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Abstract

A graph is defined to be an atom if no minimal vertex separator induces
a complete subgraph; thus, atoms are the graphs that are immune to clique
separator decomposition. Atoms are characterized here in two ways: first
using generalized vertex elimination schemes, and then as generalizations of
2-connected unichord-free graphs (the graphs in which every minimal vertex
separator induces an edgeless subgraph).
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1. Introduction

If a graph G has S ⊂ V (G), let G − S denote the subgraph of G induced by
V (G) − S, and if v ∈ V (G), let G − v = G − {v}. A component of G is an
inclusion-maximal connected subgraph. For nonadjacent vertices v and w in a
connected graph G, a v,w-separator is a set S ⊆ V (G)−{v, w} such that V (G)−S

induces a subgraph of G that has v and w in different components. A minimal

v,w-separator is a v,w-separator that is not a proper subset of another v,w-
separator, and a (minimal) separator of G is a (minimal) v,w-separator for some
v, w ∈ V (G). If S is a minimal separator of G, then G− S has two components
such that every vertex in S has neighbors in each of those components of G− S;
see [3] for more on minimal separators.

A clique of a graph G is a nonempty set of pairwise-adjacent vertices of G, a
clique (minimal) v,w-separator of G is a (minimal) v,w-separator that is a clique,
and a clique (minimal) separator of G is a (minimal) separator that is a clique.

http://dx.doi.org/10.7151/dmgt.1944
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Define a graph G to be an atom if G is connected and has no clique separa-
tor (or, equivalently, G has no clique minimal separator). Therefore, a connected
graph G is an atom if and only if G is not decomposable by clique separator

decomposition as in [1, 9] (equivalently, G is not decomposable by clique mini-

mal separator decomposition as in [1, 4]). Reference [1] surveys the significance,
history, applications, and algorithmic aspects of clique (minimal) separator de-
composition. In spite of this significance and the fundamental role that atom
subgraphs play, these subgraphs do not seem to have been explicitly studied as
actual graphs. The present paper will characterize such atom graphs.

A chord xy of a cycle C is an edge xy with x, y ∈ V (C) and xy 6∈ E(C). A
graph G is chordal if every cycle of G with length 4 or more has a chord—in other
words, if every cycle long enough to have a chord always does have a chord. See
[2, 8] for many other characterizations (and applications) of chordal graphs, one
of which is that every induced subgraph H of G has a simplicial vertex, meaning
a vertex v whose neighborhood N(v) is a clique of H (equivalently, whose closed
neighborhood N [v] = N(v) ∪ {v} is a clique). Another characterization of being
chordal is that every minimal separator is a clique minimal separator. As a result,
being an atom graph can be viewed as, in a sense, the opposite of being a chordal
graph.

Examples of atoms include all cycles, wheels, complete graphs, and complete
bipartite graphs—but the complete tripartite graph K1,1,2 (formed by deleting
one edge from K4) is not an atom, since the two degree-3 vertices form a clique
separator. If G is connected but G − v is not, then G is not an atom ({v} is a
minimal separator); thus, every atom is 2-connected orK1 orK2. Other examples
of graphs that are not atoms include chordal graphs that are not complete (take
S = N(v) for any simplicial vertex v) and graphs that consist of a cycle augmented
with a unique chord xy (take S = {x, y}). Figure 1 shows a more involved
example of a graph G that is not an atom, with a clique minimal 1, 3-separator
S = {2, 5, 6}. (The meaning of B and B ∪ C will be explained in Section 2.)
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Figure 1. A non-atom G and a nonsingular bridge B of the triangle C = 256.
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Sections 2 and 3 will characterize atoms using two standard graph-theoretic
approaches. Section 2 involves strategically deleting vertices, which loosely evokes
the familiar simplicial vertex elimination characterization of chordal graphs. Sec-
tion 3 focuses on cycles and chords, partially generalizing a characterization of a
previously-studied subclass of atoms—the “unichord-free graphs” (the graphs in
which no cycle has a unique chord).

2. Characterizations Involving Vertex Deletions

In Theorem 1, vertices u and v are called twins if u and v are adjacent and
N [u] = N [v] or if u and v are nonadjacent and N(u) = N(v). Vertices u1, u2, . . .
are pairwise nonadjacent twins if ui and uj are nonadjacent twins whenever i 6= j.

