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Abstract

A set of vertices D of a graph G is a distance 2-dominating set of G if
the distance between each vertex u ∈ (V (G)−D) and D is at most two. Let
γ2(G) denote the size of a smallest distance 2-dominating set of G. For any
permutation π of the vertex set of G, the prism of G with respect to π is the
graph πG obtained from G and a copy G′ of G by joining u ∈ V (G) with
v′ ∈ V (G′) if and only if v′ = π(u). If γ2(πG) = γ2(G) for any permutation
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π of V (G), then G is called a universal γ2-fixer. In this work we characterize
the cycles and paths that are universal γ2-fixers.
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1. Introduction

Let G = (V (G), E(G)) be an undirected graph. A set D ⊆ V (G) is a dominating
set of G if each vertex of G not in D is adjacent to at least one vertex in D. The
domination number γ(G) is the size of a smallest dominating set of G.

For any permutation π of the vertex set of G, the prism of G with respect to
π is the graph πG obtained from G and a copy G′ of G with vertex set V (G′)
= {w′ : w ∈ V (G)}, by joining u ∈ V (G) to v′ ∈ V (G′) if and only if v = π(u).

A graph G is called a universal γ-fixer if γ(πG) = γ(G) for all permutations π
of V (G). Domination in prisms were studied by Mynhardt and Xu [1] for several
classes of graphs and it was conjectured that the edgeless graphs Kn are the only
universal γ-fixers. Wash [5] proved this conjecture.

This concept was generalized for other types of domination. Mynhardt and
Schurch [4] introduced the concept of paired domination in prisms. Lemanska
and Zuazua [2] studied the concept of convex domination in prisms.

The distance dG(u, v) between two vertices u and v in a graph G is the length
of a shortest uv-path in G. If there is no uv-path in G, then dG(u, v) = ∞. The
concept of distance k-dominating sets, for k ≥ 1, was introduced by Meir and
Moon [3], under the name k-covering. In particular, a set of vertices D ⊆ V (G)
is said to be a distance 2-dominating set of G if the distance between each vertex
u ∈ (V (G) −D) and D is at most two. The minimum cardinality of a distance
2-dominating set in G is the distance 2-domination number of G and is denoted
by γ2(G). A 2-dominating set in G with cardinality γ2(G) is called a γ2-set of G.

In this paper we study distance 2-domination in prisms. It is well known that
γ(G) ≤ γ(πG) ≤ 2γ(G) for every graph G. However, while the second inequality
still holds for distance 2-domination, the first one does not. In Section 2, we
give some examples of families of graphs satisfying γ2(πG) < γ2(G) for some
permutations.

A graph G is called a universal γ2-fixer if γ2(πG) = γ2(G) for every permu-
tation π of V (G). As our main result, in Section 3 we characterize all paths and
cycles that are universal γ2-fixers.

2. Miscellaneous Results

In this section we show the existence of graphs G such that the prism πG has
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distance 2-domination number less than or equal to the distance 2-domination
number of G for some permutations. More precisely, we will see that a graph
whose components are universal γ2-fixers is not necessarily a universal γ2-fixer
(Corollary 3). On the other hand, we show that there are graphs with distance
2-domination number as large as desired, whereas this number is constant for at
least one prism (Theorem 4). For any vertex u of a graph G let NG(u) = {v :
uv ∈ E(G)} and NG[u] = {u} ∪ NG(u). For any subset S of vertices of G, let
NG(S) =

⋃

u∈S NG(u).

Proposition 1. For all positive integers r and s, and each permutation π,
γ2(π(rKs)) ≤ γ2(rKs).

Proof. First observe that γ2(rKs) = r. Now, let π : V (rKs) → V (rK ′

s) be a
bijection and for i = 1, 2, . . . , r let {vi,1, vi,2, . . . , vi,s} be the set of vertices of the
ith copy of Ks.
Let Fr be the bipartite graph with vertex set V (Fr) = {w1, w2, . . . , wr} ∪

{w′

1, w
′

2, . . . , w
′

r}, where wiw
′

j is an edge of Fr if and only if π(vi,k) = v′j,l for some
k and l.
Since π is a bijection, Fr satisfies Hall’s Condition, that is, for any subset

S ⊆ {w1, w2, . . . , wr} we have |NFr
(S)| ≥ |S|.

