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Abstract

The thickness of a graph is the minimum number of planar spanning
subgraphs into which the graph can be decomposed. It is a measurement of
the closeness to the planarity of a graph, and it also has important applica-
tions to VLSI design, but it has been known for only few graphs. We ob-
tain the thickness of vertex-amalgamation and bar-amalgamation of graphs,
the lower and upper bounds for the thickness of edge-amalgamation and 2-
vertex-amalgamation of graphs, respectively. We also study the thickness of
Cartesian product of graphs, and by using operations on graphs, we derive
the thickness of the Cartesian product Kn�Pm for most values of m and n.
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1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). A graph is said to
be planar if it can be drawn on the plane without edge crossings. Suppose G1,

G2, . . . , Gk are spanning subgraphs of G; if E(G1)∪E(G2)∪ · · · ∪E(Gk) = E(G)
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and E(Gi) ∩ E(Gj) = ∅ (i 6= j, i, j = 1, 2, . . . , k), then {G1, G2, . . . , Gk} is a
decomposition of G. Furthermore, if G1, G2, . . . , Gk are all planar graphs, then
{G1, G2, . . . , Gk} is a planar decomposition of G. The minimum number of planar
spanning subgraphs over all possible planar decompositions of G is called the
thickness of G, denoted by θ(G).

The thickness of a graph was first defined by Tutte [21] in 1963. As a topo-
logical invariant of a graph, it is an important research object in topological
graph theory, and it also has important applications to VLSI design [1]. But
the results about thickness are few, compared with other topological invariants,
e.g., genus and crossing number. The only types of graphs whose thickness have
been obtained are complete graphs [3, 6, 22], complete bipartite graphs [7] and
hypercubes [16]. Since determining the thickness of a graph is NP-hard [17], it
is very difficult to get the exact number of thickness for arbitrary graphs, and
people study the lower and upper bounds for the thickness of a graph [12, 14] and
introduce heuristic algorithms to approximate it [11, 20]. Some relations between
thickness and other topological invariants, such as genus, are also established [4].
The reader is referred to [18, 19] for more background and results about the
thickness problems.

In this paper, the thickness of graphs that are formed from vertex-amalga-
mation and bar-amalgamation of any two graphs are given. The lower and upper
bounds for the thickness of graphs that are obtained by edge-amalgamation and
2-vertex-amalgamation of any two graphs are also derived. Some results about
the thickness of Cartesian product graph are also obtained, in particular, the
thickness of the Cartesian product Kn�Pm is obtained for most values of m and
n (Kn is the complete graph with n vertices and Pm is the path with m vertices).

Graphs in this paper are simple. For undefined terminology, see [9].

2. Thickness of Graph Amalgamations

The union of graphsG1 andG2 is the graphG1∪G2 with vertex set V (G1)∪V (G2)
and edge set E(G1) ∪ E(G2). The intersection G1 ∩G2 of G1 and G2 is defined
analogously.

Let G1 and G2 be subgraphs of a graph G. If G = G1∪G2 and G1∩G2 = {v}
(a vertex of G), then we say that G is the vertex-amalgamation of G1 and G2

at vertex v, denoted G = G1

∨
1

{v}G2. If G = G1 ∪ G2 and G1 ∩ G2 = {u, v}
(two distinct vertices of G), then we say that G is the 2-vertex-amalgamation of
G1 and G2 at vertices u and v, denoted G = G1

∨
1

{u,v}G2. If G = G1 ∪ G2 and
G1 ∩ G2 = {e} (an edge of G), then we say that G is the edge-amalgamation of
G1 and G2 on edge e, denoted G = G1

∨
2

{e}G2.

Let G and H be two disjoint graphs. The bar-amalgamation of G and H is
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obtained by adding a new edge between a vertex of G and a vertex of H.
The four kinds of amalgamations defined above are important operations on

graphs; by these amalgamations, one can create larger graphs (i.e., graphs with
larger order) from small ones. It is a general method to study problems in graph
theory by using operations on graphs. In the following, we list some results about
genus of graph amalgamations which will be applied in our proof.

The genus of a graph G, denoted by γ(G), is the minimum integer k such
that G can be embedded on the orientable surface of genus k. A graph G is pla-
nar if and only if γ(G) = 0.

Lemma 1 [5]. If G is the vertex-amalgamation of G1 and G2, then

γ(G) = γ(G1) + γ(G2).

