# THE THICKNESS OF AMALGAMATIONS AND CARTESIAN PRODUCT OF GRAPHS 

Yan Yang<br>Department of Mathematics<br>Tianjin University<br>300072, Tianjin, China<br>e-mail: yanyang@tju.edu.cn<br>AND<br>Yichao Chen<br>College of Mathematics and Econometrics<br>Hunan University<br>410082 Changsha, China<br>e-mail: ycchen@hnu.edu.cn


#### Abstract

The thickness of a graph is the minimum number of planar spanning subgraphs into which the graph can be decomposed. It is a measurement of the closeness to the planarity of a graph, and it also has important applications to VLSI design, but it has been known for only few graphs. We obtain the thickness of vertex-amalgamation and bar-amalgamation of graphs, the lower and upper bounds for the thickness of edge-amalgamation and 2-vertex-amalgamation of graphs, respectively. We also study the thickness of Cartesian product of graphs, and by using operations on graphs, we derive the thickness of the Cartesian product $K_{n} \square P_{m}$ for most values of $m$ and $n$. Keywords: thickness, amalgamation, Cartesian product, genus. 2010 Mathematics Subject Classification: 05C10.


## 1. Introduction

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$. A graph is said to be planar if it can be drawn on the plane without edge crossings. Suppose $G_{1}$, $G_{2}, \ldots, G_{k}$ are spanning subgraphs of $G$; if $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup \cdots \cup E\left(G_{k}\right)=E(G)$
and $E\left(G_{i}\right) \cap E\left(G_{j}\right)=\emptyset(i \neq j, i, j=1,2, \ldots, k)$, then $\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ is a decomposition of $G$. Furthermore, if $G_{1}, G_{2}, \ldots, G_{k}$ are all planar graphs, then $\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ is a planar decomposition of $G$. The minimum number of planar spanning subgraphs over all possible planar decompositions of $G$ is called the thickness of $G$, denoted by $\theta(G)$.

The thickness of a graph was first defined by Tutte [21] in 1963. As a topological invariant of a graph, it is an important research object in topological graph theory, and it also has important applications to VLSI design [1]. But the results about thickness are few, compared with other topological invariants, e.g., genus and crossing number. The only types of graphs whose thickness have been obtained are complete graphs [3, 6, 22], complete bipartite graphs [7] and hypercubes [16]. Since determining the thickness of a graph is NP-hard [17], it is very difficult to get the exact number of thickness for arbitrary graphs, and people study the lower and upper bounds for the thickness of a graph [12, 14] and introduce heuristic algorithms to approximate it [11, 20]. Some relations between thickness and other topological invariants, such as genus, are also established [4]. The reader is referred to $[18,19]$ for more background and results about the thickness problems.

In this paper, the thickness of graphs that are formed from vertex-amalgamation and bar-amalgamation of any two graphs are given. The lower and upper bounds for the thickness of graphs that are obtained by edge-amalgamation and 2 -vertex-amalgamation of any two graphs are also derived. Some results about the thickness of Cartesian product graph are also obtained, in particular, the thickness of the Cartesian product $K_{n} \square P_{m}$ is obtained for most values of $m$ and $n$ ( $K_{n}$ is the complete graph with $n$ vertices and $P_{m}$ is the path with $m$ vertices).

Graphs in this paper are simple. For undefined terminology, see [9].

## 2. Thickness of Graph Amalgamations

The union of graphs $G_{1}$ and $G_{2}$ is the graph $G_{1} \cup G_{2}$ with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The intersection $G_{1} \cap G_{2}$ of $G_{1}$ and $G_{2}$ is defined analogously.

Let $G_{1}$ and $G_{2}$ be subgraphs of a graph $G$. If $G=G_{1} \cup G_{2}$ and $G_{1} \cap G_{2}=\{v\}$ (a vertex of $G$ ), then we say that $G$ is the vertex-amalgamation of $G_{1}$ and $G_{2}$ at vertex $v$, denoted $G=G_{1} \bigvee_{\{v\}}^{1} G_{2}$. If $G=G_{1} \cup G_{2}$ and $G_{1} \cap G_{2}=\{u, v\}$ (two distinct vertices of $G$ ), then we say that $G$ is the 2-vertex-amalgamation of $G_{1}$ and $G_{2}$ at vertices $u$ and $v$, denoted $G=G_{1} \bigvee_{\{u, v\}}^{1} G_{2}$. If $G=G_{1} \cup G_{2}$ and $G_{1} \cap G_{2}=\{e\}$ (an edge of $G$ ), then we say that $G$ is the edge-amalgamation of $G_{1}$ and $G_{2}$ on edge $e$, denoted $G=G_{1} \bigvee_{\{e\}}^{2} G_{2}$.