Therefore, the graph Fr has a perfect matching w1w
′

i1
, w2w

′

i2
, . . . , wrw

′

ir
. By

construction of Fr, this implies the existence of vertices v1,k1 , v2,k2 , . . . , vr,kr of
the r different copies of Ks and v

′

j1,l1
, v′j2,l2 , . . . , v

′

jr,lr
each one of a different copy

of K ′

s such that π(vi,ki) = v′ji,li . Hence, {v1,k1 , v2,k2 , . . . , vr,kr} is a 2-dominating
set of π(rKs). Thus, γ2(π (rKs)) ≤ r = γ2(rKs).

Theorem 2. For each integer s ≥ 2 there is a permutation π such that

γ2(π((3s− 1)Ks)) < γ2((3s− 1)Ks).

Proof. Denote by Gs the graph (3s− 1)Ks. For i = 1, 2, . . . , 3s− 1 let {vi,1, vi,2,
. . . , vi,s} be the set of vertices of the i

th copy of Ks. Let π : V (Gs) → V (G′

s) be
a bijection satisfying the following conditions:

π(vi,1) = v′i,1 for i = 1, 2, . . . , s,

π
(

⋃s
i=1

{vi,2, vi,3, . . . , vi,s}
)

=
⋃

2s−1

j=s+1

{

v′j,1, v
′

j,2, . . . , v
′

j,s

}

,

π
(

⋃

2s−1

i=s+1
{vi,1, vi,2, . . . , vi,s}

)

=
⋃

3s−1

j=2s

{

v′j,2, v
′

j,3, . . . , v
′

j,s

}

,

π(vi,1) = v′i,1 for i = 2s, 2s+ 1, . . . , 3s− 1, and

π
(

⋃

3s−1

i=2s {vi,2, vi,3, . . . , vi,s}
)

=
⋃s

j=1

{

v′j,2, v
′

j,3, . . . , v
′

j,s

}

.

It is easy to check that {v1,1, v2,1, . . . , vs,1} ∪ {v′2s,1, v
′

2s+1,1, . . . , v
′

3s−1,1} is a
2-dominating set for πGs and therefore γ2(πGs) ≤ 2s < 3s − 1 = γ2(Gs) (see
Figure 1).
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Figure 1. The graph π((3s − 1)Ks). The set of s(s − 1) vertices in gray (resp. lined,
squared) rectangles below map to the set of s(s−1) vertices in gray (resp. lined, squared)
rectangles above. The set of encircled vertices is a distance 2-dominating set.

Since γ2(πKs) = γ2(Ks) = 1 for every permutation π, the following result
holds.

Corollary 3. There exist disconnected graphs where every component is a uni-

versal γ2-fixer while the graph itself is not a universal γ2-fixer.

Theorem 4. For each positive integer k there exists a graph Hk and a permuta-

tion π of V (Hk) such that γ2(Hk) = k + 1 and γ2(πHk) = 2.

Proof. Let Hk be the graph with V (Hk) = {z, x1, x2, . . . , x5k, y1, y2, . . . , y5k} for
k ≥ 3, and E(Hk) = {zxi : 1 ≤ i ≤ 5k}∪{zy1}∪{yjyj+1 : 1 ≤ j ≤ 5k−1} and let
π the permutation given by π(z) = z′, π(xi) = y′i and π(yi) = x′i for 1 ≤ i ≤ 5k.
The graph Hk satisfies γ2(Hk) = k + 1 and γ2(πHk) = 2, since D = {z, z′} is a
dominating γ2-set of πHk (see Figure 2).

x1
x2

x5k

z y1 y2 y5k

x′
1

x′
2

x′
5k

z′
y′
1

y′
2

y′
5k

π

π

π

Figure 2. The graph πHk. The set {z, z
′} is a distance 2-dominating set.
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3. Paths and Cycles

This section is devoted to the charaterization of all paths and cycles that are
universal γ2-fixers. For any vertex u of a graph G, the 2-neighborhood of u,
denoted by N2

G[u], is the set of vertices v of G for which dG(u, v) ≤ 2.

Observation 5. Let G be a path or a cycle. Then γ2(G) ≤ γ2(πG) for all per-
mutation π.

Proof. If G has n vertices, then γ2(G) =
⌈

n
5

⌉

. Moreover, if v ∈ V (πG), then
|N2

πG[v]| ≤ 10. Therefore, for all permutations π of V (G), γ2(πG) ≥
⌈

2n
10

⌉

=
⌈

n
5

⌉

= γ2(G).

Observation 6. If Pn is a universal γ2-fixer, then Cn is a universal γ2-fixer.

Proof. If a set of vertices of πPn is a γ2-set of πPn, then the corresponding set
of vertices of πCn is a γ2-set of πCn.

