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Abstract

Let V be a finite vertex set and let (A,+) be a finite abelian group. An
A-labeled and reversible 2-structure defined on V is a function g : (V ×V ) \
{(v, v) : v ∈ V } −→ A such that for distinct u, v ∈ V , g(u, v) = −g(v, u).
The set of A-labeled and reversible 2-structures defined on V is denoted by
L (V,A). Given g ∈ L (V,A), a subset X of V is a clan of g if for any
x, y ∈ X and v ∈ V \X, g(x, v) = g(y, v). For example, ∅, V and {v} (for
v ∈ V ) are clans of g, called trivial. An element g of L (V,A) is primitive if
|V | ≥ 3 and all the clans of g are trivial.

The set of the functions from V to A is denoted by S (V,A). Given
g ∈ L (V,A), with each s ∈ S (V,A) is associated the switch gs of g by s

defined as follows: given distinct x, y ∈ V , gs(x, y) = s(x) + g(x, y) − s(y).
The switching class of g is {gs : s ∈ S (V,A)}. Given a switching class
S ⊆ L (V,A) and X ⊆ V , {g↾(X×X)\{(x,x):x∈X} : g ∈ S} is a switching
class, denoted by S[X].
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Given a switching class S ⊆ L (V,A), a subset X of V is a clan of S if X
is a clan of some g ∈ S. For instance, every X ⊆ V such that min(|X|, |V \
X|) ≤ 1 is a clan of S, called trivial. A switching class S ⊆ L (V,A) is
primitive if |V | ≥ 4 and all the clans of S are trivial. Given a primitive
switching class S ⊆ L (V,A), S is critical if for each v ∈ V , S − v is not
primitive. First, we translate the main results on the primitivity of A-labeled
and reversible 2-structures in terms of switching classes. For instance, we
prove the following. For a primitive switching class S ⊆ L (V,A) such that
|V | ≥ 8, there exist u, v ∈ V such that u 6= v and S[V \ {u, v}] is primitive.
Second, we characterize the critical switching classes by using some of the
critical digraphs described in [Y. Boudabous and P. Ille, Indecomposability

graph and critical vertices of an indecomposable graph, Discrete Math. 309
(2009) 2839–2846].

Keywords: labeled and reversible 2-structure, switching class, clan, primi-
tivity, criticality.
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1. Introduction

Ehrenfeucht et al. [5, 6] generalized the decomposition of graphs in modules
by introducing 2-structures and clans of 2-structures. They deduced a notion
of primitivity for 2-structures [7] that leads to the notion of criticality for 2-
structures [1, 11]. In another context, operations of switching were defined for
graphs [12] and digraphs [3]. These operations generate switching classes. Ehren-
feucht et al. [5] generalized the switching to 2-structures by labeling them with
a group.

Ehrenfeucht et al. [5] defined the family of clans of a switching class of (lab-
eled) 2-structures as the collection of clans of the members of the class. A key
difference is that the family of clans of a switching class is always closed under
complementation whereas it is not the case for 2-structures. In particular, given a
switching class and an element of the underlying set, one can construct a member
of the class in which this element is isolated. This isolation process facilitates the
study of the family of clans of a switching class.

Once one has the notion of clan, the notions of primitivity and criticality
follow naturally. They have been used to good effect in a number of works on
various structures. It is natural to seek analogous results for switching classes.
Because the clans of a switching class are closed under complementation, some
subtleties appear. The isolation process facilitates translating the main results
on primitivity of 2-structures in terms of switching classes. However, the same
does not apply as easily for criticality.
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Schmerl and Trotter [11] and Bonizzoni [1] characterized independently the
critical 2-structures. Ille [8] introduced the primitivity graph to study the prim-
itive digraphs. Boudabbous and Ille [2] used this tool to bring out an elegant
approach for describing critical digraphs. It follows from the characterization
of Bonizzoni [1] that the critical 2-structures can be classify into four families
by considering their primitivity graphs. The labeling of 2-structures by a group
allows us to describe each of the four families as a unique algebraic formula of
elementary labeled 2-structures that come from the critical digraphs of the corre-
sponding family. In this paper, we adopt a similar approach for switching classes.
Surprisingly, we only obtain three families. Indeed, two of the four families of crit-
ical 2-structures collapse into only one. In order to describe the switching classes
of each of the three families, we still use the isolation process but technical issues
arise that must be dealt with.

2. Switching Classes

We only consider finite structures. Let (A,+) be an abelian group. The identity
element of (A,+) is denoted by 0 and the inverse element of a ∈ A is denoted
by −a. For each a ∈ A, oA(a) denotes the order of a in A. Let V be a vertex
set. An A-labeled 2-structure defined on V is a function g : (V × V ) \ {(v, v) :
v ∈ V } −→ A. An A-labeled 2-structure g defined on V is reversible if for
distinct x, y ∈ V , we have g(x, y) = −g(y, x). We denote the set of A-labeled and
reversible 2-structures defined on V by L (V,A). Given g ∈ L (V,A) and X ⊆ V ,
the element g↾(X×X)\{(x,x):x∈X} of L (X,A) is the 2-substructure of g induced by
X, which is simply denoted by g[X]. Given X ⊆ V , g[V \X] is also denoted by
g −X, and by g − v when X = {v}.

Let G be a graph. Given X ⊆ V (G), the switch GX of G by {X,V (G) \X}
[12] is the graph obtained from G by exchanging the edges and the non-edges
between X and V (G) \X. Analogously, given a tournament T and X ⊆ V (T ),
the switch TX of T by {X,V (G) \ X} is the tournament obtained from T by
reversing the arcs between X and V (G) \X.

Ehrenfeucht et al. [5] generalized the switch to A-labeled and reversible 2-
structures as follows. Given a vertex set V , S (V,A) denotes the set of functions
from V to A (such functions are called selectors in [5]). Now, with g ∈ L (V,A)
and s ∈ S (V,A) associate the switch gs of g by s defined as follows: given distinct
x, y ∈ V ,

gs(x, y) = s(x) + g(x, y)− s(y).

For distinct x, y ∈ V , we have gs(y, x) = −gs(x, y). Thus gs ∈ L (V,A).

As for graphs and tournaments, Ehrenfeucht et al. [5] defined a binary rela-
tion R on L (V,A) as follows. Given g, h ∈ L (V,A), R(g, h) = + if there exists
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s ∈ S (V,A) such that h = gs. Given g ∈ L (V,A), we have gO = g, where O is
the element of S (V,A) defined by O(x) = 0 for every x ∈ V . Hence R is reflexive.
Furthermore, given g ∈ L (V,A) and s, t ∈ S (V,A), we have (gs)t = gs+t, where
s+t is the element of S (V,A) defined by (s+t)(x) = s(x)+t(x) for every x ∈ V .
It follows that R is symmetric and transitive, so R is an equivalence relation. The
switching classes in L (V,A) are the equivalence classes with respect to R. Let
g ∈ L (V,A). The equivalence class of g is called the switching class of g, and is
denoted by 〈g〉. Thus, for every g ∈ L (V,A), we have

〈g〉 = {gs : s ∈ S (V,A)}.

Given g ∈ L (V,A) and X ⊆ V , we have

〈g[X]〉 = {h[X] : h ∈ 〈g〉}.

Therefore, given a switching class S ⊆ L (V,A), {g[X] : g ∈ S} is a switching
class in L (X,A), which is denoted by S[X]. Given X ⊆ V , S[V \ X] is also
denoted by S−X, and by S− v when X = {v}.

3. Clans, Primitivity and Criticality

Given g ∈ L (V,A), a subset X of V is a clan [5] of g if for any x, y ∈ X and
v ∈ V \X,

(1) g(x, v) = g(y, v).

Observe that (1) implies that g(v, x) = g(v, y) because g is reversible. Denote by
Cl(g) the set of clans of g. The classic properties of clans follow.

Proposition 1 (Lemma 3.4 [5]). Given g ∈ L (V,A), the following assertions

hold.

1. ∅, V ∈ Cl(g), and for each x ∈ V , {x} ∈ Cl(g).

2. For any X,Y ∈ Cl(g), X ∩ Y ∈ Cl(g).

3. For any X,Y ∈ Cl(g), if X ∩ Y 6= ∅, then X ∪ Y ∈ Cl(g).

4. For any X,Y ∈ Cl(g), if X \ Y 6= ∅, then Y \X ∈ Cl(g).

A subset X of V is a clancut [10] of g if X,V \ X ∈ Cl(g). Furthermore,
given a ∈ A, a subset X of V is an a-clancut of g if g(x, y) = a for any x ∈ X

and y ∈ V \X. A vertex x of g is isolated if {x} is a clancut of g. Given a ∈ A,
a vertex x of g is a-isolated if {x} is an a-clancut of g.

Given a switching class S ⊆ L (V,A), a subset X of V is a clan [5] of S if
there exists g ∈ S such that X is a clan of g. We denote by Cl(S) the set of
clans of S. Thereby, we have

Cl(S) =
⋃

g∈S

Cl(g).
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Proposition 2 (Lemma 13.4 [5]). Consider g ∈ L (V,A) and X ∈ Cl(g). For

each a ∈ A, there is s ∈ S (V,A) such that X is an a-clancut of gs.

Two immediate consequences of Proposition 2 follow.

Corollary 3. Let g ∈ L (V,A). For every x ∈ V and for every a ∈ A, there is

s ∈ S (V,A) such that x is an a-isolated vertex of gs.

Corollary 4. The set of clans of a switching class is closed under complemen-

tation.

Let g ∈ L (V,A). By the first assertion of Proposition 1, ∅, V and {x} (for
x ∈ V ) are clans of g, called trivial clans. We say that g is indecomposable if all
the clans of g are trivial, otherwise g is said to be decomposable. Moreover, we
say that g is primitive [5] if g is indecomposable and |V | ≥ 3.

The following two results are important in the study of primitivity of A-
labeled and reversible 2-structures. The first one is established for binary rela-
tional structures in [11], and the second one is established for digraphs in [9]. In
fact, both of them are directly transposable in terms of A-labeled and reversible
2-structures.

Theorem 5 (Theorem 5.9 [11]). Let g ∈ L (V,A) be primitive. If |V | ≥ 7, then
there exist u, v ∈ V such that u 6= v and g − {u, v} is primitive.

Theorem 6 (Theorem 1 [9]). Let g ∈ L (V,A) be primitive. Consider X ⊆ V

such that g[X] is primitive. If |V \ X| ≥ 6, then there exist u, v ∈ V \ X such

that u 6= v and g − {u, v} is primitive.

Let S ⊆ L (V,A) be a switching class. It follows from Corollary 4 that

{∅, V } ∪ {{x}, V \ {x} : x ∈ V } ⊆ Cl(S).

A clan C ofS is trivial if min(|C|, |V \C|) ≤ 1. We say that S is indecomposable if
all the clans ofS are trivial, otherwiseS is said to be decomposable. Furthermore,
S is primitive if S is indecomposable and |V | ≥ 4.

Let g ∈ L (V,A) be primitive. An element v of V is a critical vertex of g
if g − v is decomposable. We say that g is critical if all its vertices are critical.
Analogously, given a primitive switching class S ⊆ L (V,A), an element v of V
is a critical vertex of S if S− v is decomposable. We say that S is critical if all
its vertices are critical.