Let $G$ and $H$ be two disjoint graphs. The bar-amalgamation of $G$ and $H$ is
obtained by adding a new edge between a vertex of $G$ and a vertex of $H$.
The four kinds of amalgamations defined above are important operations on graphs; by these amalgamations, one can create larger graphs (i.e., graphs with larger order) from small ones. It is a general method to study problems in graph theory by using operations on graphs. In the following, we list some results about genus of graph amalgamations which will be applied in our proof.

The genus of a graph $G$, denoted by $\gamma(G)$, is the minimum integer $k$ such that $G$ can be embedded on the orientable surface of genus $k$. A graph $G$ is planar if and only if $\gamma(G)=0$.
Lemma 1 [5]. If $G$ is the vertex-amalgamation of $G_{1}$ and $G_{2}$, then

$$
\gamma(G)=\gamma\left(G_{1}\right)+\gamma\left(G_{2}\right)
$$

Lemma 2 [10]. If $G$ is the bar-amalgamation of $G_{1}$ and $G_{2}$, then

$$
\gamma(G)=\gamma\left(G_{1}\right)+\gamma\left(G_{2}\right)
$$

Lemma 3 [2]. If $G$ is the edge-amalgamation of $G_{1}$ and $G_{2}$, then

$$
\gamma(G) \leq \gamma\left(G_{1}\right)+\gamma\left(G_{2}\right)
$$

Lemma 4 [13]. If $G$ is the 2-vertex-amalgamation of $G_{1}$ and $G_{2}$, then

$$
\gamma\left(G_{1}\right)+\gamma\left(G_{2}\right)-1 \leq \gamma(G) \leq \gamma\left(G_{1}\right)+\gamma\left(G_{2}\right)+1
$$

In [4], a relation between genus and thickness of a graph was given as follows.
Lemma 5 [4]. If $G$ is a graph with genus 1, then the thickness of $G$ is 2.
In the following, some results about the thickness of vertex-amalgamation, bar-amalgamation, edge-amalgamation and 2-vertex-amalgamation of graphs are obtained.

Theorem 6. If $G$ is the vertex-amalgamation of $G_{1}$ and $G_{2}, \theta\left(G_{1}\right)=n_{1}$ and $\theta\left(G_{2}\right)=n_{2}$, then

$$
\theta(G)=\max \left\{n_{1}, n_{2}\right\}
$$

Proof. Without loss of generality, one can assume that $n_{1}$ is not less than $n_{2}$ and $G_{1} \cap G_{2}=\{v\}$ (a vertex of $G$ ). Suppose that $\left\{G_{11}, G_{12}, \ldots, G_{1 n_{1}}\right\}$ is a planar decomposition of $G_{1}$ and $\left\{G_{21}, G_{22}, \ldots, G_{2 n_{1}}\right\}$ is a planar decomposition of $G_{2}$. From Lemma 1,

$$
\gamma\left(G_{1 i} \bigvee_{\{v\}}^{1} G_{2 i}\right)=\gamma\left(G_{1 i}\right)+\gamma\left(G_{2 i}\right)=0, \quad 1 \leq i \leq n_{1}
$$

Hence $\left\{G_{11} \bigvee_{\{v\}}^{1} G_{21}, G_{12} \bigvee{ }_{\{v\}}^{1} G_{22}, \ldots, G_{1 n_{1}} \bigvee_{\{v\}}^{1} G_{2 n_{1}}\right\}$ is a planar decomposition of $G$, which shows $\theta(G) \leq n_{1}$. On the other hand, $G_{1}$ is a subgraph of $G$ and $\theta\left(G_{1}\right)=n_{1}$, so we have $\theta(G) \geq n_{1}$. Summarizing the above, the thickness of $G$ is $n_{1}$, and the theorem follows.