Our main result is the following.

Theorem 7. The path Pn is a universal γ2-fixer if and only if n ∈ {1, 2, 3, 6}.
The cycle Cn is a universal γ2-fixer if and only if n ∈ {3, 6, 7}.

In what follows, if G is a path or a cycle of order n, we denote the vertices
of two copies of G by {1, 2, . . . , n} and by the first n letters of the alphabet,
{a, b, c, . . . }, respectively. For any permutation π : {1, . . . , n} −→ {a, b, c, . . . },
the prism πG has vertex set {1, 2, . . . , n} ∪ {a, b, c, . . . }. The set of edges is
E(πPn) = {{i, i+1} : i = 1, . . . , n− 1}∪{{i, π(i)} : i = 1, . . . , n}∪{{a, b}, {b, c},
{c, d}, . . . }, when G is the path of order n, and E(πCn) is obtained from E(πPn)
by adding the edges joining the end-vertices of the two copies of the path of
order n. We denote by xy the edge {x, y} if it is not misleading.
Theorem 7 is a consequence of the following propositions and corollaries.

Proposition 8. If Pn or Cn is a universal γ2-fixer, then n ∈ {1, 2, 3, 4, 6, 7, 8, 11,
12, 16}.

Proof. Let G be a path or a cycle with n vertices and let π = I be the identity
permutation. If v ∈ V (IG), then |N2

IG[v]| ≤ 8 which implies that 8γ2(IG) ≥ 2n.
If G is a universal γ2-fixer, then γ2(IG) = γ2(G) =

⌈

n
5

⌉

. Therefore, 8
⌈

n
5

⌉

≥ 2n.
If n = 5m, then 8

⌈

n
5

⌉

≥ 2n becomes 8m ≥ 10m which implies m = 0. If
n = 5m + p, with 1 ≤ p ≤ 4, then 8

⌈

n
5

⌉

≥ 2n becomes 8(m + 1) ≥ 2(5m + p)
which implies m ≤ 3 for p = 1, m ≤ 2 for p = 2, m ≤ 1 for p = 3, and m = 0 for
p = 4. Therefore n ∈ {1, 2, 3, 4, 6, 7, 8, 11, 12, 16}.

Proposition 9. The paths P1, P2, P3 and P6 are universal γ2-fixers.
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Proof. The cases P1, P2 and P3 are trivial.

If n = 6, then V (P6) = {1, 2, 3, 4, 5, 6}. For any permutation π, we have
{1, 2, 3, π(1), π(2), π(3)} ⊆ N2

πP6
[2] and {4, 5, 6, π(4), π(5), π(6)} ⊆ N2

πP6
[5]. The-

refore D = {2, 5} is a γ2-set of πP6 and γ2(πP6) = 2 = γ2(P6) for each permuta-
tion π of V (P6). Hence P6 is a universal γ2-fixer.

By Observation 6, we obtain the following.

Corollary 10. C3 and C6 are universal γ2-fixers.

Proposition 11. The cycle C4 is not a universal γ2-fixer.

Proof. If π is the identity permutation I, then for any vertex v ∈ V (IC4) there
exists a vertex w ∈ V (IC4) such that dIC4

(v, w) = 3, therefore γ2(IC4) ≥ 2 >
1 = γ2(C4). Hence C4 is not a universal γ2-fixer.

Again by Observation 6, we obtain the following.

Corollary 12. The path P4 is not a universal γ2-fixer.

Proposition 13. The path P7 is not a universal γ2-fixer.

Proof. We will prove that γ2(πP7) > 2 = γ2(P7) for some permutation π of
V (P7). Let V (P7) = {1, 2, . . . , 7}, V (P ′

7) = {a, b, . . . , g} and consider the permu-
tation

π =

(

1 2 3 4 5 6 7
f b c d e a g

)

(see Figure 3).

1 2 3 4 5 6 7

a b c d e f g

Figure 3. The graph πP7.

Suppose D = {x, y} is a γ2-set of πP7. By definition of distance 2-domina-
ting set, D ∩ N2

πP7
[7] 6= ∅. Without loss of generality we assume x ∈ N2

πP7
[7] =

{5, 6, 7, a, f, g}. Furthermore, by the symmetry of πP7, we can also assume x ∈
{a, 5, 6, 7}.