4. Main Results

In this section we list the main results, leaving the proofs of those which are less
immediate to subsequent sections. The following result is basic in the study of
primitive switching classes. It is proved in Section 9.
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Proposition 7. For a switching class S, the following assertions are equivalent

1. S is primitive,

2. there exists g ∈ S which admits an isolated vertex x such that g − x is

primitive,

3. for each g ∈ S which admits an isolated vertex x, g − x is primitive.

Let S be a switching class. To study the primitivity of S by using Propo-
sition 7, we have to examine the primitivity of g − x, where g ∈ S and x is
an isolated vertex of g. Given x ∈ V , consider g, h ∈ S such that x is an
isolated vertex of g and h. There exists s ∈ S (V,A) such that h = gs. For
any y, z ∈ V \ {x}, we have g(y, x) = g(z, x) and h(y, x) = h(z, x). Since
h(y, x) = s(y) + g(y, x) − s(x) and h(z, x) = s(z) + g(z, x) − s(x), we obtain
s(y) = s(z). It follows that g − x = h− x. For convenience, given g ∈ S and an
isolated vertex x of g, we denote g − x by Sx.

Proposition 7 allows us to translate the most important results on primi-
tivity of A-labeled and reversible 2-structures in terms of switching classes. For
instance, we obtain the following analogues of Theorems 5 and 6, which are proved
in Section 9.

Theorem 8. Consider a primitive switching class S ⊆ L (V,A). If |V | ≥ 8,
then there exist u, v ∈ V such that u 6= v and S− {u, v} is primitive.

Theorem 9. Consider a primitive switching class S ⊆ L (V,A). Let X ⊆ V

such that S[X] is primitive. If |V \X| ≥ 6, then there exist u, v ∈ V \ X such

that u 6= v and S− {u, v} is primitive.

Now, concerning the critical switching classes, we obtain the following result
that is an immediate consequence of Lemmas 58 and 52. This result is interesting
because it is clearly false for critical and A-labeled, reversible 2-structures.

Theorem 10. Given a switching class S ⊆ L (V,A) such that |V | ≥ 6, S is

critical if and only if there exist distinct x, y ∈ V such that Sx and Sy are critical.

Theorem 5 led Ille [8] to introduce the following graph. With a primitive and
A-labeled, reversible 2-structure g, associate its primitivity graph Π(g) defined on
V as follows. Given distinct u, v ∈ V ,

uv ∈ E(Π(g)) if g − {u, v} is primitive.

In terms of primitive switching classes, Theorem 8 leads us to a similar graph.
With a primitive switching class S ⊆ L (V,A), we associate its primitivity graph

Π(S) defined on V as follows. Given distinct u, v ∈ V ,

uv ∈ E(Π(S)) if S− {u, v} is primitive.
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After studying the structural properties of the primitivity graph of a primitive
switching class at the beginning of Section 10, we obtain the following corollary.
We use the following graphs. For n ≥ 2, Pn denotes the path ({0, . . . , n−1}, {ij :
|i−j| = 1}), and for n ≥ 3, Cn denotes the cycle ({0, . . . , n−1}, E(Pn)∪{0(n−1)}).

Corollary 11. Given a critical switching class S ⊆ L (V,A) such that |V | ≥ 6,
one of the following holds

• Π(S) is isomorphic to C|V |,

• Π(S) admits a unique isolated vertex x, |V | is even and Π(S)−x is isomor-

phic to C|V |−1.

Lastly, we characterize the critical switching classes following their primitivity
graphs. By Corollary 11, the primitivity graph of a critical switching class is an
even cycle, an odd cycle or an odd cycle and an isolated vertex. To describe each
of the three families, we use some of the critical digraphs obtained in [2]. We also
need the following definition and notation. An oriented graph O is a digraph such
that for distinct u, v ∈ V (D), we cannot have both uv ∈ A(O) and vu ∈ A(O).
Given an oriented graph O and a ∈ A, Oa denotes the A-labeled and reversible
2-structure defined on V = V (O) by

for distinct x, y in V , Oa(x, y) =















a if xy ∈ A(O),

−a if yx ∈ A(O),

0 if xy 6∈ A(O) and yx 6∈ A(O).

First, we consider the critical switching classes whose primitivity graph is
an even cycle. We need the following digraphs. For n ≥ 2, Ln denotes the
usual linear order on {0, . . . , n− 1}. For n ≥ 1, O2n+1 denotes the partial order
({0, . . . , 2n}, {(2i)(2j) : 0 ≤ i < j ≤ n}). Furthermore, set

H2n+1 = ({0, . . . , 2n}, A(L2n+1) \A(O2n+1)) (see Figure 1).

The digraph H2n+1 is a critical digraph obtained in [2].

Theorem 12. Let S ⊆ L (V,A) be a switching class and let n ≥ 3. The following
three assertions are equivalent

• S is critical and Π(S) ≃ C2n,

• there exists x ∈ V such that Sx ≃ (O2n−1)
a+(H2n−1)

b, where a, b ∈ A satisfy

b+ b 6= 0, a 6= b and a+ a = b+ b,

• there exist a, b ∈ A satisfying b + b 6= 0, a 6= b, a + a = b + b and such that

for every x ∈ V , Sx ≃ (O2n−1)
a + (H2n−1)

b or Sx ≃ (O2n−1)
b + (H2n−1)

a.

Second, we consider the critical switching classes whose primitivity graph is
an odd cycle. We need the following partial orders. For n ≥ 1, Q2n denotes the
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Figure 1. The digraph H2n+1.

partial order ({0, . . . , 2n− 1}, {(2i)(2j + 1) : 0 ≤ i ≤ j ≤ n− 1}) (see Figure 2),
and R2n denotes the partial order ({0, . . . , 2n−1}, A(L2n)\A(Q2n) (see Figure 3).
The partial orders Q2n and R2n are critical digraphs obtained in [2].
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Figure 2. The Hasse diagram of Q2n.

Theorem 13. Let S ⊆ L (V,A) be a switching class and let n ≥ 3. The following
three assertions are equivalent

• S is critical and Π(S) ≃ C2n+1,

• there exists x ∈ V such that Sx ≃ (Q2n)
a + (R2n)

b, where a ∈ A and b ∈
A \ {a,−a},

• there exist a ∈ A and b ∈ A \ {a,−a} such that for every x ∈ V , we have

Sx ≃ (Q2n)
a + (R2n)

b.

Third, we consider the critical switching classes whose primitivity graph con-
sists of an odd cycle and an isolated vertex. We need the following tournaments.
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Figure 3. The Hasse diagram of R2n.

For n ≥ 1, T2n+1 denotes the tournament obtained from L2n+1 by reversing all
the arcs between even and odd vertices (see Figure 4). For n ≥ 1, W2n+1 denotes
the tournament obtained from L2n+1 by reversing all the arcs between 2n and
the even elements of {0, . . . , 2n− 1} (see Figure 5). The tournaments T2n+1 and
W2n+1 are critical digraphs obtained in [2].
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Figure 4. The tournament T2n+1.

Theorem 14. Let S ⊆ L (V,A) be a switching class and let n ≥ 2. Given x ∈ V ,

the following three assertions are equivalent

1. S is critical, x is an isolated vertex of Π(S) and Π(S)− x ≃ C2n+1,

2. there exists a ∈ A, with oA(a) = 4, such that Sx ≃ (T2n+1)
a,

3. there exists b ∈ A, with oA(b) = 4, such that for every y ∈ V \ {x}, there

exists an isomorphism from Sy onto (W2n+1)
b that maps x on 2n.

Furthermore, if the last two assertions hold, then a = b.
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By using Corollary 11, we summarize Theorems 12, 13 and 14 as follows.

Theorem 15. Given a switching class S ⊆ L (V,A), where |V | ≥ 6, S is critical

if and only if there exists x ∈ V satisfying one of the following assertions for some

n ≥ 3

• Sx ≃ (O2n−1)
a + (H2n−1)

b, where a, b ∈ A such that b + b 6= 0, a 6= b,

a+ a = b+ b,

• Sx ≃ (Q2n)
a + (R2n)

b, where a ∈ A and b ∈ A \ {a,−a},

• Sx ≃ (T2n−1)
a, where a ∈ A such that oA(a) = 4.

5. Graphs, Digraphs and 2-Structures

5.1. Switches

In this subsection, we compare the classic switch of graphs or tournaments with
the switch of A-labeled and reversible 2-structures. We use the following notion
of a reversible 2-structure that is more general than the notion of an A-labeled
and reversible 2-structure. A 2-structure σ consists of a vertex set V (σ) and an
equivalence relation ≡σ defined on (V (σ)× V (σ)) \ {(v, v) : v ∈ V (σ)}, cf. [5]. A
2-structure σ is reversible if for any u, v, x, y ∈ V (σ) such that u 6= v and x 6= y,
we have

(u, v) ≡σ (x, y) =⇒ (v, u) ≡σ (y, x).

The family of the equivalence classes of ≡σ is denoted by E(σ). Let σ be a
reversible 2-structure. For each e ∈ E(σ), e⋆ ∈ E(σ), where e⋆ = {(u, v) : (v, u) ∈
e}, and we have either e = e⋆ or e ∩ e⋆ = ∅. In the first instance, e is said to be
symmetric. It is called asymmetric in the second. The family of the asymmetric
classes of ≡σ is denoted by Ea(σ) and that of the symmetric ones by Es(σ). A
reversible 2-structure σ is symmetric when E(σ) = Es(σ), and it is asymmetric

when E(σ) = Ea(σ).
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With each graph G, associate the 2-structure σ(G) defined on V (G) as fol-
lows. Given any u, v, x, y ∈ V (σ) such that u 6= v and x 6= y,

(u, v) ≡σ(G) (x, y) if

{

uv, xy ∈ E(G), or

uv, xy 6∈ E(G).

Clearly, σ(G) is symmetric and |E(σ(G))| = 1 or 2. The complement of G is the
graph G defined by V (G) = V (G) and E(G) = {uv : uv 6∈ E(G)}. Note that
σ(G) = σ(G). In an analogous way, associate with each digraphD the 2-structure
σ(D) defined on V (D) as follows. Given any u, v, x, y ∈ V (σ) such that u 6= v

and x 6= y, (u, v) ≡σ(D) (x, y) if the following two equivalences hold

• uv ∈ A(D) if and only if xy ∈ A(D),

• vu ∈ A(D) if and only if yx ∈ A(D).

Clearly, σ(D) is reversible and 1 ≤ |E(σ(D))| ≤ 4. The complement ofD is the di-
graph D defined by V (D) = V (D) and A(D) = {uv : uv 6∈ A(D)}. Furthermore,
the dual of D is the digraph D⋆ defined by V (D⋆) = V (D) and A(D⋆) = A(D)⋆.
Note that σ(D) = σ(D) = σ(D⋆).

Let σ be a reversible 2-structure. We can associate with σ an element σA
of L (V (σ),A) under certain assumptions on (A,+). Indeed, for any u, v, x, y ∈
V (σ) such that u 6= v and x 6= y, we must have

(u, v) 6≡σ (x, y) ⇐⇒ σA(u, v) 6= σA(x, y).