Lemma 2 [10]. If G is the bar-amalgamation of G1 and G2, then

γ(G) = γ(G1) + γ(G2).

Lemma 3 [2]. If G is the edge-amalgamation of G1 and G2, then

γ(G) ≤ γ(G1) + γ(G2).

Lemma 4 [13]. If G is the 2-vertex-amalgamation of G1 and G2, then

γ(G1) + γ(G2)− 1 ≤ γ(G) ≤ γ(G1) + γ(G2) + 1.

In [4], a relation between genus and thickness of a graph was given as follows.

Lemma 5 [4]. If G is a graph with genus 1, then the thickness of G is 2.

In the following, some results about the thickness of vertex-amalgamation,
bar-amalgamation, edge-amalgamation and 2-vertex-amalgamation of graphs are
obtained.

Theorem 6. If G is the vertex-amalgamation of G1 and G2, θ(G1) = n1 and

θ(G2) = n2, then

θ(G) = max{n1, n2}.

Proof. Without loss of generality, one can assume that n1 is not less than n2

and G1∩G2 = {v} (a vertex of G). Suppose that {G11, G12, . . . , G1n1
} is a planar

decomposition of G1 and {G21, G22, . . . , G2n1
} is a planar decomposition of G2.

From Lemma 1,

γ

(
G1i

∨ 1

{v}
G2i

)
= γ(G1i) + γ(G2i) = 0, 1 ≤ i ≤ n1.

Hence {G11

∨
1

{v}G21, G12

∨
1

{v}G22, . . . , G1n1

∨
1

{v}G2n1
} is a planar decomposition

of G, which shows θ(G) ≤ n1. On the other hand, G1 is a subgraph of G and
θ(G1) = n1, so we have θ(G) ≥ n1. Summarizing the above, the thickness of G
is n1, and the theorem follows.
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Theorem 7. If G is the bar-amalgamation of G1 and G2, θ(G1) = n1 and

θ(G2) = n2, then

θ(G) = max{n1, n2}.

Proof. Suppose that n1 ≥ n2 and edge e is the new edge between G1 and G2. Let
{G11, G12, . . . , G1n1

} be a planar decomposition of G1 and {G21, G22, . . . , G2n1
}

be a planar decomposition of G2. G11 ∪ G21 ∪ e is the bar-amalgamation of
G11 and G21; from Lemma 2, the genus of G11 ∪ G21 ∪ e is zero, that is to say,
G11∪G21∪e is a planar graph. Hence {G11∪G21∪e, G12∪G22, . . . , G1n1

∪G2n1
}

is a planar decomposition of G, which shows θ(G) ≤ n1. For G = G1 ∪ G2 ∪ e

and θ(G1) = n1, we have θ(G) ≥ n1. Summarizing the above, the thickness of G
is n1, and the theorem is obtained.

Theorem 8. If G is the edge-amalgamation of G1 and G2, θ(G1) = n1 and

θ(G2) = n2, then

max{n1, n2} ≤ θ(G) ≤ max{n1, n2}+ 1.

Proof. Suppose that n1 is not less than n2 and G1 ∩ G2 = {e} (an edge of
G), the two end vertices of e are u and v. Let {G11, G12, . . . , G1n1

} be a planar
decomposition of G1 and without loss of generality, we can assume e ∈ E(G11).
Let Euv be the set of edges that are incident with u or v in G2. It is easy to see
that the graph G11∪Euv is a planar graph. Let {G21, G22, . . . , G2n2

} be a planar
decomposition of G2 − Euv.

(1) If n1 > n2, then {G11∪Euv, G12∪G21, . . . , G1n2+1∪G2n2
, G1n2+2, . . . , G1n1

}
is a planar decomposition of G, which shows θ(G) ≤ n1.

(2) If n1 = n2, then {G11∪Euv, G12∪G21, . . . , G1n1
∪G2n2−1, G2n2

} is a planar
decomposition of G, which shows θ(G) ≤ n1 + 1.

For G = G1

∨
2

{e}G2 and θ(G1) = n1, we have θ(G) ≥ n1. Summarizing the
above, the theorem follows.

From the proof of Theorem 8, if G is the edge-amalgamation of G1 and G2,
θ(G1) = n1 and θ(G2) = n2, then θ(G) = max{n1, n2}, when n1 6= n2; θ(G) is
either max{n1, n2} or max{n1, n2}+ 1, when n1 = n2.