Theorem 1. If a graph G has either adjacent twin vertices w and x or pairwise

nonadjacent twin vertices x, y, and z, then G is an atom if and only if G− x is

an atom.

Proof. First suppose w and x are adjacent twin vertices of a graph G and S is
any clique minimal separator of G. If w ∈ S, then x ∈ S; otherwise, x would be
in a component Hx of G−S with N(x) ⊆ V (Hx)∪S while some v ∈ N(w)−{x}
would be in a different component of G − S (contradicting N [w] = N [x]). If
w 6∈ S, then the twins w and x are both in the component Hx of G− S. Hence,
w and x are either both in S or both in the same component of G − S, and so
each S ⊂ V (G) will be a clique minimal separator of G if and only if S−{x} is a
clique minimal separator of G− x. Therefore, G is an atom if and only if G− x

is an atom.
Now suppose x, y, and z are pairwise nonadjacent twin vertices of G. If y is

simplicial, then neither G nor G − x can be an atom (because N(y) cannot be
a clique minimal y, z-separator). Hence, suppose y is not simplicial (so none of
x, y, z is simplicial) and suppose S is any clique minimal separator of G. If any
one of x, y, z is in S, then it will have neighbors u and v in different components
of G − S, and so each of the nonadjacent twins x, y, z is in N(u) ∩ N(v) ⊆ S,
which would contradict S being a clique. Thus, none of x, y, z can be in S, so
they will be, respectively, in (possibly identical) components Hx, Hy, Hz of G−S.
If y has a neighbor u ∈ Hy, then u ∈ N(x)∩N(z); thus x, y, z are all in Hy, and
so Hx = Hy = Hz. If, instead, y has no neighbor in Hy, then each of Hx, Hy, Hz

is a singleton. Either way, S ⊂ V (G) will be a clique minimal separator of G if
and only if S − {x} is a clique minimal separator of G − x. Therefore, G is an
atom if and only if G− x is an atom.

The remainder of this section will move towards the characterization in The-
orem 5, showing that a graph G is an atom if and only if either G is a particular
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very simple type of graph—specifically, a chordless cycle or a complete graph—or
G is recursively reducible to this simple type of graph by repeated vertex dele-
tions (where each reduction step simultaneously deletes all the vertices of certain
sorts of subgraphs).

As in [11], define a nonsingular bridge B of a cycle C in a graph G to be a
subgraph of G formed from a nonempty component H of G−V (C) by appending
all the edges xy that have x ∈ V (H) and y ∈ V (C); thus B is a (not necessarily
induced) subgraph of B ∪ C. Figure 1 shows an example with H just the edge
34. Call the vertices in V (B) ∩ V (C) the vertices of attachment of B, and let
B◦ = V (B)− V (C) = V (H) 6= ∅.

Lemma 2. If an atom G has a chordless cycle with a nonsingular bridge B, then

G−B◦ is an atom.

Proof. Suppose B is a nonsingular bridge of a chordless cycle C in an atom
G. Suppose G′ = G − B◦ is not an atom, say because G′ has a clique minimal
separator S′. Since a chordless cycle of G′ cannot contain vertices from more
than one component of G′−S′, let H ′

1
be the component of G′−S′ that contains

V (C)−S′, with say v1 ∈ V (H ′

1
). Choose v2 ∈ V (G′) in a component H ′

2
6= H ′

1
of

G′ − S′. Since every b ∈ B◦ has NG[b] ⊆ V (B) ⊆ B◦ ∪ V (C) ⊆ B◦ ∪ V (H ′

1
) ∪ S′,

there is a minimal v1, v2-separator of G contained in the clique S′, contradicting
that G is an atom.

Lemma 3. If a graph G is not an atom and has a chordless cycle C with a

nonsingular bridge B such that B ∪ C is an atom and if B has at least two

nonadjacent vertices of attachment, then G−B◦ is not an atom.

Proof. Suppose G is not an atom, say because G has a clique minimal separator
S, and suppose B is a nonsingular bridge of a chordless cycle C in G such that
B ∪C is an atom and B has nonadjacent vertices of attachment c1, c2 ∈ V (B)−
B◦ ⊆ V (C). Since the nonadjacent vertices c1 and c2 cannot both be in the
clique S, say c1 6∈ S. Since C is chordless and S is a clique minimal separator of
G, there is a component H1 of G − S that contains V (C) − S (and so contains
c1). Choose v2 ∈ V (G) in some component H2 6= H1 of G − S, so there is a
clique minimal c1, v2-separator contained in S. Since B ∪ C is an atom, S does
not contain a clique minimal separator of B ∪ C, so v2 6∈ B◦, and so S − B◦ is a
clique minimal c1, v2-separator of G−B◦. Therefore, G−B◦ is not an atom.