Therefore, we have to suppose that

(2)

{

|Ea(σ)| ≤ |A| − |A≤2|, where A≤2 = {α ∈ A : oA(α) ≤ 2}, and

|Es(σ)| ≤ |A≤2|.

Such an abelian group A always exists. Clearly, (2) holds if and only if there
exists an injection ϕ : E(σ) −→ A satisfying

(3) for each e ∈ E(σ), ϕ(e⋆) = −ϕ(e).

When (3) holds, we associate with σ the element σA of L (V (σ),A) defined as
follows. For distinct u, v ∈ V (σ), let

σA(u, v) = ϕ((u, v)σ),

where (u, v)σ denotes the equivalence class of (u, v) modulo ≡σ. Given g ∈
L (V,A), we verify that there exists a reversible 2-structure σ(g) defined on
V (σ(g)) = V such that

(4) σ(g)A = g.
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Indeed, consider the reversible 2-structure σ(g) defined on V (σ(g)) = V as fol-
lows. For u, v, x, y ∈ V such that u 6= v and x 6= y, let

(u, v) ≡σ(g) (x, y) if g(u, v) = g(x, y).

We also consider the injection

ϕ : E(σ(g)) −→ A

e 7−→ g(u, v), where (u, v) ∈ e.

Since g is reversible, ϕ satisfies (3). For distinct u, v ∈ V ,

σ(g)A(u, v) = ϕ((u, v)σ(g)) = g(u, v).

Thus (4) holds.

Consider a graph G which is neither complete nor empty. We obtain that
σ(G) is symmetric and |E(σ(G))| = 2. Thus, (2) holds if and only if there exists
a ∈ A such that oA(a) = 2. It follows that we can choose Z2 for A. Moreover,
we can choose ϕ in such a way that σ(G)Z2

is defined as follows. For distinct
u, v ∈ V (G), let

(5) σ(G)Z2
(u, v) =

{

1 if uv ∈ E(G),

0 if uv 6∈ E(G).

Now, consider a digraph D and suppose that there exist u, v, w, x, y, z ∈ V (σ)
satisfying u 6= v, w 6= x, y 6= z and such that uv, vu, wx ∈ A(D) and xw, yz, zy 6∈
A(D). We obtain that σ(D) is reversible, |Ea(σ(D))| = 2 and |Es(σ(D))| = 2.
Therefore, (2) holds if and only if |A| − |A≤2| ≥ 2 and |A≤2| ≥ 2. It follows that
we can choose Z4 for A. Lastly, consider a tournament T . We obtain that σ(T )
is asymmetric and |E(σ(T ))| = 2. Hence, (2) holds if and only if |A| − |A≤2| ≥ 2.
It follows that we can choose Z3 for A. Moreover, we can choose ϕ in such a way
that σ(T )Z3

is defined as follows. For distinct u, v ∈ V (T ), let

(6) σ(T )Z3
(u, v) =

{

1 if uv ∈ A(T ),

2 if uv 6∈ A(T ).

For what follows, note that we can also choose Z4 for A. In this case, we can
choose ϕ in such a way that σ(T )Z4

is defined as follows. For distinct u, v ∈ V (T ),
let

(7) σ(T )Z4
(u, v) =

{

1 if uv ∈ A(T ),

3 if uv 6∈ A(T ).
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To complete this subsection, we compare the classic switch of graphs or tour-
naments with the switch of the associated A-labeled and reversible 2-structures.
Let G be a graph. Given X ⊆ V (G), we consider the selector

1X : V (G) −→ Z2

v ∈ X 7−→ 1
v ∈ V \X 7−→ 0.

If σ(G)Z2
and (σ(GX))Z2

are defined as in (5), then

(σ(G)Z2
)1X = (σ(GX))Z2

.

Now, consider a tournament T . On the one hand, suppose that there exists
X ⊆ V (T ) with x, y ∈ X and u, v ∈ V (T ) \X satisfying xu, vy ∈ A(T ). Suppose
also that σ(T )Z3

and (σ(TX))Z3
are defined as in (6). We verify that, whatever

the selector s : V (T ) −→ Z3 is, we obtain

(σ(T )Z3
)s 6= (σ(TX))Z3

.

On the other hand, consider any X ⊆ V (T ), and suppose that σ(T )Z4
and

(σ(TX))Z4
are defined as in (7). By considering the selector

1
′
X : V (G) −→ Z4

v ∈ X 7−→ 1
v ∈ V \X 7−→ 3,

we obtain
(σ(T )Z4

)1
′
X = (σ(TX))Z4

.

5.2. Primality and primitivity

In this subsection, we introduce the notion of clan, primitivity and criticality for
reversible 2-structures. Afterwards, we compare each of these notions with its
analogue for A-labeled and reversible 2-structures. We conclude by considering
the case of graphs and digraphs.

Let σ be a reversible 2-structure. A subset X of V (σ) is a clan of σ if for any
x, y ∈ X and v ∈ V \X, we have (x, v) ≡σ (y, v), cf. [5]. As for A-labeled and
reversible 2-structures, the notions of primitivity and criticality for reversible 2-
structures follow from the notion of clan. The primitivity graph associated with a
primitive and reversible 2-structure is defined in the same way. Given a reversible
2-structure σ, to compare the clans of σ with those of an associated element of
L (V (σ),A), consider an abelian group A such that (2) holds. The associated
element σA of L (V (σ),A) is defined from an injection ϕ satisfying (3). Clearly,
σ and σA share the same clans. It follows that σ is primitive if and only if σA is.
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Thus, σ is critical if and only if σA is. In terms of primitivity graph, we obtain
Π(σ) = Π(σA).

Now, we introduce the classic notion of a module of a graph. Let G be a
graph. A subset X of V (G) is a module of G if for any x, y ∈ X and v ∈ V \X,
xv ∈ E(G) if and only if yv ∈ E(G). Clearly, the set of the modules of G coincides
with the set of the clans of σ(G). Furthermore, a graph G is said to be prime

if |V (G)| ≥ 4, and ∅, V (G) and {v} (v ∈ V (G)) are its only modules. Hence, a
graph G is prime if and only if σ(G) is primitive. The same holds for criticality.
By denoting by Π(G) the primality graph of G, we obtain Π(G) = Π(σ(G)).

Lastly, we consider digraph D. A subset X of V (D) is a module of D if for
any x, y ∈ X and v ∈ V \X, we have

{

xv ∈ A(D) ⇐⇒ yv ∈ A(D), and

vx ∈ A(D) ⇐⇒ vy ∈ A(D).

The set of the modules of D coincides with the set of the clans of σ(D). A digraph
D is said to be prime if |V (D)| ≥ 3, and ∅, V (D) and {v} (v ∈ V (D)) are its
only modules. We end with the same observations as above for graphs.

6. Isomorphy Between Switching Classes

Let V and V ′ be vertex sets, and let A be an abelian group. Consider g ∈ L (V,A)
and h ∈ L (V ′,A). A bijection β from V onto V ′ is an isomorphism from g onto
h if for distinct u, v ∈ V , we have g(u, v) = h(β(u), β(v)). For convenience, given
g ∈ L (V,A), β(g) denotes the unique element of L (V ′,A) such that β is an
isomorphism from g onto β(g). Thereby, β may be identified with the function

L (V,A) −→ L (V ′,A)
g 7−→ β(g)

that is a bijection from L (V,A) onto L (V ′,A).

Proposition 16. Given L (V,A) and L (V ′,A), consider a bijection β from V

onto V ′. For every g ∈ L (V,A), we have

β(〈g〉) = 〈β(g)〉.

Proof. Given s ∈ S (V,A), we have β(gs) = (β(g))(s◦β
−1). It follows that

(8) β(〈g〉) ⊆ 〈β(g)〉.

By exchanging V and V ′, β and β−1, and g and β(g), in (8), we obtain

β−1(〈β(g)〉) ⊆ 〈β−1(β(g))〉.
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Thus β−1(〈β(g)〉) ⊆ 〈g〉 and hence 〈β(g)〉 ⊆ β(〈g〉). It follows from (8) that

β(〈g〉) = 〈β(g)〉.

Given switching classes S ⊆ L (V,A) and S
′ ⊆ L (V ′,A), a bijection β from

V onto V ′ is an isomorphism from S onto S
′ if

β(S) = S
′.

Remark 17. Given switching classes S ⊆ L (V,A) and S
′ ⊆ L (V ′,A), consider

an isomorphism β from S onto S
′. For each X ⊆ V , β↾X is an isomorphism from

S[X] onto S
′[β(X)].

Theorem 18. Consider switching classes S ⊆ L (V,A) and S
′ ⊆ L (V ′,A).

• Given a bijection β from V onto V ′, β is an isomorphism from S onto S
′ if

and only if there exists g ∈ S such that β is an isomorphism from g onto an

element of S′.

• S and S
′ are isomorphic if and only if there exist g ∈ S and g′ ∈ S

′ such

that g and g′ are isomorphic.

Proof. The second assertion follows from the first one. For the first assertion,
consider a bijection β from V onto V ′. To begin, suppose that β is an isomorphism
from S onto S

′, that is, β(S) = S
′. Given g ∈ S, we obtain β(g) ∈ S

′. Clearly,
β is an isomorphism from g onto β(g).

Conversely, suppose that β is an isomorphism from an element g of S onto
an element g′ of S′. Necessarily g′ = β(g). It follows from Proposition 16 that

β(S) = β(〈g〉) = 〈β(g)〉 = S
′.

7. Background: Criticality and Primitivity of A-Labeled and

Reversible 2-Structures

7.1. Primitivity

In the sequel of this subsection, we list the main results on primitivity of A-
labeled and reversible 2-structures, other than Theorems 5 and 6. We begin with
the existence of small primitive substructures.

Lemma 19 (Theorem 6.1 [5]). Let g ∈ L (V,A) be primitive. There exists X ⊆ V

such that |X| = 3 or 4, and g[X] is primitive.

Lemma 19 was strengthened as follows.
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Proposition 20 (Theorem 4 [4]). Let g ∈ L (V,A) be primitive. For each x ∈ V ,

there exists X ⊆ V such that x ∈ X, |X| = 4 or 5, and g[X] is primitive.

Given g ∈ L (V,A), consider X ⊆ V such that g[X] is primitive. Suppose
that |V \X| ≥ 2. When g is primitive, to attempt to construct Y ⊆ V such that
X ( Y and g[Y ] is primitive, we introduce the following subsets of V \X:

• Extg(X) is the set of v ∈ V \X such that g[X ∪ {v}] is primitive,

• ÙXg is the set of v ∈ V \X such that X is a clan of g[X ∪ {v}],

• for y ∈ X, Xg(y) is the set of v ∈ V \X such that {y, v} is a clan of g[X∪{v}].

We consider the partition

(9) p(g,X) = {Extg(X), ÙXg} ∪ {Xg(y) : y ∈ X}

of V \X. The next result follows.