Theorem 9. If G is the 2-vertex-amalgamation of G1 and G2, θ(G1) = n1 and

θ(G2) = n2, then

max{n1, n2} ≤ θ(G) ≤ max{n1, n2}+ 1.

Proof. Suppose that G1 ∩ G2 = {u, v} (two distinct vertices of G), E1v and
E2v are the sets of edges that are incident with v in G1 and G2, respectively.
Then G − E1v − E2v can be seen as the vertex-amalgamation of G1 − E1v and
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G2−E2v at the vertex u. From Theorem 6, there exists a planar decomposition of
G−E1v−E2v with n = max{n1, n2} planar subgraphs, and θ(G) ≥ n. Obviously,
the subgraph induced by E1v ∪ E2v is a planar graph. So there is a planar
decomposition of G with n + 1 planar subgraphs, which show θ(G) ≤ n + 1.
Summarizing the above, the theorem follows.

With a similar argument as in the proof of Theorem 9, one can obtain the
following theorem about the q-vertex-amalgamation (q ≥ 3) of two graphs.

Theorem 10. If G is the q-vertex-amalgamation of G1 and G2, θ(G1) = n1 and

θ(G2) = n2, then

max{n1, n2} ≤ θ(G) ≤ max{n1, n2}+ q − 1.

3. Thickness of the Cartesian Product of Two Graphs

The Cartesian product of graphs G and H is the graph G�H with vertex set

V (G�H) = V (G)× V (H)

and edge set

E(G�H) = {(g, h)(g′, h′) | gg′ ∈ E(G) and h = h′, or hh′ ∈ E(H) and g = g′}.

For any h ∈ V (H), we denote byGh the subgraph ofG�H induced by V (G)×{h};
it is isomorphic to G and called a G-fiber. The H-fiber is defined analogously.

3.1. Thickness of the Cartesian product of a t-minimal graph and an

outerplanar graph

A graph G is said to be t-minimal, if every proper subgraphs of it have the
thickness less than t. There are only two 2-minimal graphs, i.e., K5 and K3,3, up
to homeomorphism. The only known t-minimal complete graph is K9 for t = 3.
A graph is an outerplanar graph if it can be embedded in the plane without
crossings in such a way that all of the vertices belong to the unbounded region
of the embedding.

Theorem 11 [8]. Let G and H be connected graphs. Then the graph G�K2 is

planar if and only if G is outerplanar.

Theorem 12. Let G be a t-minimal graph and H be an outerplanar graph. Then

θ(G�H) = θ(G).
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Proof. Suppose that V (G) = {v1, v2, . . . , vn}. Because G is t-minimal and the
removal of a single edge from a graph cannot reduce the thickness of the graph
by more than one, for any e ∈ E(G), we have θ(G − e) = t − 1. Without loss
of generality, we suppose that e = v1v2 and the graph K2 consists of the edge e.
From the structure of G�H, we have G�H = ((G− e)�H) ∪ (K2�H).

From Theorem 11, K2�H is a planar graph. The H fibers Hv3 , Hv4 , . . . , Hvn

are also planar graphs. Furthermore, the graph (K2�H)∪Hv3 ∪Hv4 ∪ · · · ∪Hvn

is a planar graph, since it is the union of n−1 disjoint planar graphs; denote it by
Gt. The removal of the edges of the subgraph Gt from G�H leaves |V (H)| copies
of disjoint graphs G− e, which can be decomposed into t− 1 subgraphs, because
θ(G− e) = t− 1. Summarizing the above, we can get a planar decomposition of
G�H with t subgraphs, i.e., θ(G�H) ≤ t.

On the other hand, since G ⊂ G�H, we have θ(G�H) ≥ t. The theorem
follows.

Corollary 13. Let G be a t-minimal graph and Cm be a cycle graph. Then

θ(G�Cm) = θ(G).

Corollary 14. Let G be a t-minimal graph and Pn be a path graph. Then

θ(G�Pn) = θ(G).

3.2. The thickness of Kn�P2, n ≥ 2

In the following, by using operations on graphs and some conclusions above, we
obtain the thickness of Kn�Pm, for n,m ≥ 2.

Lemma 15 [3, 6, 22]. The thickness of the complete graph Kn is θ(Kn) =
⌊
n+7

6

⌋
,

except that θ(K9) = θ(K10) = 3.