Theorem 7. If $G$ is the bar-amalgamation of $G_{1}$ and $G_{2}, \theta\left(G_{1}\right)=n_{1}$ and $\theta\left(G_{2}\right)=n_{2}$, then

$$
\theta(G)=\max \left\{n_{1}, n_{2}\right\} .
$$

Proof. Suppose that $n_{1} \geq n_{2}$ and edge $e$ is the new edge between $G_{1}$ and $G_{2}$. Let $\left\{G_{11}, G_{12}, \ldots, G_{1 n_{1}}\right\}$ be a planar decomposition of $G_{1}$ and $\left\{G_{21}, G_{22}, \ldots, G_{2 n_{1}}\right\}$ be a planar decomposition of $G_{2} . G_{11} \cup G_{21} \cup e$ is the bar-amalgamation of $G_{11}$ and $G_{21}$; from Lemma 2, the genus of $G_{11} \cup G_{21} \cup e$ is zero, that is to say, $G_{11} \cup G_{21} \cup e$ is a planar graph. Hence $\left\{G_{11} \cup G_{21} \cup e, G_{12} \cup G_{22}, \ldots, G_{1 n_{1}} \cup G_{2 n_{1}}\right\}$ is a planar decomposition of $G$, which shows $\theta(G) \leq n_{1}$. For $G=G_{1} \cup G_{2} \cup e$ and $\theta\left(G_{1}\right)=n_{1}$, we have $\theta(G) \geq n_{1}$. Summarizing the above, the thickness of $G$ is $n_{1}$, and the theorem is obtained.

Theorem 8. If $G$ is the edge-amalgamation of $G_{1}$ and $G_{2}, \theta\left(G_{1}\right)=n_{1}$ and $\theta\left(G_{2}\right)=n_{2}$, then

$$
\max \left\{n_{1}, n_{2}\right\} \leq \theta(G) \leq \max \left\{n_{1}, n_{2}\right\}+1 .
$$

Proof. Suppose that $n_{1}$ is not less than $n_{2}$ and $G_{1} \cap G_{2}=\{e\}$ (an edge of $G)$, the two end vertices of $e$ are $u$ and $v$. Let $\left\{G_{11}, G_{12}, \ldots, G_{1 n_{1}}\right\}$ be a planar decomposition of $G_{1}$ and without loss of generality, we can assume $e \in E\left(G_{11}\right)$. Let $E_{u v}$ be the set of edges that are incident with $u$ or $v$ in $G_{2}$. It is easy to see that the graph $G_{11} \cup E_{u v}$ is a planar graph. Let $\left\{G_{21}, G_{22}, \ldots, G_{2 n_{2}}\right\}$ be a planar decomposition of $G_{2}-E_{u v}$.
(1) If $n_{1}>n_{2}$, then $\left\{G_{11} \cup E_{u v}, G_{12} \cup G_{21}, \ldots, G_{1 n_{2}+1} \cup G_{2 n_{2}}, G_{1 n_{2}+2}, \ldots, G_{1 n_{1}}\right\}$ is a planar decomposition of $G$, which shows $\theta(G) \leq n_{1}$.
(2) If $n_{1}=n_{2}$, then $\left\{G_{11} \cup E_{u v}, G_{12} \cup G_{21}, \ldots, G_{1 n_{1}} \cup G_{2 n_{2}-1}, G_{2 n_{2}}\right\}$ is a planar decomposition of $G$, which shows $\theta(G) \leq n_{1}+1$.
For $G=G_{1} \bigvee_{\{e\}}^{2} G_{2}$ and $\theta\left(G_{1}\right)=n_{1}$, we have $\theta(G) \geq n_{1}$. Summarizing the above, the theorem follows.

From the proof of Theorem 8, if $G$ is the edge-amalgamation of $G_{1}$ and $G_{2}$, $\theta\left(G_{1}\right)=n_{1}$ and $\theta\left(G_{2}\right)=n_{2}$, then $\theta(G)=\max \left\{n_{1}, n_{2}\right\}$, when $n_{1} \neq n_{2} ; \theta(G)$ is either $\max \left\{n_{1}, n_{2}\right\}$ or $\max \left\{n_{1}, n_{2}\right\}+1$, when $n_{1}=n_{2}$.