Proposition 21 (Theorem 6.5 [5]). Let g ∈ L (V,A) be primitive. Consider

X ⊆ V such that g[X] is primitive. If |V \X| ≥ 2, then there exist distinct u, v ∈
V \X such that g[X ∪ {u, v}] is primitive.

An immediate consequence of Lemma 19 and Proposition 21 follows.

Corollary 22 (Theorem 6.4 [5]). Let g ∈ L (V,A) be primitive. If |V | ≥ 5, then
there exist u, v ∈ V such that g − {u, v} is primitive.

Hence, Theorem 5 strengthens Corollary 22.

7.2. Criticality

The main properties of the primitivity graph are described in the next three
results. Given a primitive element g of L (V,A), the set of critical vertices of g
is denoted by C(g).

Lemma 23 (Lemma 10 [2]). Consider a primitive element g of L (V,A), where
|V | ≥ 5. For every v ∈ C(g), we have dΠ(g)(v) ≤ 2. Moreover, for each v ∈ C(g),
we have

• if dΠ(g)(v) = 1, then V \ (NΠ(g)(v) ∪ {v}) ∈ Cl(g − v),

• if dΠ(g)(v) = 2, then NΠ(g)(v) ∈ Cl(g − v).

The next result follows from Lemma 23.

Proposition 24 (Proposition 11 [2]). Consider a primitive element g of L (V,A),
where |V | ≥ 5. If there exists a component C of Π(g) such that |V (C)| ≥ 2 and

V (C) ⊆ C(g), then one of the following holds

• Π(g) is isomorphic to C2n+1, where n ≥ 2,
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• Π(g) is isomorphic to P2n+1, where n ≥ 2,

• C is isomorphic to P2n, where n ≥ 2, and |V \ V (C)| ≤ 1.

The following result is an immediate consequence of Corollary 22 and Propo-
sition 24.

Corollary 25. Given a critical element g of L (V,A), where |V | ≥ 5, one of the

following holds

• Π(g) is isomorphic to C2n+1, where n ≥ 2,

• Π(g) is isomorphic to Pn, where n ≥ 5,

• Π(g) admits a unique isolated vertex x, and Π(g) − x is isomorphic to P2n,

where n ≥ 2.

To complete this subsection, we provide a characterization of critical and
A-labeled, reversible 2-structures by using Corollary 25. An analogous charac-
terization is given in [2] for critical digraphs. Since both approaches are similar,
we omit the proofs for critical and A-labeled, reversible 2-structures. We also use
the characterization of critical and reversible 2-structures due to [1].

For n ≥ 1, U2n+1 denotes the tournament obtained from L2n+1 by reversing
all the arcs between even vertices (see Figure 6). Thus A(U2n+1) = A(H2n+1) ∪
A(O2n+1)

⋆.
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•
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•
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•
2n− 1

Figure 6. The tournament U2n+1.

Boudabbous and Ille [2] obtained the following characterization of critical
digraphs whose primitivity graph is a path of odd size.

Theorem 26 (Proposition 19 [2]). Given a digraph D defined on V (D) = {0, . . . ,
2n}, where n ≥ 2, the following two assertions are equivalent

• D is critical and Π(D) = P2n+1,

• one of the digraphs D, D⋆, D or D⋆ equals H2n+1 or U2n+1.

We have
{

E(σ(H2n+1)) = {A(H2n+1), A(H2n+1)
⋆, A(O2n+1) ∪A(O2n+1)

⋆}, and

E(σ(U2n+1)) = {A(H2n+1) ∪A(O2n+1)
⋆, A(H2n+1)

⋆ ∪A(O2n+1)}.
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Let D be a digraph. As observed in Subsection 5.2, D is critical if and only if
σ(D) is. Moreover, we have Π(D) = Π(σ(D)). Therefore, we obtain the following
corollary.

Corollary 27. Given a reversible 2-structure σ defined on V (σ) = {0, . . . , 2n},
where n ≥ 2, if

E(σ) =

{

{A(H2n+1) ∪A(O2n+1)
⋆, A(H2n+1)

⋆ ∪A(O2n+1)}, or

{A(H2n+1), A(H2n+1)
⋆, A(O2n+1) ∪A(O2n+1)

⋆},

then σ is critical and Π(σ) = P2n+1.

The next result follows from [1, Proposition 6.3].

Theorem 28. Given a reversible 2-structure σ defined on V (σ) = {0, . . . , 2n},
where n ≥ 2, σ is critical and Π(σ) = P2n+1 if and only if

E(σ) =















{A(H2n+1) ∪A(O2n+1)
⋆, A(H2n+1)

⋆ ∪A(O2n+1)},

{A(H2n+1), A(H2n+1)
⋆, A(O2n+1) ∪A(O2n+1)

⋆}, or

{A(H2n+1), A(H2n+1)
⋆, A(O2n+1), A(O2n+1)

⋆}.

Given a reversible 2-structure σ defined on V (σ) = {0, . . . , 2n}, where n ≥ 2,
we have

• E(σ) = {A(H2n+1)∪A(O2n+1)
⋆, A(H2n+1)

⋆ ∪A(O2n+1)} if and only if σA =
(O2n+1)

−b + (H2n+1)
b, where b ∈ A such that b+ b 6= 0,

• E(σ) = {A(H2n+1), A(H2n+1)
⋆, A(O2n+1) ∪ A(O2n+1)

⋆} if and only if σA =
(O2n+1)

a + (H2n+1)
b, where a, b ∈ A such that a+ a = 0 and b+ b 6= 0,

• E(σ) = {A(H2n+1), A(H2n+1)
⋆, A(O2n+1), A(O2n+1)

⋆} if and only if σA =
(O2n+1)

a+(H2n+1)
b, where a, b ∈ A such that a+a 6= 0, b+ b 6= 0 and a 6= b.

Let g ∈ L ({0, . . . , 2n},A). By (4), there exists a reversible 2-structure σ(g) such
that σ(g)A = g. As observed in Subsection 5.2, g is critical if and only if σ(g) is.
Moreover, we have Π(g) = Π(σ(g)). Therefore, the next theorem follows.

Theorem 29. Given g ∈ L ({0, . . . , 2n},A) such that n ≥ 2, the following two

assertions are equivalent

• g is critical and Π(g) = P2n+1,

• g = (O2n+1)
a + (H2n+1)

b, where a, b ∈ A such that a 6= b and b+ b 6= 0.

For a partial order P , comp(P ) = (V (P ), A(P )∪A(P )⋆) is the comparability

digraph of P . Boudabbous and Ille [2] obtained the following characterization of
critical digraphs whose primitivity graph is a path of even size.
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Theorem 30 (Proposition 20 [2]). Given a digraph D defined on V (D) = {0, . . . ,
2n− 1}, where n ≥ 3, the following two assertions are equivalent

• D is critical and Π(D) = P2n,

• one of the digraphs D, D⋆, D or D⋆ equals comp(Q2n), Q2n or R2n.

We have














E(σ(comp(Q2n))) = {A(Q2n) ∪A(Q2n)
⋆, A(R2n) ∪A(R2n)

⋆},

E(σ(Q2n)) = {A(Q2n), A(Q2n)
⋆, A(R2n) ∪A(R2n)

⋆}, and

E(σ(R2n)) = {A(Q2n) ∪A(Q2n)
⋆, A(R2n), A(R2n)

⋆}.

We deduce the following corollary.

Corollary 31. Given a reversible 2-structure σ defined on V (σ) ={0, . . . , 2n−1},
where n ≥ 3, if

E(σ) =















{A(Q2n) ∪A(Q2n)
⋆, A(R2n) ∪A(R2n)

⋆},

{A(Q2n), A(Q2n)
⋆, A(R2n) ∪A(R2n)

⋆}, or

{A(Q2n) ∪A(Q2n)
⋆, A(R2n), A(R2n)

⋆},

then σ is critical and Π(σ) = P2n.

The next result follows from [1, Proposition 6.3].

Theorem 32. Given a reversible 2-structure σ defined on V (σ) = {0, . . . , 2n−1},
where n ≥ 3, σ is critical and Π(σ) = P2n if and only if

E(σ) =



























{A(Q2n) ∪A(Q2n)
⋆, A(R2n) ∪A(R2n)

⋆},

{A(Q2n), A(Q2n)
⋆, A(R2n) ∪A(R2n)

⋆},

{A(Q2n) ∪A(Q2n)
⋆, A(R2n), A(R2n)

⋆}, or

{A(Q2n), A(Q2n)
⋆, A(R2n), A(R2n)

⋆}.

Given a reversible 2-structure σ defined on V (σ) = {0, . . . , 2n − 1}, where
n ≥ 3, we have

• E(σ) = {A(Q2n)∪A(Q2n)
⋆, A(R2n)∪A(R2n)

⋆} if and only if σA = (Q2n)
a +

(R2n)
b, where a, b ∈ A such that a 6= b, a+ a = 0 and b+ b = 0,

• E(σ) = {A(Q2n), A(Q2n)
⋆, A(R2n) ∪ A(R2n)

⋆} if and only if σA = (Q2n)
a +

(R2n)
b, where a, b ∈ A such that a+ a 6= 0 and b+ b = 0,

• E(σ) = {A(Q2n) ∪ A(Q2n)
⋆, A(R2n), A(R2n)

⋆} if and only if σA = (Q2n)
a +

(R2n)
b, where a, b ∈ A such that a+ a = 0 and b+ b 6= 0,

• E(σ) = {A(Q2n), A(Q2n)
⋆, A(R2n), A(R2n)

⋆} if and only if σA = (Q2n)
a +

(R2n)
b, where a, b ∈ A such that a 6= b, a 6= −b, a+ a 6= 0 and b+ b 6= 0.
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The next theorem follows.

Theorem 33. Given g ∈ L ({0, . . . , 2n − 1},A) such that n ≥ 3, the following

two assertions are equivalent

• g is critical and Π(g) = P2n,

• g = (Q2n)
a + (R2n)

b, where a ∈ A and b ∈ A \ {a,−a}.

Boudabbous and Ille [2] obtained the following characterization of critical
digraphs whose primitivity graph is an odd cycle.

Theorem 34 (Proposition 18 [2]). Given a digraph D defined on V (D) = {0, . . . ,
2n}, where n ≥ 2, the following two assertions are equivalent

• D is critical and Π(D) = C2n+1,

• D equals T2n+1 or (T2n+1)
⋆.

We have E(σ(T2n+1)) = {A(T2n+1), A(T2n+1)
⋆}. We obtain the following

corollary.

Corollary 35. Given a reversible 2-structure σ defined on V (σ) = {0, . . . , 2n},
where n ≥ 2, if E(σ) = {A(T2n+1), A(T2n+1)

⋆}, then σ is critical and Π(σ) =
C2n+1.

The next result follows from [1, Proposition 6.1].

Theorem 36. Given a reversible 2-structure σ defined on V (σ) = {0, . . . , 2n},
where n ≥ 2, σ is critical and Π(σ) = C2n+1 if and only if

E(σ) = {A(T2n+1), A(T2n+1)
⋆}.

Given a reversible 2-structure σ defined on V (σ) = {0, . . . , 2n}, where n ≥ 2,
we have: E(σ) = {A(T2n+1), A(T2n+1)

⋆} if and only if σA = (T2n+1)
a, where

a ∈ A such that a+ a 6= 0. The next theorem follows.