Let K1
n be the complete graph with vertices v1, v2, . . . , vn. K2

n is a copy of
K1

n and its vertices are labeled with u1, u2, . . . , un, respectively. By joining the
vertices vi and ui with an edge viui, 1 ≤ i ≤ n, we get the graph Kn�P2. Figure
1 illustrates K5�P2. From a planar decomposition of Kn�P2, by contracting the
edges from K2

n to a single vertex in all planar subgraphs, one can obtain a planar
decomposition of Kn+1, so we have

(1) θ(Kn�P2) ≥ θ(Kn+1).

By inserting a vertex wi on edge viui, for 1 ≤ i ≤ n, and merging these
n 2-valent vertices w1, w2, . . . , wn into one vertex w, one can get a new graph.
This graph can also be seen as the vertex-amalgamation of Kn+1 and Kn+1 at
w, denoted by Kn+1

∨
1

{w}Kn+1. Figure 2 shows the graph K6

∨
1

{w}K6.
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u3 u4
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Figure 1. The graph K5�P2.
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w

Figure 2. The graph K6

∨
1

{w} K6.

From Theorem 6, the thickness of Kn+1

∨
1

{w}Kn+1 is the same as the thick-
ness of Kn+1. Let θ(Kn+1) = t and {G1, G2, . . . , Gt} be a planar decomposition
of Kn+1. Then one can get a planar decomposition of Kn+1

∨
1

{w}Kn+1 as follows,

{
G1

∨ 1

{w}
G1, G2

∨ 1

{w}
G2, . . . , Gt

∨ 1

{w}
Gt

}

in which Gi

∨
1

{w}Gi, 1 ≤ i ≤ t are planar graphs. A planar decomposition of

K6

∨
1

{w}K6 is shown in Figure 3.

v1

v2

v3
v4

v5

u1

u2

u3
u4

u5
w

v1

v2

v3
v4

u1

u2

u3
u4

u5
wv5

Figure 3. A planar decomposition of K6

∨
1

{w} K6.

From the construction of Gi

∨
1

{w}Gi, if the edge vqw ∈ Gi

∨
1

{w}Gi, then

uqw ∈ Gi

∨
1

{w}Gi, 1 ≤ q ≤ n. For each graph Gi

∨
1

{w}Gi, 1 ≤ i ≤ t, if vqw,

uqw ∈ Gi

∨
1

{w}Gi, then we replace them by a new edge vquq, for 1 ≤ q ≤ n,
and delete the vertex w. In this way, we obtain a new planar decomposition,
which is exactly a planar decomposition of Kn�P2. Figure 4 illustrates a planar
decomposition of K5�P2 by using this way.
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Figure 4. A planar decomposition of K5�P2.

From the argument and construction above, one can get a planar decompo-
sition of Kn�P2 from that of Kn+1

∨
1

{w}Kn+1, so we have

(2) θ(Kn�P2) ≤ θ

(
Kn+1

∨ 1

{w}
Kn+1

)
= θ(Kn+1).

Theorem 16. The thickness of the Cartesian product Kn�P2 (n ≥ 2) is

θ(Kn�P2) =

⌊
n+ 8

6

⌋
,

except that θ(K8�P2) = θ(K9�P2) = 3.

Proof. From (1) and (2), we obtain that θ(Kn�P2) = θ(Kn+1). By Lemma 15,
the theorem follows.

3.3. The thickness of Kn�Pm, n ≥ 2,m ≥ 3

We use the method similar to that in Section 3.2. Firstly, we insert a 2-valent
vertex into each “path edge” (the edges come from Pm). Secondly, we merge
these (m − 1)n 2-valent vertices into m − 1 vertices, each of which joint two
adjacent Kn; then we get a new graph G̃. The graph G̃ can be seen as a vertex-
amalgamation of m graphs, in which the first and the mth graphs are Kn+1, the
others are Kn+2 − e. From Theorem 6, one can get θ(G̃) = θ(Kn+2 − e). In the
following, we will construct a planar decomposition of Kn�Pm (m ≥ 3) from a
planar decomposition of G̃, which shows that

(3) θ(Kn�Pm) ≤ θ(Kn+2 − e) ≤ θ(Kn+2).