Theorem 9. If $G$ is the 2-vertex-amalgamation of $G_{1}$ and $G_{2}, \theta\left(G_{1}\right)=n_{1}$ and $\theta\left(G_{2}\right)=n_{2}$, then

$$
\max \left\{n_{1}, n_{2}\right\} \leq \theta(G) \leq \max \left\{n_{1}, n_{2}\right\}+1 .
$$

Proof. Suppose that $G_{1} \cap G_{2}=\{u, v\}$ (two distinct vertices of $G$ ), $E_{1 v}$ and $E_{2 v}$ are the sets of edges that are incident with $v$ in $G_{1}$ and $G_{2}$, respectively. Then $G-E_{1 v}-E_{2 v}$ can be seen as the vertex-amalgamation of $G_{1}-E_{1 v}$ and
$G_{2}-E_{2 v}$ at the vertex $u$. From Theorem 6, there exists a planar decomposition of $G-E_{1 v}-E_{2 v}$ with $n=\max \left\{n_{1}, n_{2}\right\}$ planar subgraphs, and $\theta(G) \geq n$. Obviously, the subgraph induced by $E_{1 v} \cup E_{2 v}$ is a planar graph. So there is a planar decomposition of $G$ with $n+1$ planar subgraphs, which show $\theta(G) \leq n+1$. Summarizing the above, the theorem follows.

With a similar argument as in the proof of Theorem 9, one can obtain the following theorem about the $q$-vertex-amalgamation ( $q \geq 3$ ) of two graphs.

Theorem 10. If $G$ is the q-vertex-amalgamation of $G_{1}$ and $G_{2}, \theta\left(G_{1}\right)=n_{1}$ and $\theta\left(G_{2}\right)=n_{2}$, then

$$
\max \left\{n_{1}, n_{2}\right\} \leq \theta(G) \leq \max \left\{n_{1}, n_{2}\right\}+q-1 .
$$

## 3. Thickness of the Cartesian Product of Two Graphs

The Cartesian product of graphs $G$ and $H$ is the graph $G \square H$ with vertex set

$$
V(G \square H)=V(G) \times V(H)
$$

and edge set

$$
E(G \square H)=\left\{(g, h)\left(g^{\prime}, h^{\prime}\right) \mid g g^{\prime} \in E(G) \text { and } h=h^{\prime}, \text { or } h h^{\prime} \in E(H) \text { and } g=g^{\prime}\right\} .
$$

For any $h \in V(H)$, we denote by $G^{h}$ the subgraph of $G \square H$ induced by $V(G) \times\{h\}$; it is isomorphic to $G$ and called a $G$-fiber. The $H$-fiber is defined analogously.

### 3.1. Thickness of the Cartesian product of a $t$-minimal graph and an outerplanar graph

A graph $G$ is said to be $t$-minimal, if every proper subgraphs of it have the thickness less than $t$. There are only two 2 -minimal graphs, i.e., $K_{5}$ and $K_{3,3}$, up to homeomorphism. The only known $t$-minimal complete graph is $K_{9}$ for $t=3$. A graph is an outerplanar graph if it can be embedded in the plane without crossings in such a way that all of the vertices belong to the unbounded region of the embedding.

Theorem 11 [8]. Let $G$ and $H$ be connected graphs. Then the graph $G \square K_{2}$ is planar if and only if $G$ is outerplanar.

Theorem 12. Let $G$ be a $t$-minimal graph and $H$ be an outerplanar graph. Then $\theta(G \square H)=\theta(G)$.

Proof. Suppose that $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Because $G$ is $t$-minimal and the removal of a single edge from a graph cannot reduce the thickness of the graph by more than one, for any $e \in E(G)$, we have $\theta(G-e)=t-1$. Without loss of generality, we suppose that $e=v_{1} v_{2}$ and the graph $K_{2}$ consists of the edge $e$. From the structure of $G \square H$, we have $G \square H=((G-e) \square H) \cup\left(K_{2} \square H\right)$.