Theorem 37. Given g ∈ L ({0, . . . , 2n},A) such that n ≥ 2, the following two

assertions are equivalent

• g is critical and Π(g) = C2n+1,

• g = (T2n+1)
a, where a ∈ A such that a 6= −a.

Boudabbous and Ille [2] obtained the following characterization of critical
digraphs whose primitivity graph is a path of even size with an isolated vertex.

Theorem 38 (Proposition 21 [2]). Given a digraph D defined on V (D) = {0, . . . ,
2n}, where n ≥ 2, the following two assertions are equivalent

• D is critical, 2n is an isolated vertex of Π(D) and Π(D)− (2n) = P2n,

• D equals W2n+1 or (W2n+1)
⋆.
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We have E(σ(W2n+1)) = {A(W2n+1), A(W2n+1)
⋆}. We obtain the following

corollary.

Corollary 39. Given a reversible 2-structure σ defined on V (σ) = {0, . . . , 2n},
where n ≥ 2, if E(σ) = {A(W2n+1), A(W2n+1)

⋆}, then σ is critical, 2n is an

isolated vertex of Π(σ) and Π(σ)− (2n) = P2n.

The next result follows from [1, Proposition 6.2].

Theorem 40. Given a reversible 2-structure σ defined on V (σ) = {0, . . . , 2n},
where n ≥ 2, σ is critical, 2n is an isolated vertex of Π(σ) and Π(σ)− (2n) = P2n

if and only if

E(σ) = {A(W2n+1), A(W2n+1)
⋆}.

Given a reversible 2-structure σ defined on V (σ) = {0, . . . , 2n}, where n ≥ 2,
we have: E(σ) = {A(W2n+1), A(W2n+1)

⋆} if and only if σA = (W2n+1)
a, where

a ∈ A such that a+ a 6= 0. The next theorem follows.

Theorem 41. Given g ∈ L ({0, . . . , 2n},A) such that n ≥ 2, the following two

assertions are equivalent

• g is critical, 2n is an isolated vertex of Π(g) and Π(g)− (2n) = P2n,

• g = (W2n+1)
a, where a ∈ A such that a 6= −a.

8. Clans of a Switching Class

We continue to describe the main properties of clans of a switching class, after
Proposition 2 and Corollaries 3 and 4. The next result makes Corollary 4 clearer.

Proposition 42 (Theorem 13.5 [5]). Let S be a switching class. Consider an

element g of S admitting an isolated vertex x. For each X ∈ Cl(S), we have

either x 6∈ X and X ∈ Cl(g)
or x ∈ X and V \X ∈ Cl(g).

Lemma 43. Consider a switching class S ⊆ L (V,A). For W ⊆ V and X ∈
Cl(S), we have X ∩W ∈ Cl(S[W ]).

Proof. There is g ∈ S such that X ∈ Cl(g). Thus X ∩ W ∈ Cl(g[W ]). Since
g[W ] ∈ S[W ], X ∩W ∈ Cl(S[W ]).

Lemma 44 (Lemma 14.1 [5]). Let S be a switching class. Given X,Y ∈ Cl(S),
if X ∩ Y 6= ∅, then X ∪ Y ∈ Cl(S).
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Remark 45. There exist g ∈ L (V,A) and X,Y ∈ Cl(〈g〉) such that X ∩ Y 6∈
Cl(〈g〉) (compare with the second assertion of Proposition 1). Suppose that
|V | ≥ 4 and consider x, y ∈ V such that x 6= y, and u, v ∈ V \ {x, y} such that
u 6= v. Let g ∈ L (V,A) such that g(x, u) 6= g(x, v) and, for each z ∈ V \ {y},
g(z, y) = 0. Clearly V \ {y} ∈ Cl(g) and hence V \ {y} ∈ Cl(〈g〉). Now consider
the selector

s : V −→ A

x 7−→ 0
z ∈ V \ {x} 7−→ g(x, z).

For every z ∈ V \{x}, gs(x, z) = s(x)+g(x, z)−s(z) = 0. We get V \{x} ∈ Cl(gs)
and hence V \ {x} ∈ Cl(〈g〉). Suppose that (V \ {x}) ∩ (V \ {y}) ∈ Cl(〈g〉).
Since y 6∈ (V \ {x}) ∩ (V \ {y}) and y is an isolated vertex of g, it follows from
Proposition 42 that (V \ {x}) ∩ (V \ {y}) ∈ Cl(g), which contradicts g(x, u) 6=
g(x, v). Consequently (V \ {x}) ∩ (V \ {y}) 6∈ Cl(〈g〉).

9. Primitive Switching Classes

We begin this section by proving Proposition 7.

Proof of Proposition 7. By Corollary 3, the third assertion implies the sec-
ond. Now, we verify that the second assertion implies the first. Consider g ∈ S

that admits an isolated vertex x such that g − x is primitive. Given Y ∈ Cl(S),
we have to prove that Y is trivial. By Corollary 4, we can suppose that x 6∈ Y .
By Proposition 42, Y ∈ Cl(g) and hence Y ∈ Cl(g − x). Since g − x is primitive,
we obtain Y = ∅, V \{x} or {y} where y ∈ V \{x}. It follows that S is primitive.

Lastly, we verify that the first assertion implies the third. Suppose that S is
primitive and consider g ∈ S which admits an isolated vertex x. We verify that
g − x is primitive. Let Y ∈ Cl(g − x). As V \ {x} ∈ Cl(g), Y ∈ Cl(g) and hence
Y ∈ Cl(S). Since S is primitive, Y = ∅, V or Y ∈ {{z}, V \ {z} : z ∈ V }. As
x 6∈ Y , we obtain Y = ∅ or Y = {z}, where z ∈ V \ {x}, or Y = V \ {x}. It
follows that g − x is primitive.

Proposition 46. Let S ⊆ L (V,A) be a switching class. If S is primitive, then

there exists g ∈ S such that g is primitive.

Proof. Suppose that S is primitive. Denote by I(S) the set of elements of S
that admit an isolated vertex. Given (x, a) ∈ V ×A, we denote by g(x,a) the unique
element of S in which x is a-isolated. We have I(S) = {g(x,a) : (x, a) ∈ V × A}.
Consider the function

ϕ : V × A −→ I(S)
(x, a) 7−→ g(x,a).
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To verify that ϕ is injective, consider (x, a), (y, b) ∈ V ×A such that g(x,a) = g(y,b).
Thus x and y are isolated vertices of g(x,a). Therefore V \ {x} ∈ Cl(g(x,a)) and
V \ {y} ∈ Cl(g(x,a)). It follows that V \ {x, y} = (V \ {x})∩ (V \ {y}) ∈ Cl(g(x,a))
so that V \ {x, y} ∈ Cl(S). Since S is primitive, we obtain x = y. Clearly x = y

implies a = b. Consequently ϕ is injective. Hence |V | × |A| ≤ |I(S)|. Since
I(S) = {g(x,a) : (x, a) ∈ V × A}, we have |I(S)| ≤ |V | × |A|. It follows that

|I(S)| = |V | × |A|.

We show that I(S) ( S. Since |S| = |A||V |−1, it suffices to prove that |A||V |−2 >

|V |. We distinguish the following two cases.

• Suppose that |V | ≥ 5. We have 2|V |−2 > |V |. Furthermore, |A| ≥ 2 because
S is primitive. Thus |A||V |−2 ≥ 2|V |−2, so |A||V |−2 > |V |.

• Suppose that |V | = 4. Since S is primitive, |A| ≥ 3. We obtain |A||V |−2 =
|A|2 ≥ 32 > 4 = |V |.

Consequently I(S) ( S. Consider g ∈ S \ I(S). We have

Cl(g) ⊆ Cl(S) = {∅, V } ∪ {{x}, V \ {x} : x ∈ V }.

Since g 6∈ I(S), V \ {x} 6∈ Cl(g) for each x ∈ V . Therefore g is primitive.

Remark 47. The opposite direction in Proposition 46 does not hold. Given
n ≥ 4, consider the graph G defined on {x, y} ∪ {0, . . . , 2n− 1} by G− {x, y} =
C2n, NG(x) = {0, . . . , n − 1} ∪ {y} and NG(y) = {n, . . . , 2n − 1} ∪ {x}. Set
X = {0, . . . , 2n − 1}. We have G[X] is prime. We verify that G is prime too.
Consider a module M of G such that |M | ≥ 2. Suppose that M ∩X = ∅. Since
|M | ≥ 2, M = {x, y}, which contradicts 0 ∈ NG(x) \ NG(y). Thus M ∩X 6= ∅.
Suppose that M ∩ X ( X. Since G[X] is prime, there is i ∈ X such that
M∩X = {i}. As |M | ≥ 2, we have {x, y}∩M 6= ∅. Since dG−y(x) = dG−x(y) = n,
we obtain dG−{x,y}(i) ≥ n−1 > 2, which contradicts G−{x, y} = C2n. Therefore
M ⊇ X. As 0 ∈ NG(x) \ NG(y) and n ∈ NG(y) \ NG(x), we get {x, y} ⊆ M ,
so M = V (G). It follows that G is prime. Hence σ(G)Z2

(see (5)) is primitive.
However, consider the selector s defined by s−1({1}) = {y} ∪ {0, . . . , n− 1} and
s−1({0}) = {x} ∪ {n, . . . , 2n− 1}. We obtain that x and y are 0-isolated vertices
of (σ(G)Z2

)s. Thus {x, y} ∈ Cl((σ(G)Z2
)s) and hence {x, y} ∈ Cl(〈σ(G)Z2

〉).
Consequently 〈σ(G)Z2

〉 is decomposable.

Proposition 48. Given isomorphic switching classes S ⊆ L (V,A) and S
′ ⊆

L (V ′,A), S is primitive if and only if S′ is primitive.

Proof. We have

(10) Cl(S) =
⋃

g∈S

Cl(g) and Cl(S′) =
⋃

h∈S′

Cl(h).
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Since S and S
′ are isomorphic, there exists a bijection β from V onto V ′ such

that S′ = β(S). Thus

Cl(S′) =
⋃

g∈S

Cl(β(g)).

Since β is an isomorphism from g onto β(g) for every g ∈ L (V,A), we have

Cl(S′) =
⋃

g∈S

β(Cl(g)).

It follows from (10) that {|C| : C ∈ Cl(S)} = {|C ′| : C ′ ∈ Cl(S′)}. Consequently,
S is primitive if and only if S′ is.

We complete the section by translating results on primitive and A-labeled,
reversible 2-structures in terms of primitive switching classes. We begin with the
analogue of Proposition 20 in terms of switching classes.

Lemma 49. Let S ⊆ L (V,A) be a primitive switching class. For each x ∈ V ,

there exists X ⊆ V such that |X| = 4 or 5, X ∋ x and S[X] is primitive.