1. If x = a, then S = V (πP7) − N2
πP7

[a] = {1, 3, 4, d, e, f, g} has to be 2-
dominated by a vertex inD, say y, other than x. Therefore y ∈

⋂

v∈S N2
πP7

[v].
But, N2

πP7
[3] ∩N2

πP7
[4] ∩N2

πP7
[g] = ∅.
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2. If x = 5, then S = V (πP7) − N2
πP7

[5] = {1, 2, b, c, g} has to be 2-dominated
by a vertex in D, say y, other than x. Therefore y ∈

⋂

v∈S N2
πP7

[v]. But,
N2

πP7
[b] ∩N2

πP7
[c] ∩N2

πP7
[g] = ∅.

3. If x = 6, then S = V (πP7) − N2
πP7

[6] = {1, 2, 3, c, d, f} has to be 2-domina-
ted by a vertex in D, say y, other than x. Therefore y ∈

⋂

v∈S N2
πP7

[v]. But,
N2

πP7
[1] ∩ N2

πP7
[2] ∩ N2

πP7
[3] = {1, 2, 3, b} and N2

πP7
[c] ∩ N2

πP7
[d] ∩ N2

πP7
[f ] =

{d, e} which are disjoint sets.

4. If x = 7, then S = V (πP7) − N2
πP7

[7] = {1, 2, 3, 4, b, c, d, e} has to be 2-
dominated by a vertex inD, say y, other than x. Therefore y ∈

⋂

v∈S N2
πP7

[v].
But, N2

πP7
[1] ∩N2

πP7
[2] ∩N2

πP7
[3] ∩N2

πP7
[4] = {2, 3} and N2

πP7
[b] ∩N2

πP7
[c] ∩

N2
πP7

[d] ∩N2
πP7

[e] = {c, d} which are disjoint sets.

Proposition 14. The cycle C7 is a universal γ2-fixer.

Proof. Let V (C7) = {1, 2, . . . , 7}, V (C ′

7) = {a, b, . . . , g} and π : V (C7) → V (C ′

7)
be a permutation. We will prove γ2(πC7) = 2 by showing that, for all possible
cases, there exists a γ2-set of πC7 of cardinality 2. By Observation 5, this implies
γ2(πC7) = γ2(C7) = 2. By the symmetry of πC7, we may assume that π(1) = a.
The proposition is a consequence of the following claims.

Claim 1. If {π(4), π(5)} ∩ {d, e} 6= ∅, then γ2(πC7) = 2.

Proof. Let A = {1, 2, 3, 6, 7, a, b, g} ⊆ N2
πC7

[1] and let B = V (πC7)− A = {4, 5,
c, d, e, f}. If d ∈ {π(4), π(5)}, then B ⊆ N2

πC7
[d] and D = {1, d} is a γ2-set of

πC7. Similarly, if e ∈ {π(4), π(5)}, then B ⊆ N2
πC7

[e] and D = {1, e} is a γ2-set
of πC7.

Claim 2. If π(2) = b and π(7) = g, then γ2(πC7) = 2.

Proof. If there exists an edge of the form {3c, 3d, 4c, 4d, 4e, 5d, 5e, 5f, 6e, 6f},
then Claim 1 can be applied by renaming the vertices in V (πC7). So, we only have
to consider the case where π(4) = f and π(5) = c which, in turn, implies π(3) = e
and π(6) = d. Observe that N2

πC7
[2] = {1, 2, 3, 4, 7, a, b, c, e} and N2

πC7
[7] =

{1, 2, 5, 6, 7, a, d, f, g}, therefore D = {2, 7} is γ2-set of πC7.

Claim 3. If π(2) = b, π(3) 6= c and π(7) 6= g, then γ2(πC7) = 2.

Proof. If there exists an edge of the form {4d, 4e, 5d, 5e, 5f, 6e, 6f}, then Claim 1
can be applied by renaming the vertices in V (πC7). So, we only have to consider
the cases where π(5) ∈ {c, g} and π−1(e) ∈ {3, 7}. Without loss of generality we
may assume π(5) = g which implies π(4) ∈ {c, f}. This gives the following cases.
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1. The permutation π is given by π(1) = a, π(2) = b, π(3) = e, π(4) = c, π(5) =
g, π(6) = d, π(7) = f.
We have N2

πC7
[a] = {1, 2, 5, 7, a, b, c, f, g} and N2

πC7
[d] = {3, 4, 5, 6, 7, b, c, d, e,

f}, therefore D = {a, d} is γ2-set of πC7.

2. The permutation π is given by π(1) = a, π(2) = b, π(3) = e, π(4) = f, π(5) =
g and {π(6), π(7)} = {c, d}.
In this case we can apply Claim 2 by renaming the vertices in V (πC7).