From Theorem 11, $K_{2} \square H$ is a planar graph. The $H$ fibers $H^{v_{3}}, H^{v_{4}}, \ldots, H^{v_{n}}$ are also planar graphs. Furthermore, the graph $\left(K_{2} \square H\right) \cup H^{v_{3}} \cup H^{v_{4}} \cup \cdots \cup H^{v_{n}}$ is a planar graph, since it is the union of $n-1$ disjoint planar graphs; denote it by $G_{t}$. The removal of the edges of the subgraph $G_{t}$ from $G \square H$ leaves $|V(H)|$ copies of disjoint graphs $G-e$, which can be decomposed into $t-1$ subgraphs, because $\theta(G-e)=t-1$. Summarizing the above, we can get a planar decomposition of $G \square H$ with $t$ subgraphs, i.e., $\theta(G \square H) \leq t$.

On the other hand, since $G \subset G \square H$, we have $\theta(G \square H) \geq t$. The theorem follows.

Corollary 13. Let $G$ be a t-minimal graph and $C_{m}$ be a cycle graph. Then

$$
\theta\left(G \square C_{m}\right)=\theta(G) .
$$

Corollary 14. Let $G$ be a t-minimal graph and $P_{n}$ be a path graph. Then

$$
\theta\left(G \square P_{n}\right)=\theta(G) .
$$

### 3.2. The thickness of $K_{n} \square P_{2}, n \geq 2$

In the following, by using operations on graphs and some conclusions above, we obtain the thickness of $K_{n} \square P_{m}$, for $n, m \geq 2$.

Lemma $15[3,6,22]$. The thickness of the complete graph $K_{n}$ is $\theta\left(K_{n}\right)=\left\lfloor\frac{n+7}{6}\right\rfloor$, except that $\theta\left(K_{9}\right)=\theta\left(K_{10}\right)=3$.

Let $K_{n}^{1}$ be the complete graph with vertices $v_{1}, v_{2}, \ldots, v_{n} . K_{n}^{2}$ is a copy of $K_{n}^{1}$ and its vertices are labeled with $u_{1}, u_{2}, \ldots, u_{n}$, respectively. By joining the vertices $v_{i}$ and $u_{i}$ with an edge $v_{i} u_{i}, 1 \leq i \leq n$, we get the graph $K_{n} \square P_{2}$. Figure 1 illustrates $K_{5} \square P_{2}$. From a planar decomposition of $K_{n} \square P_{2}$, by contracting the edges from $K_{n}^{2}$ to a single vertex in all planar subgraphs, one can obtain a planar decomposition of $K_{n+1}$, so we have

$$
\begin{equation*}
\theta\left(K_{n} \square P_{2}\right) \geq \theta\left(K_{n+1}\right) . \tag{1}
\end{equation*}
$$

By inserting a vertex $w_{i}$ on edge $v_{i} u_{i}$, for $1 \leq i \leq n$, and merging these $n 2$-valent vertices $w_{1}, w_{2}, \ldots, w_{n}$ into one vertex $w$, one can get a new graph. This graph can also be seen as the vertex-amalgamation of $K_{n+1}$ and $K_{n+1}$ at $w$, denoted by $K_{n+1} \bigvee_{\{w\}}^{1} K_{n+1}$. Figure 2 shows the graph $K_{6} \bigvee_{\{w\}}^{1} K_{6}$.


Figure 1. The graph $K_{5} \square P_{2}$.


Figure 2. The graph $K_{6} \bigvee_{\{w\}}^{1} K_{6}$.
From Theorem 6, the thickness of $K_{n+1} \bigvee_{\{w\}}^{1} K_{n+1}$ is the same as the thickness of $K_{n+1}$. Let $\theta\left(K_{n+1}\right)=t$ and $\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$ be a planar decomposition of $K_{n+1}$. Then one can get a planar decomposition of $K_{n+1} \bigvee_{\{w\}}^{1} K_{n+1}$ as follows,

$$
\left\{G_{1} \bigvee_{\{w\}}^{1} G_{1}, G_{2} \bigvee_{\{w\}}^{1} G_{2}, \ldots, G_{t} \bigvee_{\{w\}}^{1} G_{t}\right\}
$$

in which $G_{i} \bigvee_{\{w\}}^{1} G_{i}, 1 \leq i \leq t$ are planar graphs. A planar decomposition of $K_{6} \bigvee_{\{w\}}^{1} K_{6}$ is shown in Figure 3.