Figure 1 illustrates the necessity of the conditions on B and C in Lemma 3
for the non-atom graph G shown there. If C is the chordless cycle induced by
{2, 5, 6}, then the nonsingular bridge B with B◦ = {3, 4} has the three vertices
of attachment 2, 5, 6, and the 4-spoke wheel B ∪C is an atom; note that B does
not have nonadjacent vertices of attachment and the 4-spoke wheel G − B◦ is
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an atom. Alternatively, if C is the chordless cycle induced by {2, 3, 4, 5}, then
the nonsingular bridge B with B◦ = {1, 6, 7} has the four vertices of attachment
2, 3, 4, 5, of which 2 and 4 are nonadjacent; in this case B∪C ∼= G is not an atom
and the length-4 cycle G−B◦ is an atom.

Lemma 4. Every atom is either a chordless cycle or a complete graph or has a

chordless cycle C with a nonsingular bridge B such that B ∪ C is an atom and

B has at least two nonadjacent vertices of attachment.

Proof. Suppose G is an n-vertex atom with Cn 6∼= G 6∼= Kn. Therefore, G is 2-
connected and has a chordless cycle C of length k ≥ 4 in G (otherwise G would be
chordal, so G 6∼= Kk would have a simplicial vertex v with N(v) a clique minimal
separator of G, contradicting that G is an atom), and C has a nonsingular bridge
B (since C is chordless and G 6∼= Ck).

Suppose for the moment that B ∪C is not an atom, say because B ∪C has a
clique minimal v, w-separator S. If v, w ∈ V (C), then S cannot contain a unique
vertex of C or exactly two consecutive vertices of C (since v and w would still
be connected by the remaining subpath of C−S) or two or more nonconsecutive
vertices of C (since C is chordless and S is a clique); hence C would have to be
inside of one component of B ∪ C − S (contradicting that S is a v, w-separator
of B ∪ C). If, on the other hand, at least one of v, w is in V (B) − V (C) = B◦

(and so is nonadjacent with each vertex of G−V (B)), then the clique S is inside
V (B) with every v-to-w path in G containing a vertex in S; but then S would
be a clique minimal v, w-separator of all of G (contradicting that G is an atom).
Therefore, B ∪ C is an atom.

Now suppose that every two vertices of attachment of B are adjacent. Since
C is chordless with length at least 4, B has at most two vertices of attachment
and, if two, they are adjacent. Thus the vertices of attachment of B would include
a clique minimal v, w-separator of G with, say, v ∈ B◦ and w ∈ V (C) − V (B)
(contradicting that G is an atom). Therefore, B has at least two nonadjacent
vertices of attachment.

Theorem 5. A graph is an atom if and only if it can be reduced to a chordless

cycle or a complete graph by repeatedly deleting the vertices in B◦ where B is a

nonsingular bridge of a chordless cycle C such that B ∪C is an atom and B has

at least two nonadjacent vertices of attachment.

Proof. The “only if” direction follows from (repeated use of) Lemmas 2 and 4.
The “if” direction follows from cycles and complete graphs being atoms and from
(repeated use of) Lemma 3.
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3. Characterizations Involving Cycles and Chords

The graphs in which no cycle has a unique chord were introduced independently
in [6, 10] and characterized in [6] by every minimal separator inducing an edgeless
subgraph (additional characterizations appear in [7, 10]). These graphs have
become known as the unichord-free graphs; see [5] and its references. Thus, every
2-connected unichord-free graph is an atom. Since a graph is chordal if and only
if every minimal separator is a clique, being unichord-free is the opposite of being
chordal in a stronger sense than being an atom is.

Another characterization in [6] is that a graph is unichord-free if and only if,
for every chord xy of every cycle C, there exist adjacent vertices v, w ∈ V (C)−
{x, y} such that the vertices x, v, y, w come in that order around C. (Such chords
xy and vw are often called “crossing chords”.) That characterization corresponds
to the special case of Theorem 6 in which alternative (1) holds with π1 having
exactly one edge not in E(C) (a chord of C).