3. The permutation π is given by π(1) = a, π(2) = b, π(3) = f, π(4) = c, π(5) =
g, π(6) = d, π(7) = e.
We have N2

πC7
[a] = {1, 2, 5, 7, a, b, c, f, g} and N2

πC7
[c] = {2, 3, 4, 5, 6, a, b, c, d,

e}, therefore D = {a, c} is γ2-set of πC7.

4. The permutation π is given by π(1) = a, π(2) = b, π(4) = f, π(5) = g, π(7) =
e, and {π(3), π(6)} = {c, d}.
We haveN2

πC7
[1] = {1, 2, 3, 6, 7, a, b, e, g} andN2

πC7
[3] = {1, 2, 3, 4, 5, b, c, d, f},

therefore D = {1, 3} is γ2-set of πC7.

Claim 4. If π(6) = f and π(7) 6= g, then γ2(πC7) = 2.

Proof. If there exists an edge of the form {2b, 2g, 5e, 5g, 7b, 7e}, then Claim
3 applies by renaming the vertices in V (πC7). Therefore π(7) ∈ {c, d} and
π−1(g) ∈ {3, 4}. In any case, we have {1, 2, 5, 6, 7, a, c, d, f} ⊆ N2

πC7
[7] and {3, 4, 6,

a, b, e, f, g} ⊆ N2
πC7

[g]. Hence D = {7, g} is a γ2-set of πC7.

Claim 5. For every permutation π : V (C7) → V (C ′

7) the graph π(C7) has
γ2(πC7) = 2.

Proof. By the symmetry of π(C7), we may assume that π(1) = a. The cases
where π(7) = e, π(7) = f, π(7) = g are symmetrical cases to π(7) = d, π(7) =
c, π(7) = b, respectively. By Claim 3, if there is the edge 7g, then γ2(πC7) = 2.
So, we suppose π(7) ∈ {e, f}.
If π(7) = f and there exists an edge of the form {3b, 3c, 4b, 4c, 4d, 4e, 5d, 5e},

then we can apply Claim 1 after renaming the vertices of πC7. Therefore we can
assume π(4) = g and π(3) ∈ {d, e}.

1. If π(3) = d, π(4) = g and π(7) = f , then {1, 2, 3, 6, 7, a, b, f, g} ⊆ N2
πC7

[1]
and {1, 2, 3, 4, 5, c, d, e} ⊆ N2

πC7
[3]. Hence D = {1, 3} is γ2-set of πC7.

2. If π(3) = e, π(4) = g, π(7) = f and π(2) ∈ {b, d}, then Claim 3 applies
by renaming the vertices of πC7. Therefore we may assume that π(2) =
c in which case {1, 2, 3, 6, 7, a, b, c, f, g} ⊆ N2

πC7
[1] and {1, 2, 3, 4, 5, d, e} ⊆

N2
πC7

[3]. Hence D = {1, 3} is γ2-set of πC7.

If π(7) = e and there exists an edge of the form {2b, 3b, 4b, 4d, 4e, 5d, 5e, 6d,
6f}, then either Claim 1 or Claim 3 applies after renaming the vertices of πC7.
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Hence, we can assume π−1(d) ∈ {2, 3}. By the symmetry of π(C7), the case
π(2) = c is equivalent to the case π(7) = f , and π(2) = g is equivalent to the
case π(2) = b, so we may assume π(2) ∈ {d, f}.

1. If π(2) = f , π(3) = d and π(7) = e, then {1, 2, 3, 6, 7, a, b, e, f, g} ⊆ N2
πC7

[1]
and {1, 2, 3, 4, 5, c, d, e} ⊆ N2

πC7
[3]. Hence D = {1, 3} is γ2-set of πC7.

2. If π(2) = d, π(7) = e and there exists an edge of the form {5g, 6g}, then
Claim 1 applies after renaming the vertices of πC7. Likewise, if 3c is an edge
of πC7, then Claim 3 applies, and if there exist a edge of the form {4f, 5c},
then Claim 4 applies. Therefore π−1(4) ∈ {c, g} and π−1(5) ∈ {b, f}.

(a) If π(4) = c, π(5) = b or π(4) = g, π(5) = f , then Claim 3 applies after
renaming the vertices of πC7.

(b) If π(2) = d, π(4) = c, π(5) = f, π(7) = e. Then {1, 2, 3, 6, 7, a, b, e, d, g} ⊆
N2

πC7
[1] and {2, 3, 4, 5, 6, c, d, f} ⊆ N2

πC7
[4]. Hence D = {1, 4} is γ2-set

of πC7.