Figure 3. A planar decomposition of $K_{6} \bigvee_{\{w\}}^{1} K_{6}$.
From the construction of $G_{i} \bigvee_{\{w\}}^{1} G_{i}$, if the edge $v_{q} w \in G_{i} \bigvee_{\{w\}}^{1} G_{i}$, then $u_{q} w \in G_{i} \bigvee_{\{w\}}^{1} G_{i}, 1 \leq q \leq n$. For each graph $G_{i} \bigvee_{\{w\}}^{1} G_{i}, 1 \leq i \leq t$, if $v_{q} w$, $u_{q} w \in G_{i} \bigvee_{\{w\}}^{1} G_{i}$, then we replace them by a new edge $v_{q} u_{q}$, for $1 \leq q \leq n$, and delete the vertex $w$. In this way, we obtain a new planar decomposition, which is exactly a planar decomposition of $K_{n} \square P_{2}$. Figure 4 illustrates a planar decomposition of $K_{5} \square P_{2}$ by using this way.


Figure 4. A planar decomposition of $K_{5} \square P_{2}$.
From the argument and construction above, one can get a planar decomposition of $K_{n} \square P_{2}$ from that of $K_{n+1} \bigvee_{\{w\}}^{1} K_{n+1}$, so we have

$$
\begin{equation*}
\theta\left(K_{n} \square P_{2}\right) \leq \theta\left(K_{n+1} \bigvee_{\{w\}}^{1} K_{n+1}\right)=\theta\left(K_{n+1}\right) \tag{2}
\end{equation*}
$$

Theorem 16. The thickness of the Cartesian product $K_{n} \square P_{2}(n \geq 2)$ is

$$
\theta\left(K_{n} \square P_{2}\right)=\left\lfloor\frac{n+8}{6}\right\rfloor,
$$

except that $\theta\left(K_{8} \square P_{2}\right)=\theta\left(K_{9} \square P_{2}\right)=3$.
Proof. From (1) and (2), we obtain that $\theta\left(K_{n} \square P_{2}\right)=\theta\left(K_{n+1}\right)$. By Lemma 15, the theorem follows.

### 3.3. The thickness of $K_{n} \square P_{m}, n \geq 2, m \geq 3$

We use the method similar to that in Section 3.2. Firstly, we insert a 2 -valent vertex into each "path edge" (the edges come from $P_{m}$ ). Secondly, we merge these $(m-1) n 2$-valent vertices into $m-1$ vertices, each of which joint two adjacent $K_{n}$; then we get a new graph $\tilde{G}$. The graph $\tilde{G}$ can be seen as a vertexamalgamation of $m$ graphs, in which the first and the $m$ th graphs are $K_{n+1}$, the others are $K_{n+2}-e$. From Theorem 6, one can get $\theta(\tilde{G})=\theta\left(K_{n+2}-e\right)$. In the following, we will construct a planar decomposition of $K_{n} \square P_{m}(m \geq 3)$ from a planar decomposition of $\tilde{G}$, which shows that

$$
\begin{equation*}
\theta\left(K_{n} \square P_{m}\right) \leq \theta\left(K_{n+2}-e\right) \leq \theta\left(K_{n+2}\right) . \tag{3}
\end{equation*}
$$

Suppose that $\left\{G_{1}, G_{2}, \ldots, G_{j}\right\}$ is a planar decomposition of $K_{n+2}-e$, in which the vertices of $K_{n+2}$ are labeled with $v_{1}, v_{2}, \ldots, v_{n+2}$, respectively and $e=v_{n+1} v_{n+2}$. For each $1 \leq i \leq j$, we do a vertex-amalgamation of $m$ graphs $G_{i}$ as follows

$$
G_{i} \bigvee_{\left\{v_{n+1}\right\}}^{1} G_{i} \bigvee_{\left\{v_{n+2}\right\}}^{1} G_{i} \bigvee_{\left\{v_{n+1}\right\}}^{1} G_{i} \cdots \bigvee_{\left\{v_{p}\right\}}^{1} G_{i}
$$