Suppose that {G1, G2, . . . , Gj} is a planar decomposition of Kn+2 − e, in
which the vertices of Kn+2 are labeled with v1, v2, . . . , vn+2, respectively and
e = vn+1vn+2. For each 1 ≤ i ≤ j, we do a vertex-amalgamation of m graphs Gi

as follows

Gi

∨ 1

{vn+1}
Gi

∨ 1

{vn+2}
Gi

∨ 1

{vn+1}
Gi · · ·

∨ 1

{vp}
Gi
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in which p = vn+2 when m is odd, and p = vn+1 when m is even. Denote the
resulting graph by Ĝi. For each Ĝi (1 ≤ i ≤ j), we delete the vertex vn+2 and
the edges incident with it in the first Gi, delete the vertex vn+1 or vn+2 and the
edges incident with it in the mth Gi according to m is odd or even. Denote the
resulting graph by G̃i. Then {G̃1, G̃2, . . . , G̃j} is a planar decomposition of G̃.
Finally, we delete m−1 vertices vn+1 and vn+2 in G̃i, 1 ≤ i ≤ j, and replace them
by “path edge” as in Section 3.2, and denote the obtained graph by Gi, 1 ≤ i ≤ j.
Clearly, {G1, G2, . . . , Gj} is a planar decomposition of Kn�Pm, m ≥ 3. Figure
5 shows a planar decomposition of a vertex-amalgamation of four graphs K7 − e

and a planar decomposition of K5�P4 from it is illustrated in Figure 6.
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v2
v7

v2

v1

v2

v3
v4

v5

v6

v1

v2

v3
v4

v5

v6

v1

v5

v4
v3

v2

v1

v5

v4
v3

v2

v6

v7v7
v7v7

v7

v6 v7 v7

Figure 5. A planar decomposition of a vertex-amalgamation of 4 graphs K7 − e.
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v2
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v3v4
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v1

v2

v3 v4

v5

v1

v5

v4v3

v2

v1

v5

v4
v3

v2

Figure 6. A planar decomposition of K5�P4.

On the other hand, Kn�P2 is a subgraph of Kn�Pm (m ≥ 3), and combing
it with (1), we have

(4) θ(Kn�Pm) ≥ θ(Kn�P2) ≥ θ(Kn+1).
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Theorem 17. The thickness of the Cartesian product Kn�Pm (n ≥ 2,m ≥ 3) is

θ(Kn�Pm) =

⌊
n+ 9

6

⌋
,

except that θ(K3�Pm) = 1, θ(K8�Pm) = 3 and possibly when n = 6p+3 (p ≥ 2).

Proof. When n 6= 7, from (3), (4) and Lemma 15, we obtain θ(Kn�Pm) =
θ(Kn+2), except possibly when n = 6p+ 3 (p is a nonnegative integer).

When n = 3, because θ(K4) ≤ θ(K3�Pm) ≤ θ(K5 − e) and both K4 and
K5 − e are planar graphs, we have θ(K3�Pm) = 1.

When n = 9, because θ(K10) ≤ θ(K9�Pm) ≤ θ(K11) and θ(K10) = θ(K11) =
3, we have θ(K9�Pm) = 3.

When n = 8, we have θ(K8�Pm) = θ(K10) = 3. When n = 7, we have
2 ≤ θ(K7�Pm) ≤ θ(K9− e). We give a planar decomposition of K9− e as shown
in Figure 7, and K9 − e is a non-planar graph, which shows θ(K9 − e) = 2. So
we have θ(K7�Pm) = 2.

Summarizing the above, the theorem is obtained.

1 2 3 4 5 6 7

8

9

8

9

1

7

33 5 2 6 4

Figure 7. A planar decomposition of K9 − e.

From Theorems 16 and 17, the only unsolved case for the thickness of the
Cartesian product Kn�Pm is when is n = 6p + 3 (p ≥ 2) and m ≥ 3. For this
case, θ(Kn�Pm) = θ(Kn+1) or θ(Kn+2 − e). What is the exact number for this
case is still open. It was conjectured in [15] that K6t−7 is t-minimal for t ≥ 5. If
this conjecture is true, then θ(Kn�Pm) = θ(Kn+1) = θ(Kn+2 − e) =

⌊
n+8

6

⌋
, for

n = 6p+ 3 (p ≥ 3) and m ≥ 3.

The method of the current paper is not strong enough to determine the
thickness of the Cartesian product of the complete graph Kn and the cycle graph
Cm. We pose the following problem for possible consideration.

Problem 18. Find an explicit formula for the thickness of the Cartesian product
of the complete graph Kn and the cycle graph Cm for n,m ≥ 3.
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