Theorem 6. A 2-connected graph G is an atom if and only if, for every two

vertices v and w, every cycle C through v and w, and every chord xy of C such

that the four vertices x, v, y, w come in that order around C, one of the following

alternatives holds:

(1) G − {x, y} contains a v-to-w path π1 such that no internal vertex z1 of π1
forms a triangle xyz1.

(2) G − {x, y} contains two v-to-w paths π1 and π2 with, respectively, distinct

nonadjacent internal vertices z1 and z2 that form triangles xyz1 and xyz2.

Proof. For the “only if” direction, suppose an atom G contains vertices v and
w, cycle C, and chord xy as described in the theorem. For any path π, let π◦

denote the set of internal vertices of π. Since G is an atom, the clique {x, y}
cannot be a minimal v, w-separator, and so G−{x, y} contains a v-to-w path π1.

If some such path π1 has no internal vertex that forms a triangle with xy,
then alternative (1) holds. Otherwise, suppose (1) fails and z1 ∈ π◦

1
forms a

triangle xyz1.

Since G is an atom, the clique {x, y, z1} cannot be a minimal v, w-separator,
and so G−{x, y, z1} contains a v-to-w path π2 that can be assumed to contain a
z2 ∈ π◦

2
that forms a triangle xyz2 (otherwise, π2 and z2 would satisfy alternative

(1)). Moreover, z2 6= z1 can be assumed to not be adjacent to z1 (otherwise, all
the internal vertices of all the v-to-w paths would form a clique with x and y that
would be a clique minimal v, w-separator, contradicting that G is an atom), and
so (2) holds.

Therefore, either (1) or (2) holds.

For the “if” direction, suppose a 2-connected graph G is not an atom, say
because G has a clique minimal separator S. Since G is 2-connected, there exist
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adjacent x, y ∈ S, nonadjacent v and w from two different components of G− S,
and a cycle C through v and w that has chord xy. Thus, the four vertices x, v, y, w
come in that order around C.

If |S| = 2, then no v-to-w paths exist in G−{x, y}, and so (1) and (2) would
both fail.

Hence, suppose |S| ≥ 3, so a v-to-w path exists in G− {x, y}. Every v-to-w
path π1 in G − {x, y} contains a z1 ∈ π◦

1
∩ S that forms a triangle xyz1, and so

(1) fails. If |S| = 3, then no v-to-w path π2 would exist in G− {x, y, z1}, and so
(2) would also fail.

Hence, suppose |S| ≥ 4, so v-to-w paths π1 in G−{x, y} and π2 in G−{x, y,
z1} exist, each containing zi ∈ π◦

i ∩ S that forms a triangle xyzi. But z1, z2 ∈ S

implies that, for every such π2 and z2, the vertices z1 and z2 are adjacent, and
so (2) also fails.

Therefore, in every case, both (1) and (2) would fail.

Corollary 7 will again characterize atoms (now without assuming 2-connected-
ness), but with Corollary 7 using an existential quantifier (∃C) where Theorem 6
has a universal quantifier (∀C).

Corollary 7. A graph G with at least three vertices is an atom if and only if,

for every two vertices v and w, there exists a cycle C through v and w such that,

for every chord xy of C such that the four vertices x, v, y, w come in that order

around C, alternative (1) or (2) of Theorem 6 holds.

Proof. For the “only if” direction, suppose an atom G contains distinct vertices
u, v, and w. Since K1 and K2 are the only atoms that are not 2-connected,
G is 2-connected and so has a cycle C through v and w. If |V (C)| = 3, then
C is chordless, which makes “for every chord xy of C . . . ” vacuously true in
Theorem 6, and so alternative (1) or (2) holds. If |V (C)| > 3 and xy is a chord
of C such that the four vertices x, v, y, w come in that order around C, then (1)
or (2) holds by Theorem 6.

For the “if” direction, suppose G has |V (G)| ≥ 3 and is not an atom. If
G is not 2-connected, then there are vertices v and w that are are not in any
cycle, which makes “there exists a cycle C through v and w . . . ” false. Hence,
suppose the non-atom G is 2-connected with a clique minimal v, w-separator S.
Thus there is a cycle C that contains v and w, and there are adjacent x, y ∈ S

that form a chord xy of C, with the four vertices x, v, y, w coming in that order
around C. The remainder of the proof uses the same argument (word for word,
with cases for |S| = 2, |S| = 3, and |S| ≥ 4) as the proof of the “if” direction of
Theorem 6.
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