Proof. Let x ∈ V . By Corollary 3, there is g ∈ S such that x is an isolated vertex
of g. Since S is primitive, it follows from Proposition 7 that g − x is primitive.
Since |V \ {x}| ≥ 3, it follows from Lemma 19 that there exists Y ⊆ V \ {x} such
that |Y | = 3 or 4, and (g− x)[Y ] is primitive. We have g[Y ∪ {x}] ∈ S[Y ∪ {x}].
Moreover, x is an isolated vertex of g[Y ∪{x}] as well. It follows from Proposition
7 applied to S[Y ∪ {x}] that S[Y ∪ {x}] is primitive.

The next result is the analogue of Proposition 21 for switching classes.

Proposition 50 (Theorem 6.5 [5]). Consider a primitive switching class S ⊆
L (V,A). Let X ⊆ V such that S[X] is primitive. If |V \X| ≥ 2, then there exist

distinct u, v ∈ V \X such that S[X ∪ {u, v}] is primitive.

Proof. Let x ∈ X. By Corollary 3, there is g ∈ S such that x is an isolated
vertex of g. Since S is primitive, it follows from Proposition 7 that g − x is
primitive. Clearly x is an isolated vertex of g[X] also. Since g[X] ∈ S[X] and
S[X] is primitive, it follows from Proposition 7 that g[X] − x is primitive. As
|(V \{x})\(X\{x})| = |V \X| ≥ 2, it follows from Proposition 21 that there exist
distinct u, v ∈ (V \{x})\(X\{x}) such that g[(X\{x})∪{u, v}] is primitive. Once
again, x is an isolated vertex of g[X∪{u, v}]. Since g[X ∪{u, v}] ∈ S[X∪{u, v}],
it follows from Proposition 7 applied to S[X ∪ {u, v}] that S[X ∪ {u, v}] is
primitive.

Now, we describe the analogue of the partition p(g,X) for switching classes.
Consider a switching class S ⊆ L (V,A), and X ( V such that S[X] is primitive.
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We still denote by ExtS(X) the set of u ∈ V \X such that S[X∪{u}] is primitive.
Let u ∈ V \X such that S[X ∪ {u}] is decomposable. Consider a nontrivial clan
C of S[X ∪{u}]. By interchanging C and (X ∪{u}) \C, assume that u ∈ C. By
Lemma 43, C \ {u} ∈ Cl(S[X]). Since S[X] is primitive, C \ {u} is trivial, that
is, min(|C \ {u}|, |X \ (C \ {u})|) ≤ 1. If |X \ (C \ {u})| ≤ 1, then C is a trivial
clan of S[X ∪ {u}], which is a contradiction. Thus |C \ {u}| ≤ 1. Since |C| ≥ 2,
there is y ∈ X such that C = {u, y}. Given y ∈ X, XS(y) denotes the set of
u ∈ V \X such that {y, u} is a clan of S[X ∪ {u}]. It follows from Lemmas 43
and 44 that the family

p(S,X) = {ExtS(X)} ∪ {XS(y) : y ∈ X}

is a partition of V \X.
An immediate consequence of Lemma 49 and Proposition 50 follows. It is

the analogue of Corollary 22 for switching classes.

Corollary 51. Consider a primitive switching class S ⊆ L (V,A). If |V | ≥ 6,
then there exist u, v ∈ V such that S− {u, v} is primitive.

Proof of Theorem 8. Let x ∈ V . By Corollary 3, there is g ∈ S such that x

is an isolated vertex of g. Since S is primitive, it follows from Proposition 7 that
g−x is primitive. Since |V \ {x}| ≥ 7, it follows from Theorem 5 that there exist
distinct u, v ∈ (V \ {x}) such that g[(V \ {x}) \ {u, v}] is primitive. Once again,
x is an isolated vertex of g−{u, v}. Since g−{u, v} ∈ S−{u, v}, it follows from
Proposition 7 applied to S− {u, v} that S− {u, v} is primitive.

Proof of Theorem 9. Let x ∈ X. By Corollary 3, there is g ∈ S such that x
is an isolated vertex of g. Since S is primitive, it follows from Proposition 7 that
g−x is primitive. Clearly x is an isolated vertex of g[X] also. Since g[X] ∈ S[X]
and S[X] is primitive, it follows from Proposition 7 that g[X] − x is primitive.
Since |(V \ {x}) \ (X \ {x})| = |V \X| ≥ 6, it follows from Theorem 6 that there
exist distinct u, v ∈ (V \ {x}) \ (X \ {x}) such that (g − x)− {u, v} is primitive.
Once again, x is an isolated vertex of g−{u, v}. Since g−{u, v} ∈ S−{u, v}, it
follows from Proposition 7 applied to S− {u, v} that S− {u, v} is primitive.

10. Critical Switching Classes

Given a switching class S, the set of critical vertices of S is denoted by C(S).
The next lemma follows from Proposition 7.

Lemma 52. Let S ⊆ L (V,A) be a switching class such that |V | ≥ 6. Given

x ∈ V , consider g ∈ S such that x is an isolated vertex of g. If g − x is critical,

then S is primitive and V \ {x} ⊆ C(S).
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Proof. Since g−x is primitive, it follows from Proposition 7 that S is primitive.
Let y ∈ V \ {x}. Since g−x is critical, (g−x)− y is decomposable. Since x is an
isolated vertex of g−y and (g−x)−y, that is, (g−y)−x is decomposable, S−y

is decomposable by Proposition 7 applied to S−y. Therefore V \{x} ⊆ C(S).

The following three results are immediate consequences of Remark 17 and
Proposition 48.

Corollary 53. Given primitive switching classes S⊆L (V,A) and S
′⊆L (V ′,A),

if β is an isomorphism from S onto S
′, then C(S′) = β(C(S)).

Corollary 54. Given isomorphic switching classes S ⊆ L (V,A) and S
′ ⊆

L (V ′,A), S is critical if and only if S′ is critical.

Corollary 55. Given primitive switching classes S⊆L (V,A) and S
′⊆L (V ′,A),

every isomorphism from S onto S
′ is an isomorphism from Π(S) onto Π(S′).

The next result is the analogue of Lemma 23 for switching classes.

Lemma 56. Consider a primitive switching class S ⊆ L (V,A) such that |V | ≥
6. For every v ∈ C(S), dΠ(S)(v) = 0 or 2. Moreover, for each v ∈ C(S), if

dΠ(S)(v) = 2, then NΠ(S)(v) ∈ Cl(S− v).

Proof. Let v ∈ C(S) such that dΠ(S)(v) > 0. Consider x ∈ NΠ(S)(v). We have
S[X] is primitive, where X = V \ {x, v}. Since v ∈ C(S), S− v = S[X ∪ {x}] is
decomposable. Thus there exists y ∈ X such that x ∈ XS(y), that is, {x, y} ∈
Cl(S[X ∪ {x}]).

We prove that y ∈ NΠ(S)(v). Let w ∈ X \ {y}. By Corollary 3, there is
g ∈ S such that w is an isolated vertex of g. Clearly w is an isolated vertex of
g[X ∪ {x}]. Since {x, y} ∈ Cl(S[X ∪ {x}]), it follows from Proposition 42 that
{x, y} ∈ Cl(g[X ∪ {x}]). Therefore, the function

ϕ : X −→ (X \ {y}) ∪ {x}
z ∈ X \ {y} 7−→ z

y 7−→ x

is an isomorphism from g[X] onto g[(X \ {y}) ∪ {x}]. Clearly w is an isolated
vertex of g[X]. SinceS[X] is primitive, it follows from Proposition 7 that g[X]−w

is primitive. Thus g[ϕ(X \ {w})] = g[((X \ {y}) ∪ {x}) \ {w}] is primitive. Since
w is an isolated vertex of g[(X \ {y}) ∪ {x}], it follows from Proposition 7 that
S[(X \ {y})∪{x}] is primitive. Since (X \ {y})∪{x} = V \ {v, y}, y ∈ NΠ(S)(v).

Lastly, we show that NΠ(S)(v) = {x, y}. Let z ∈ V \ {v, x, y}. Since {x, y} ∈
Cl(S[X ∪ {x}]), that is, {x, y} ∈ Cl(S − v), we have {x, y} ∈ Cl(S − {v, z}) by
Lemma 43. Hence S − {v, z} is decomposable, so z 6∈ NΠ(S)(v). Consequently,
NΠ(S)(v) = {x, y} and NΠ(S)(v) ∈ Cl(S− v).
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The next result is the analogue of Proposition 24 for switching classes.

Proposition 57. Consider a primitive switching class S ⊆ L (V,A) such that

|V | ≥ 6. If there exists a component D of Π(S) such that |V (D)| ≥ 2 and V (D)
⊆ C(S), then one of the following holds

• Π(S) is isomorphic to C|V |,

• Π(S) admits a unique isolated vertex x, |V | is even and Π(S)−x is isomor-

phic to C|V |−1.

Proof. By Lemma 56, D is isomorphic to Cm, where m ≥ 3. The vertices of D
can be indexed as d0, . . . , dm−1 so that for i ∈ {0, . . . ,m − 1} and j ∈ {0, . . . ,
m− 1}, we have: didj ∈ E(D) if and only if |i− j| = 1 or m− 1.

Suppose that there exists x ∈ V \V (D). We have to show that m is odd, and
V = V (D) ∪ {x}. Suppose to the contrary that m = 2n, where n ≥ 2. It follows
from Lemma 56 that {d2i−1, d2i+1} ∈ Cl(S − d2i) for 1 ≤ i ≤ n − 1. Consider
g ∈ S such that x is an isolated vertex of g. Let i ∈ {1, . . . , n− 1}. Since x is an
isolated vertex of g−d2i, we obtain {d2i−1, d2i+1} ∈ Cl(g−d2i) by Proposition 42.
Thus g(d0, d2i−1) = g(d0, d2i+1). It follows that

(11) g(d0, d1) = g(d0, d2n−1).

By Lemma 56, {d1, d2n−1} ∈ Cl(S−d0). Since x is an isolated vertex of g−d0, we
obtain {d1, d2n−1} ∈ Cl(g − d0) by Proposition 42. By (11), {d1, d2n−1} ∈ Cl(g).
Therefore {d1, d2n−1} ∈ Cl(S), which contradicts the primitivity of S. It follows
that m is odd. Let n ≥ 1 such that m = 2n+ 1.

We prove that V (D) ∈ Cl(g). Let z ∈ V \ V (D). Now, consider g ∈ S such
that z is an isolated vertex of g. As previously, we have {d2i−1, d2i+1} ∈ Cl(g−d2i)
for i ∈ {1, . . . , n− 1}. Thus

(12) g(z, d1) = · · · = g(z, d2n−1).

Similarly, we have {d2i, d2i+2} ∈ Cl(g − d2i+1) for i ∈ {0, . . . , n− 1}. Hence

(13) g(z, d0) = · · · = g(z, d2n).

We also have {d1, d2n} ∈ Cl(g−d0). Thus g(z, d1) = g(z, d2n). It follows from
(12) and (13) that g(z, d0) = g(z, di) for every i ∈ {0, . . . , 2n}. Consequently,
V (D) ∈ Cl(g) and hence V (D) ∈ Cl(S). Since S is primitive, we obtain V =
V (D) ∪ {x}.