(c) Suppose π(2) = d, π(4) = g, π(5) = b, π(7) = e. Then D = {1, a} is γ2-
set of πC7 because {1, 2, 3, 6, 7, a, b, e, d, g} ⊆ N2

πC7
[1] and {4, 5, b, c, f, g}

⊆ N2
πC7

[a].

By Claims 1–5, the proposition follows.

Proposition 15. The cycle C8 is not a universal γ2-fixer.

Proof. Since γ2(C8) = 2, it suffices to prove that there is a permutation π ∈ S8

such that γ2(πC8) > 2. Consider the permutation

π =

(

1 2 3 4 5 6 7 8
a b f e d c g h

)

.

1

2

3

45

6

7

8

a

b

c

de

f

g

h

Figure 4. The graph πC8.

Due to the symmetry of the graph πC8, we may assume that D contains one
of the vertices 1, 2, 3 or 4. If 1 ∈ D, then V (πC8)\N

2
πC8

[1] = {4, 5, 6, c, d, e, f, g}.
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However, no vertex of πC8 2-dominates {4, 5, 6, c, d, e, f, g}. If 2 ∈ D, then
V (πC8) \ N2

πC8
[2] = {5, 6, 7, d, e, g, h}. However, no vertex of πC8 2-dominates

{5, 6, 7, d, e, g, h}. A similar argument shows that if 3 ∈ D, then no vertex of πC8

2-dominates V (πC8) \N
2
πC8

[3], and if 4 ∈ D, then no vertex of πC8 2-dominates
V (πC8) \N

2
πC8

[4].

Proposition 16. The cycle C11 is not a universal γ2-fixer.

Proof. Since γ2(C11) = 3, it suffices to prove that there is a permutation π ∈ S11

such that γ2(πC11) > 3. Consider the permutation

π =

(

1 2 3 4 5 6 7 8 9 10 11
j d 3 b g f e i h a k

)

.

1

2

3

4

5

6

7

8

a
b

c
d

e

f

g

h

9

10

11

i
j

k

Figure 5. The graph πC11.

Suppose that D is a 2-dominating set of πC11. Since there is at least one
vertex in D at distance 2 from vertex 3, D contains at least one vertex in
N2

πC11
[3] = {1, 2, 3, 4, 5, b, c, d}. Due to the symmetry of πC11, we may assume

that D contains one vertex in S = {1, 2, 3}.
Likewise, the set D must contain a vertex in N2

πC11
[9] = {7, 8, 9, 10, 11, a, g,

h, i}. We will see that no set D, with cardinality 3, containing a vertex in S and a
vertex in N2

πC11
[9] can 2-dominate the graph πC11. To prove this, we will consider

the 27 cases that arise combining one vertex of S with a vertex of N2
πC11

[9].
If there is a 2-dominating set of cardinality 3, for one of the 27 cases there

must be a vertex that 2-dominates all the vertices not dominated by at least one
of the two vertices considered in the corresponding case. Therefore, for at least
one of the cases considered, the intersection of all the 2-neighborhoods of the
vertices not dominated by at least one of the two vertices considered should be
non-empty. For this purpose, for each i ∈ {1, 2, . . . , 27} let

xi =







1, if 1 ≤ i ≤ 9;
2, if 10 ≤ i ≤ 18;
3, if 19 ≤ i ≤ 27,
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and let

yi =























































a, if i ∈ {1, 10, 19};
g, if i ∈ {2, 11, 20};
h, if i ∈ {3, 12, 21};
i, if i ∈ {4, 13, 22};
7, if i ∈ {5, 14, 23};
8, if i ∈ {6, 15, 24};
9, if i ∈ {7, 16, 25};
10, if i ∈ {8, 17, 26};
11, if i ∈ {9, 18, 27}.

For each i, 1 ≤ i ≤ 27, we calculate the set Si of vertices not 2-dominated
by the two vertices (xi, yi) and show that there is no vertex contained in the
intersection of all the 2-neighborhoods of vertices in Si.
The sets N2

πC11
[x] for x ∈ V (πC11) are shown in Table 1 and the results

obtained in each case are shown in Table 2.

x N2
πC11

[x] x N2
πC11

[x]