in which $p=v_{n+2}$ when $m$ is odd, and $p=v_{n+1}$ when $m$ is even. Denote the resulting graph by $\widehat{G_{i}}$. For each $\widehat{G_{i}}(1 \leq i \leq j)$, we delete the vertex $v_{n+2}$ and the edges incident with it in the first $G_{i}$, delete the vertex $v_{n+1}$ or $v_{n+2}$ and the edges incident with it in the $m$ th $G_{i}$ according to $m$ is odd or even. Denote the resulting graph by $\tilde{G}_{i}$. Then $\left\{\tilde{G}_{1}, \tilde{G}_{2}, \ldots, \tilde{G}_{j}\right\}$ is a planar decomposition of $\tilde{G}$. Finally, we delete $m-1$ vertices $v_{n+1}$ and $v_{n+2}$ in $\tilde{G}_{i}, 1 \leq i \leq j$, and replace them by "path edge" as in Section 3.2, and denote the obtained graph by $\overline{G_{i}}, 1 \leq i \leq j$. Clearly, $\left\{\overline{G_{1}}, \overline{G_{2}}, \ldots, \overline{G_{j}}\right\}$ is a planar decomposition of $K_{n} \square P_{m}, m \geq 3$. Figure 5 shows a planar decomposition of a vertex-amalgamation of four graphs $K_{7}-e$ and a planar decomposition of $K_{5} \square P_{4}$ from it is illustrated in Figure 6.


Figure 5. A planar decomposition of a vertex-amalgamation of 4 graphs $K_{7}-e$.


Figure 6. A planar decomposition of $K_{5} \square P_{4}$.
On the other hand, $K_{n} \square P_{2}$ is a subgraph of $K_{n} \square P_{m}(m \geq 3)$, and combing it with (1), we have

$$
\begin{equation*}
\theta\left(K_{n} \square P_{m}\right) \geq \theta\left(K_{n} \square P_{2}\right) \geq \theta\left(K_{n+1}\right) . \tag{4}
\end{equation*}
$$

Theorem 17. The thickness of the Cartesian product $K_{n} \square P_{m}(n \geq 2, m \geq 3)$ is

$$
\theta\left(K_{n} \square P_{m}\right)=\left\lfloor\frac{n+9}{6}\right\rfloor,
$$

except that $\theta\left(K_{3} \square P_{m}\right)=1, \theta\left(K_{8} \square P_{m}\right)=3$ and possibly when $n=6 p+3(p \geq 2)$.
Proof. When $n \neq 7$, from (3), (4) and Lemma 15, we obtain $\theta\left(K_{n} \square P_{m}\right)=$ $\theta\left(K_{n+2}\right)$, except possibly when $n=6 p+3$ ( $p$ is a nonnegative integer).

When $n=3$, because $\theta\left(K_{4}\right) \leq \theta\left(K_{3} \square P_{m}\right) \leq \theta\left(K_{5}-e\right)$ and both $K_{4}$ and $K_{5}-e$ are planar graphs, we have $\theta\left(K_{3} \square P_{m}\right)=1$.

When $n=9$, because $\theta\left(K_{10}\right) \leq \theta\left(K_{9} \square P_{m}\right) \leq \theta\left(K_{11}\right)$ and $\theta\left(K_{10}\right)=\theta\left(K_{11}\right)=$ 3, we have $\theta\left(K_{9} \square P_{m}\right)=3$.

When $n=8$, we have $\theta\left(K_{8} \square P_{m}\right)=\theta\left(K_{10}\right)=3$. When $n=7$, we have $2 \leq \theta\left(K_{7} \square P_{m}\right) \leq \theta\left(K_{9}-e\right)$. We give a planar decomposition of $K_{9}-e$ as shown in Figure 7, and $K_{9}-e$ is a non-planar graph, which shows $\theta\left(K_{9}-e\right)=2$. So we have $\theta\left(K_{7} \square P_{m}\right)=2$.

Summarizing the above, the theorem is obtained.