Corollary 11 is an easy consequence of Proposition 57 and Corollary 51. It
is the analogue of Corollary 25 for switching classes.
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Proof of Corollary 11. By Corollary 51, there exist u, v ∈ V such that S −
{u, v} is primitive. Since S is critical, we have u 6= v. Hence uv ∈ E(Π(S)).
Let D be the component of Π(S) such that uv ∈ E(D). It is sufficient to apply
Proposition 57 with D.

The next lemma is important in what follows.

Lemma 58. Consider a critical switching class S ⊆ L (V,A) such that |V | ≥ 6.
For each x ∈ V , we have Sx is critical and Π(Sx) = Π(S)− x.

Proof. Let x ∈ V . Consider g ∈ S such that x is an isolated vertex of g. We
have Sx = g−x. By Proposition 7, g−x is primitive. Let y ∈ V \ {x}. We have
g−y ∈ S−y. Since S−y is decomposable and x is an isolated vertex of g−y, it
follows from Proposition 7 that (g − y)− x, that is, (g − x)− y is decomposable.
Thus g − x is critical.

Now, we show that Π(g − x) = Π(S) − x. Let u, v be distinct elements of
V \ {x}. We have

uv ∈ E(Π(S)− x) ⇐⇒ uv ∈ E(Π(S)).

By definition of Π(S),

uv ∈ E(Π(S)) ⇐⇒ S− {u, v} is primitive.

Since x is an isolated vertex of g − {u, v}, it follows from Proposition 7 that

S− {u, v} is primitive ⇐⇒ (g − {u, v})− x is primitive.

Since (g−{u, v})−x = (g−x)−{u, v}, it follows from the definition of Π(g−x)
that

(g − {u, v})− x is primitive ⇐⇒ uv ∈ E(Π(g − x)).

Theorem 10 is an immediate consequence of Lemmas 52 and 58. To conclude,
we prove Theorems 12, 13 and 14. We need the next three lemmas to show
Theorem 12.

Lemma 59. Let n ≥ 3 and let a, b ∈ A such that b+ b 6= 0, and a 6= b. Consider

the selector

(14)
s : {0, . . . , 2n− 2} −→ A

2n− 2 7−→ b+ b

p ∈ {0, . . . , 2n− 3} 7−→ 0.

We obtain that 2n− 3 is an isolated vertex of ((O2n−1)
a+(H2n−1)

b)s. Moreover,

the following assertions are equivalent
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• ((O2n−1)
a + (H2n−1)

b)s − (2n− 3) is decomposable,

• a+ a = b+ b,

• {0, 2n− 2} is a clan of ((O2n−1)
a + (H2n−1)

b)s − (2n− 3).

Proof. Set h = ((O2n−1)
a + (H2n−1)

b)s. Clearly 2n− 3 is a (−b)-isolated vertex
of h. Set Y = {0, . . . , 2n − 4}. We verify that ((O2n−1)

a + (H2n−1)
b)[Y ], that

is, (O2n−3)
a + (H2n−3)

b is primitive. If n = 3, then it is easy to verify that
((O3)

a + (H3)
b) is primitive because b + b 6= 0 and a 6= b. If n ≥ 4, then it

follows from Theorem 29 that (O2n−3)
a+(H2n−3)

b is critical and hence primitive.
Therefore, ((O2n−1)

a + (H2n−1)
b)[Y ] is primitive for every n ≥ 3. Since s(p) = 0

for each p ∈ Y , ((O2n−1)
a + (H2n−1)

b)[Y ] = h[Y ]. Thus h[Y ] is primitive. More-
over, since b+ b 6= 0 and a 6= b, we have

2n− 2 6∈ ÙY h ∪

Ñ
2n−4
⋃

p=1

Y h(p)

é

(see (9)).

Thus 2n−2 ∈ Exth(Y )∪Y h(0). Consequently, ((O2n−1)
a+(H2n−1)

b)s−(2n−3),
that is, h[Y ∪ {2n − 2}] is decomposable if and only if {0, 2n − 2} is a clan of
((O2n−1)

a+(H2n−1)
b)s−(2n−3). Furthermore, it is easy to verify that {0, 2n−2}

is a clan of ((O2n−1)
a + (H2n−1)

b)s − (2n− 3) if and only if a+ a = b+ b.

Lemma 60. Consider g ∈ L ({0, . . . , 2n− 1},A), where n ≥ 3, such that 2n− 1
is an isolated vertex of g. If 〈g〉 is critical and Π(〈g〉) = C2n, then g− (2n− 1) =
(O2n−1)

a+(H2n−1)
b, where a, b ∈ A such that b+ b 6= 0, a 6= b, and a+a = b+ b.

Proof. By Lemma 58, g− (2n−1) is critical and Π(g− (2n−1)) = Π(S)− (2n−
1) = P2n−1. It follows from Theorem 29 that g− (2n−1) = (O2n−1)

a+(H2n−1)
b,

where a, b ∈ A such that b+b 6= 0 and a 6= b. Let s be the selector defined in (14).
We have ((O2n−1)

a+(H2n−1)
b)s ∈ 〈g〉−(2n−1) and 〈g〉−(2n−1) is decomposable

because 〈g〉 is critical. By Lemma 59, 2n− 3 is an isolated vertex of ((O2n−1)
a +

(H2n−1)
b)s. It follows from Proposition 7 that ((O2n−1)

a + (H2n−1)
b)s − (2n− 3)

is decomposable. By Lemma 59, a+ a = b+ b.

Lemma 61. Given n ≥ 3, consider g ∈ L ({0, . . . , 2n − 1},A) such that 2n − 1
is an isolated vertex of g. If g − (2n− 1) = (O2n−1)

a + (H2n−1)
b, where a, b ∈ A

satisfying b+b 6= 0, a 6= b and a+a = b+b, then 〈g〉 is critical and Π(〈g〉) = C2n.

Proof. It follows from Theorem 29 applied to g − (2n − 1) that g − (2n − 1) is
critical and Π(g − (2n− 1)) = P2n−1. Furthermore, since g − (2n− 1) is critical,
it follows from Lemma 52 that 〈g〉 is primitive and

(15) {0, . . . , 2n− 2} ⊆ C(〈g〉).
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Let s be the selector defined in (14). Since a+a = b+b, it follows from Lemma 59
that ((O2n−1)

a+(H2n−1)
b)s−(2n−3), that is, (g−(2n−1))s−(2n−3) is decom-

posable. Moreover, 2n− 3 is an isolated vertex of (g − (2n− 1))s by Lemma 59.
It follows from Proposition 7 that 〈(g − (2n − 1))s〉, that is, 〈g〉 − (2n − 1) is
decomposable. Hence 2n− 1 ∈ C(〈g〉). By (15), 〈g〉 is critical. Since Π(g− (2n−
1)) = P2n−1, it follows from Lemma 58 and Corollary 11 that Π(〈g〉) = C2n.

Proof of Theorem 12. To begin, we prove that the first assertion implies the
second one. Consider a switching class S ⊆ L (V,A) such that |V | ≥ 6 and
suppose that S is critical and Π(S) ≃ C2n. Up to isomorphy, we may assume
that V = {0, . . . , 2n − 1} and Π(S) = C2n. Consider g ∈ S such that 2n − 1 is
an isolated vertex of g. It follows from Lemma 60 that g− (2n−1) = (O2n−1)

a+
(H2n−1)

b, where a, b ∈ A such that b+ b 6= 0, a 6= b, and a+ a = b+ b.
Now, we prove that the second assertion implies the first one. Suppose that

there exists x ∈ V and g ∈ S such that x is an isolated vertex of g, and g − x ≃
(O2n−1)

a + (H2n−1)
b, where n ≥ 3 and a, b ∈ A such that b + b 6= 0, a 6= b

and a + a = b + b. Up to isomorphy, we may assume that V = {0, . . . , 2n − 1},
x = 2n − 1 and g − (2n − 1) = (O2n−1)

a + (H2n−1)
b. It follows from Lemma 61

that 〈g〉 is critical and Π(〈g〉) = C2n.
Consequently, the first two assertions are equivalent. Clearly, the third as-

sertion implies the second one. We complete the proof by proving that the
second assertion implies the last one. Suppose that there exist x ∈ V and
g ∈ S such that x is an isolated vertex of g and g − x ≃ (O2n−1)

a + (H2n−1)
b,

where n ≥ 3 and a, b ∈ A such that b + b 6= 0, a 6= b, and a + a = b + b.
Up to isomorphy, we may assume that V = {0, . . . , 2n − 1}, x = 2n − 1 and
g− (2n−1) = (O2n−1)

a+(H2n−1)
b. It follows from Lemma 61 that 〈g〉 is critical

and Π(〈g〉) = C2n. Let m ∈ {0, . . . , 2n− 2}. Consider the selector

t : {0, . . . , 2n− 1} −→ A

m 7−→ 0
p ∈ {0, . . . , 2n− 1} \ {m} 7−→ g(m, p).

Clearly, m is an isolated vertex of gt. Consider also the permutation γ of {0, . . . ,
2n− 1} defined by

γ : {0, . . . , 2n− 1} −→ {0, . . . , 2n− 1}
p 7−→ p− 1−m (mod 2n).

Since γ is an isomorphism from gt onto γ(gt) and m is an isolated vertex of gt,
γ(m) is an isolated vertex of γ(gt). We have γ(m) = −1 = 2n − 1 mod 2n.
Hence 2n − 1 is an isolated vertex of γ(gt). Clearly γ is an isomorphism from
〈gt〉 onto 〈γ(gt)〉. Since 〈g〉 is critical, it follows from Corollary 54 that 〈γ(gt)〉
is critical. Moreover, by Corollary 55, γ is an isomorphism from Π(〈g〉) onto
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Π(〈γ(gt)〉). Since Π(〈g〉) = C2n and γ is an automorphism of C2n, we obtain that
Π(〈γ(gt)〉) = C2n. Consequently, 2n − 1 is an isolated vertex of γ(gt), 〈γ(gt)〉 is
critical and Π(〈γ(gt)〉) = C2n. It follows from Lemma 60 that there exist c, d ∈ A

such that d+ d 6= 0, c 6= d, c+ c = d+ d, and

γ(gt)− (2n− 1) = (O2n−1)
c + (H2n−1)

d.

Clearly (c, d) = (γ(gt)(0, 2), γ(gt)(0, 1)). Given distinct i, j ∈ {0, . . . , 2n− 2}, we
have γ(gt)(i, j) = g(m, i + 1 +m) + g(i + 1 +m, j + 1 +m) − g(m, j + 1 +m),
where i+ 1 +m and j + 1 +m are considered modulo 2n. It follows that

(c, d) =

{

(a, b) if m is odd, and

(b, a) if m is even.

Since γ is an isomorphism from gt onto γ(gt) such that γ(m) = 2n − 1 and
γ(gt)− (2n− 1) = (O2n−1)

c + (H2n−1)
d, we obtain that gt −m is isomorphic to

(O2n−1)
a + (H2n−1)

b or (O2n−1)
b + (H2n−1)

a.

Proof of Theorem 13. To begin, we prove that the first assertion implies the
second one. Suppose that the first assertion holds. Up to isomorphy, we may
assume that V = {0, . . . , 2n} and Π(S) = C2n+1. By Lemma 58, S2n is critical
and Π(S2n) = Π(S) − (2n) = P2n. It follows from Theorem 33 that S2n =
(Q2n)

a + (R2n)
b, where a ∈ A and b ∈ A \ {a,−a}.