1 {1, 2, 3, 10, 11, d, i, j, k} a {4, 9, 10, 11, a, b, c, j, k}
2 {1, 2, 3, 4, 11, c, d, e, j} b {3, 4, 5, 10, k, a, b, c, d}
3 {1, 2, 3, 4, 5, b, c, d} c {2, 3, 4, a, b, c, d, e}
4 {2, 3, 4, 5, 6, a, b, c, g} d {1, 2, 3, 7, b, c, d, e, f}
5 {3, 4, 5, 6, 7, b, f, g, h} e {2, 6, 7, 8, c, d, e, f, g}
6 {4, 5, 6, 7, 8, e, f, g} f {5, 6, 7, d, e, f, g, h}
7 {5, 6, 7, 8, 9, d, e, f, i} g {4, 5, 6, 9, e, f, g, h, i}
8 {6, 7, 8, 9, 10, e, h, i, j} h {5, 8, 9, 10, f, g, h, i, j}
9 {7, 8, 9, 10, 11, a, g, h, i} i {1, 7, 8, 9, g, h, i, j, k}
10 {1, 8, 9, 10, 11, a, b, h, k} j {1, 2, 8, 11, a, h, i, j, k}
11 {1, 2, 9, 10, 11, a, j, k} k {1, 10, 11, a, b, i, j, k}

Table 1. N2

πC11
[x] for x ∈ V (πC11).

Proposition 17. The cycle C12 is not a universal γ2-fixer.

Proof. Since γ2(C12) = 3, we only need to prove that γ2(IC12) > 3, where

I =

(

1 2 3 4 5 6 7 8 9 10 11 12
a b c d e f g h i j k l

)

.

Observe that each vertex belonging to {1, 2, . . . , 12} 2-dominates 5 vertices
in {1, 2, . . . , 12} and 3 vertices in {a, b, . . . , l}, and that each vertex in {a, b, . . . , l}
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Case (xi, yi) Si Ti

1 (1, a) {5, 6, 7, 8, e, f, g, h} {8, e, f, h}

2 (1, g) {7, 8, a, b, c} {7, a, c}

3 (1, h) {4, 6, 7, a, b, c, e} {7, a, c}

4 (1, i) {4, 5, 6, a, b, c, e, f} {a, f}

5 (1, 7) {4, a, b, c, g, h} {c, h}

6 (1, 8) {4, 5, a, b, c, f, g} {a, f}

7 (1, 9) {4, 5, 6, b, c, e, f} {6, b, e}

8 (1, 10) {4, 5, 6, 7, c, e, f, g} {5, c, f}

9 (1, 11) {4, 5, 6, 7, 8, b, c, e, f, g, h} {c, h}

10 (2, a) {5, 6, 7, 8, f, g, h, i} {5, 7, h, i}

11 (2, g) {7, 8, 10, a, b, k} {7, b, k}

12 (2, h) {6, 7, a, b, k} {6, k}

13 (2, i) {5, 6, 10, a, b, f} {5, 6, 10}

14 (2, 7) {10, a, b, g, h, k} {a, g, k}

15 (2, 8) {5, a, b, f, g, k} {a, g}

16 (2, 9) {5, 6, b, f, k} {6, k}

17 (2, 10) {5, 6, 7, f, g, i} {6, 7, g, i}

18 (2, 11) {5, 6, 7, 8, b, f, g, h, i} {b, h, i}

19 (3, a) {6, 7, 8, e, f, g, h, i} {6, 7, g, i}

20 (3, g) {7, 8, 10, 11, a, j, k} {7, a, k}

21 (3, h) {6, 7, 11, a, e, k} {6, k}

22 (3, i) {6, 10, 11, a, e, f} {a, f, }

23 (3, 7) {10, 11, a, g, h, j, k, } {a, g, k}

24 (3, 8) {11, a, f, g, k} {a, f}

25 (3, 9) {6, e, f, j, k} {6, k}

26 (3, 10) {6, 7, e, f, g, i, j} {6, 7, g, i}

27 (3, 11) {6, 7, 8, e, f, g, h, i} {6, 7, g, i}

Table 2. In each case the set Si = V \ (N2

πC11
[xi] ∪ N2

πC11
[yi]) and a subset Ti of Si

satisfying
⋂

v∈Ti
N2

πC11
[v] = ∅ are given.

2-dominates 5 vertices in {a, b, . . . , l} and 3 vertices in {1, 2, . . . , 12}. Suppose on
the contrary that there exists a 2-dominating set D with 3 vertices, r of them in
{1, 2, . . . , 12} and the remaining s in {a, b, . . . , l}. Since each vertex of IC12 must
be 2-dominated, then r, s must be integers satisfying:
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5r + 3s = 12,

3r + 5s = 12,

r + s = 3.

From the previous equations we derive that r, s are integers satisfying r = s
and r + s = 3, which is a contradiction.

