$. Since $\pi C_{16}$ has 32 vertices, vertices of $\pi C_{16}$ are 2 -dominated exactly by one vertex of $D$, except two vertices that are 2-dominated both of them by two vertices of $D$ or except one vertex that is 2-dominated by three vertices of $D$.

There must be a vertex that 2-dominates vertex 7 , that is a vertex from $N_{\pi C_{16}}^{2}[7]=\{5,6,7,8,9, f, g, h\}$. Due to the symmetry of the graph $\pi C_{16}$, we may assume that $D$ contains one of the vertices 5,6 or 7 .

If $5 \in D$, then observe that $N_{\pi C_{16}}^{2}[5]=\{3,4,5,6,7, d, e, f\}$ and $g \notin N_{\pi C_{16}}^{2}[5]$. By our claim, we may assume that $i \in D$. Now, also by our claim, we may assume $13 \in D$ because $11 \notin N_{\pi C_{16}}^{2}[5] \cup N_{\pi C_{16}}^{2}[i]$. The set of vertices not in $N_{\pi C_{16}}^{2}[5] \cup N_{\pi C_{16}}^{2}[i] \cup N_{\pi C_{16}}^{2}[13]$ is $S_{5}=\{1,2,16, b, c, o, p\}$. By the above remark, only vertex $a$ can 2 -dominate all vertices in $S_{5}$, but $1 \notin N_{\pi C_{16}}^{2}[a]$.

For the case where $6 \in D$, observe that $N_{\pi C_{16}}^{2}[6]=\{4,5,6,7,8, e, f, g\}$ and $h \notin N_{\pi C_{16}}^{2}[6]$. By our claim, we may assume that $j \in D$. Now, also by our claim, we may assume $14 \in D$ because $12 \notin N_{\pi C_{16}}^{2}[6] \cup N_{\pi C_{16}}^{2}[j]$. The set of vertices not in $N_{\pi C_{16}}^{2}[6] \cup N_{\pi C_{16}}^{2}[j] \cup N_{\pi C_{16}}^{2}[14]$ is $S_{6}=\{1,2,3, c, d, n, o\}$. By the above remark, no vertex can 2-dominate all vertices in $S_{6}$.

Finally, if $5 \in D$, observe that $N_{\pi C_{16}}^{2}[7]=\{5,6,7,8,9, f, g, h\}$ and $e, i \notin$ $N_{\pi C_{18}}^{2}[5]$. By our claim, we may assume that $c, k \in D$. The set of vertices not in $N_{\pi C_{16}}^{2}[7] \cup N_{\pi C_{16}}^{2}[c] \cup N_{\pi C_{16}}^{2}[k]$ is $S_{7}=\{1,13,14,15,16, n, o, p\}$. By the above remark, only vertex 15 can 2-dominate all vertices in $S_{7}$, but $n \notin N_{\pi C_{16}}^{2}[15]$.

By Observation 6, we have the following:
Corollary 19. The paths $P_{8}, P_{11}, P_{12}$ and $P_{16}$ are not universal $\gamma_{2}$-fixers.

## 4. Final Comment

A natural problem, unsolved here, is that of determining all graphs which are $\gamma_{2}$-fixers. A more modest problem is that of characterizing those graphs $G$ for which $\gamma_{2}(G) \leq \gamma_{2}(\pi G)$ for all permutations $\pi$.

## References

[1] C.M. Mynhardt and Z. Xu, Domination in prisms of graphs: universal fixers, Util. Math. 78 (2009) 185-201.
[2] M. Lemańska and R. Zuazua, Convex universal fixers, Discuss. Math. Graph Theory 32 (2012) 807-812.
doi:10.7151/dmgt. 1631
[3] A. Meir and J.W. Moon, Relations between packing and covering number of a tree, Pacific J. Math. 61 (1975) 225-233.
doi:10.2140/pjm.1975.61.225
[4] C.M. Mynhardt and M. Schurch, Paired domination in prisms of graphs, Discus. Math. Graph Theory 31 (2011) 5-23. doi:10.7151/dmgt. 1526
[5] K. Wash, Edgeless graphs are the only universal fixers, Czechoslovak Math. J. 64 (2014) 833-843.
doi:10.1007/s10587-014-0136-3
Received 27 November 2015
Revised 2 June 2016
Accepted 2 June 2016


[^0]:    ${ }^{1}$ Research partially supported by projects MTM2015-63791-R (MINECO/FEDER) and Gen. Cat. DGR 2014SGR46.
    ${ }^{2}$ Research partially supported by project 178910, Conacyt, México.
    ${ }^{3}$ Research partially supported by PAPIIT-IN114415, UNAM.