Now, we prove that the second assertion implies the first one. Suppose
that the second assertion holds. Up to isomorphy, we may assume that V =
{0, . . . , 2n}, x = 2n and S2n = (Q2n)

a+(R2n)
b. It follows from Theorem 33 that

S2n is critical and Π(S2n) = P2n. By Lemma 52, S is primitive and

(16) {0, . . . , 2n− 1} ⊆ C(S).

Consider the selector

s : {0, . . . , 2n− 1} −→ A

2n− 1 7−→ a+ b

p ∈ {0, . . . , 2n− 2} 7−→ 0.

We obtain, for 0 ≤ m ≤ n−2, (S2n)
s(2m+1, 2n−1) = −a, and for 0 ≤ m ≤ n−1,

(S2n)
s(2m, 2n − 1) = −b. Thus 2n − 2 is a (−b)-isolated vertex of (S2n)

s.
Furthermore, {0, 2n − 1} is a clan of (S2n)

s. Therefore {0, 2n − 1} is a clan of
S− (2n). Hence 2n ∈ C(S) and S is critical by (16). Lastly, since |V | is odd, it
follows from Corollary 11 that Π(S) is an odd cycle.

Consequently, the first two assertions are equivalent. As the third assertion
implies the second one, we complete the proof by showing that the first two



206 H. Belkhechine, P. Ille and R.E. Woodrow

assertions imply the third one. Suppose that the first two assertions hold. We
may assume that V = {0, . . . , 2n}, S is critical and Π(S) = C2n+1. Moreover, we
may assume that x = 2n in the second assertion. Thus, there exists g ∈ S such
that 2n is an isolated vertex of g, and g − 2n = (Q2n)

a + (R2n)
b, where a ∈ A

and b ∈ A \ {a,−a}. Let m ∈ {0, . . . , 2n− 1}. Consider the selector

t : {0, . . . , 2n} −→ A

m 7−→ 0
p ∈ V \ {m} 7−→ g(m, p).

We obtain that m is an isolated vertex of gt. The permutation

δ : {0, . . . , 2n} −→ {0, . . . , 2n}
p 7−→ p+ (2n−m) (mod 2n+ 1)

is an isomorphism from gt onto δ(gt) that maps m to 2n. Thus 2n is an isolated
vertex of δ(gt). Furthermore, δ is an isomorphism from 〈gt〉, that is, 〈g〉 = S

onto 〈δ(gt)〉. Since S is critical, 〈δ(gt)〉 is as well by Corollary 54. Moreover,
by Corollary 55, δ is an isomorphism from Π(S) onto Π(〈δ(gt)〉). Since Π(S) =
C2n+1 and δ is an automorphism of C2n+1, we obtain Π(〈δ(gt)〉) = C2n+1, so
Π(〈δ(gt)〉)− 2n = P2n. It follows from Lemma 58 that δ(gt)− 2n is critical and
Π(δ(gt)− 2n) = P2n. By Theorem 33, there exist c ∈ A and d ∈ A \ {c,−c} such
that δ(gt)−2n = (Q2n)

c+(R2n)
d. For distinct elements p and q of {0, . . . , 2n−1},

we have (δ(gt))(p, q) = g(m, p+m+1)+g(p+m+1, q+m+1)−g(m, q+m+1),
where p+m+1 and q+m+1 are considered modulo 2n+1. Since c = (δ(gt))(0, 1)
and d = (δ(gt))(0, 2), we obtain c = g(m,m+1)+ g(m+1,m+2)− g(m,m+2)
and d = g(m,m+ 1) + g(m+ 1,m+ 3)− g(m,m+ 3), where, m+ 1, m+ 2 and
m + 3 are considered modulo 2n + 1. It follows that c = a and d = b. Thus
δ(gt)− 2n = (Q2n)

a + (R2n)
b. Since δ is an isomorphism from gt onto δ(gt) such

that δ(m) = 2n, we obtain gt −m ≃ (Q2n)
a + (R2n)

b.

We need the next lemma to show Theorem 14.

Lemma 62. Given n ≥ 2, consider g ∈ L ({0, . . . , 2n + 1},A). Let ϕ be the

transposition of {0, . . . , 2n + 1} that exchanges 2n and 2n + 1. Given a ∈ A,

consider the selector

(17)

s : {0, . . . , 2n+ 1} −→ A

{2p : 0 ≤ p ≤ n} 7−→ 0
{2p+ 1 : 0 ≤ p ≤ n− 1} 7−→ a+ a

2n+ 1 7−→ a.
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1. We have 2n + 1 is a 0-isolated vertex of g, and g − (2n + 1) = (T2n+1)
a if

and only if the following four assertions hold

(18)



























2n is a (−a)-isolated vertex of gs,

for 0 ≤ p ≤ n− 1, gs(2p, 2n+ 1) = −a,

for 0 ≤ p ≤ n− 1, gs(2p+ 1, 2n+ 1) = a,

gs − {2n, 2n+ 1} = (Q2n)
−(a+a+a) + (R2n)

a.

2. Suppose that (18) holds. If oA(a) = 4, then ϕ↾{0,...,2n−1}∪{2n+1} is an isomor-

phism from gs − (2n) onto (W2n+1)
a.

3. Suppose that (18) holds. If a + a 6= 0 and 〈g〉 − (2n + 1) is decomposable,

then oA(a) = 4.

Proof. We easily verify that the first two assertions hold. To prove the last one,
suppose that 〈g〉 − (2n + 1) is decomposable. Since 2n is a (−a)-isolated vertex
of gs− (2n+1) and 〈g〉− (2n+1) = 〈gs〉− (2n+1), it follows from Proposition 7
that gs−{2n, 2n+1}, that is, (Q2n)

−(a+a+a)+(R2n)
a is decomposable. We show

that

if (a+ a+ a) ∈ A \ {−a, a}, then (Q2n)
−(a+a+a) + (R2n)

a is primitive.

If n ≥ 3, then it suffices to apply Theorem 33. If n = 2, then we verify directly
that (Q4)

−(a+a+a) + (R4)
a is primitive. Since (Q2n)

−(a+a+a) + (R2n)
a is decom-

posable, we obtain a + a + a = a or a + a + a = −a. The first instance is not
possible because a+ a 6= 0. Thus, the second instance holds, so oA(a) = 4.

Proof of Theorem 14. To begin, we prove that the first assertion implies the
second one. Suppose that the first assertion holds and consider g ∈ S such
that x is a 0-isolated vertex of g. We may assume that V = {0, . . . , 2n + 1},
x = 2n+ 1 and Π(S)− (2n+ 1) = C2n+1. By Lemma 58, g − (2n+ 1) is critical
and Π(g− (2n+1)) = Π(S)− (2n+1) = C2n+1. It follows from Theorem 37 that

g − (2n+ 1) = (T2n+1)
a,

where a ∈ A such that a 6= −a. By the first assertion of Lemma 62, (18) holds.
Since 〈g〉−(2n+1) is decomposable, it follows from the last assertion of Lemma 62
that oA(a) = 4.

Now, we prove that the second assertion implies the third one. Suppose
that the second assertion holds. Up to isomorphy, we may assume that V =
{0, . . . , 2n + 1}, x = 2n + 1 and g − (2n + 1) = (T2n+1)

a, where g ∈ S such
that x is a 0-isolated vertex of g, and a ∈ A such that oA(a) = 4. By the first
assertion of Lemma 62, (18) holds. Let y ∈ {0, . . . , 2n}. Since the permutation
of {0, . . . , 2n+ 1} defined by
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{0, . . . , 2n+ 1} −→ {0, . . . , 2n+ 1}
p ∈ {0, . . . , 2n} 7−→ p+ (2n− y) (mod 2n+ 1)

2n+ 1 7−→ 2n+ 1,

is an automorphism of g that maps y to 2n, it suffices to prove the third as-
sertion holds for y = 2n. Let s be the selector defined in (17), and let ϕ be
the transposition of {0, . . . , 2n + 1} that exchanges 2n and 2n + 1. Since (18)
holds and oA(a) = 4, it follows from the second assertion of Lemma 62 that
ϕ↾{0,...,2n−1}∪{2n+1} is an isomorphism from gs − (2n) onto (W2n+1)

a. Conse-
quently, the third assertion holds with b = a. Hence, observe that if the last two
assertions hold, then a = b.

Lastly, we prove that the third assertion implies the first one. Suppose that
the third assertion holds. Up to isomorphy, we may assume that V = {0, . . . ,
2n+1}, x = 2n and there exists h ∈ S such that 2n+1 is a (−b)-isolated vertex of
h and h−(2n+1) = (W2n+1)

b, where b ∈ A such that oA(b) = 4. By Theorem 41,
h− (2n+ 1) is critical. It follows from Lemma 52 that S is primitive and

(19) {0, . . . , 2n} ⊆ C(S).

To prove that 2n+ 1 ∈ C(S), we proceed at follows. Let ϕ be the transposition
of {0, . . . , 2n + 1} that exchanges 2n and 2n + 1. We obtain that 2n is a (−b)-
isolated vertex of ϕ(h) and ϕ(h) − {2n, 2n + 1} = (L2n)

b. Furthermore, for
0 ≤ p ≤ n − 1, (ϕ(h))(2p, 2n + 1) = −b and (ϕ(h))(2p + 1, 2n + 1) = b. Since
ϕ(h)− {2n, 2n+ 1} = (L2n)

b and oA(b) = 4, we obtain

ϕ(h)− {2n, 2n+ 1} = (Q2n)
−(b+b+b) + (R2n)

b.

Let s be the selector defined in (17). After replacing b by a, and ϕ(h) by gs, we
obtain that (18) holds. Consider the selector t obtained from s by replacing a

by b. It follows from the first assertion of Lemma 62 that 2n + 1 is a 0-isolated
vertex of (ϕ(h))−t and (ϕ(h))−t − (2n + 1) = (T2n+1)

b. Clearly, 〈(ϕ(h))−t〉 =
〈ϕ(h)〉. By Proposition 16, 〈ϕ(h)〉 = ϕ(〈h〉). Therefore, 〈(ϕ(h))−t〉 = ϕ(S).
Since (ϕ(h))−t−(2n+1) = (T2n+1)

b and b+b 6= 0, (ϕ(h))−t−(2n+1) = (T2n+1)
b

is critical by Theorem 37. It follows from Lemma 52 that 2n ∈ C(ϕ(S)). Since
C(ϕ(S)) = ϕ(C(S)) by Corollary 53, we obtain that 2n + 1 ∈ C(S). By (19),
S is critical. We have Π(h − (2n + 1)) = Π((W2n+1)

b). By Theorem 41, 2n is
an isolated vertex of Π(h− (2n+ 1)). Since Π(h− (2n+ 1)) = Π(S)− (2n+ 1)
by Lemma 58, it follows from Lemma 56 that 2n is an isolated vertex of Π(S).
By Corollary 11, Π(S) − (2n) ≃ C2n+1. To conclude, it suffices to recall that
2n = x.
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