Proposition 18. The cycle C16 is not a universal γ2-fixer.

Proof. Since γ2(C16) = 4, it suffices to prove that there is a permutation π ∈ S16

such that γ2(πC16) > 4. Consider the permutation

π =

(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n b c d e f g h i j k l m a p o

)

.

We remark that each vertex in {1, 2, . . . , 16} 2-dominates exactly 5 vertices
in {1, 2, . . . , 16} and at most 4 vertices in {a, b, . . . , p}. Moreover, vertices in
{3, 4, . . . , 12, 15, 16} and vertices in {c, d, . . . , l, o, p} 2-dominate exacty 3 ver-
tices in {a, b, . . . , o} and in {1, 2, . . . , 16}, respectively. Likewise, each vertex in
{a, b, . . . , o} 2-dominates exactly 5 vertices in {a, b, . . . , o} and at most 4 vertices
in {1, 2, . . . , 16} (see Figure 6).

1
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7 8

a
b

c

d

e
f

g h

9

10

11

12

13

14

15
16

i
j

k
l

m
n

op

Figure 6. The graph πC16.

We will prove that it is not possible to 2-dominate πC16 with 4 vertices.
Suppose on the contrary that there exists a 2-dominating set D with 4 vertices.
Let S = {1, 2, 13, 14, a, b,m, n}. We claim that if D is a 2-dominating set of

πC16 with 4 vertices, then one of the following cases holds:

(i) all vertices are 2-dominated by exactly one vertex in D,

(ii) all vertices are 2-dominated by exactly one vertex in D, except at most two
vertices that are 2-dominated by two vertices in S,



396 F. Hurtado, M. Mora, E. Rivera-Campo and R. Zuazua

(iii) all vertices are 2-dominated by exactly one vertex in D, except one vertex
that is 2-dominated by three vertices in S.

To see this, observe that there are 12 vertices not lying in the union of the
2-neighborhoods of the vertices in S, hence D contains at most two vertices of S.
Since πC16 has 32 vertices, vertices of πC16 are 2-dominated exactly by one vertex
of D, except two vertices that are 2-dominated both of them by two vertices of
D or except one vertex that is 2-dominated by three vertices of D.
There must be a vertex that 2-dominates vertex 7, that is a vertex from

N2
πC16

[7] = {5, 6, 7, 8, 9, f, g, h}. Due to the symmetry of the graph πC16, we may
assume that D contains one of the vertices 5, 6 or 7.
If 5 ∈ D, then observe that N2

πC16
[5] = {3, 4, 5, 6, 7, d, e, f} and g /∈ N2

πC16
[5].

By our claim, we may assume that i ∈ D. Now, also by our claim, we may
assume 13 ∈ D because 11 /∈ N2

πC16
[5] ∪ N2

πC16
[i]. The set of vertices not in

N2
πC16

[5] ∪N2
πC16

[i] ∪N2
πC16

[13] is S5 = {1, 2, 16, b, c, o, p}. By the above remark,
only vertex a can 2-dominate all vertices in S5, but 1 /∈ N2

πC16
[a].

For the case where 6 ∈ D, observe that N2
πC16

[6] = {4, 5, 6, 7, 8, e, f, g} and
h /∈ N2

πC16
[6]. By our claim, we may assume that j ∈ D. Now, also by our claim,

we may assume 14 ∈ D because 12 /∈ N2
πC16

[6]∪N2
πC16

[j]. The set of vertices not
in N2

πC16
[6]∪N2

πC16
[j]∪N2

πC16
[14] is S6 = {1, 2, 3, c, d, n, o}. By the above remark,

no vertex can 2-dominate all vertices in S6.
Finally, if 5 ∈ D, observe that N2

πC16
[7] = {5, 6, 7, 8, 9, f, g, h} and e, i /∈

N2
πC16

[5]. By our claim, we may assume that c, k ∈ D. The set of vertices not
in N2

πC16
[7] ∪N2

πC16
[c] ∪N2

πC16
[k] is S7 = {1, 13, 14, 15, 16, n, o, p}. By the above

remark, only vertex 15 can 2-dominate all vertices in S7, but n /∈ N2
πC16

[15].

By Observation 6, we have the following:

Corollary 19. The paths P8, P11, P12 and P16 are not universal γ2-fixers.

4. Final Comment

A natural problem, unsolved here, is that of determining all graphs which are
γ2-fixers. A more modest problem is that of characterizing those graphs G for
which γ2(G) ≤ γ2(πG) for all permutations π.
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