Figure 7. A planar decomposition of $K_{9}-e$.
From Theorems 16 and 17, the only unsolved case for the thickness of the Cartesian product $K_{n} \square P_{m}$ is when is $n=6 p+3(p \geq 2)$ and $m \geq 3$. For this case, $\theta\left(K_{n} \square P_{m}\right)=\theta\left(K_{n+1}\right)$ or $\theta\left(K_{n+2}-e\right)$. What is the exact number for this case is still open. It was conjectured in [15] that $K_{6 t-7}$ is $t$-minimal for $t \geq 5$. If this conjecture is true, then $\theta\left(K_{n} \square P_{m}\right)=\theta\left(K_{n+1}\right)=\theta\left(K_{n+2}-e\right)=\left\lfloor\frac{n+\overline{8}}{6}\right\rfloor$, for $n=6 p+3(p \geq 3)$ and $m \geq 3$.

The method of the current paper is not strong enough to determine the thickness of the Cartesian product of the complete graph $K_{n}$ and the cycle graph $C_{m}$. We pose the following problem for possible consideration.

Problem 18. Find an explicit formula for the thickness of the Cartesian product of the complete graph $K_{n}$ and the cycle graph $C_{m}$ for $n, m \geq 3$.

## Thickness of Amalgamations and Cartesian Product of Graphs 571

## Acknowledgements

The authors cordially thank the referee for many helpful comments and suggestions.

The first author was supported by NNSF of China under Grant No. 11401430 The second author was supported by NNSF of China under Grant No. 11471106 and NSFC of Hunan under Grant No. 14JJ2043.

## References

[1] A. Aggarwal, M. Klawe and P. Shor, Multilayer grid embeddings for VLSI, Algorithmica 6 (1991) 129-151. doi:10.1007/BF01759038
[2] S. Alpert, The genera of amalgamations of graph, Trans. Amer. Math. Soc. 178 (1973) 1-39.
doi:10.1090/S0002-9947-1973-0371698-X
[3] V.B. Alekseev and V.S. Gončhakov, The thickness of an arbitrary complete graph, Math. Sbornik. 30 (1976) 187-202.
doi:10.1070/SM1976v030n02ABEH002267
[4] K. Asano, On the genus and thickness of graphs, J. Combin. Theory Ser. B 43 (1987) 287-292.
doi:10.1016/0095-8956(87)90004-9
[5] J. Battle, F. Harary, Y. Kodama and J.W.T. Youngs, Additivity of the genus of a graph, Bull. Amer. Math. Soc. 68 (1962) 565-568. doi:10.1090/S0002-9904-1962-10847-7
[6] L.W. Beineke and F. Harary, The thickness of the complete graph, Canad. J. Math. 17 (1965) 850-859 doi:10.4153/CJM-1965-084-2
[7] L.W. Beineke, F. Harary and J.W. Moon, On the thickness of the complete bipartite graph, Math. Proc. Cambridge Philos. Soc. 60 (1964) 1-5. doi:10.1017/S0305004100037385
[8] M. Behzad and S.E. Mahmoodian, On topological invariants of the product of graphs, Canad. Math. Bull. 12 (1969) 157-166. doi:10.4153/CMB-1969-015-9
[9] J.A. Bondy and U.S.R.Murty, Graph Theory (Springer, 2008).
[10] J.E. Chen, S.P. Kanchi and A. Kanevsky, A note on approximating graph genus, Inform. Process Lett. 61 (1997) 317-322. doi:10.1016/S0020-0190(97)00203-2
[11] R.J. Cimikowski, On heuristics for determining the thickness of a graph, Inform. Sci. 85 (1995) 87-98. doi:10.1016/0020-0255(95)00011-D
[12] A.M. Dean, J.P. Hutchinson and E.R. Scheinerman, On the thickness and arboricity of a graph, J. Combin. Theory Ser. B 52 (1991) 147-151.
doi:10.1016/0095-8956(91)90100-X
[13] R. Decker, H. Glover and J.P. Huneke, The genus of the 2-amalgamations of graphs, J. Graph Theory 5 (1981) 95-102. doi:10.1002/jgt. 3190050107
[14] J.H. Halton, On the thickness of graphs of given degree, Inform. Sci. 54 (1991) 219-238. doi:10.1016/0020-0255(91)90052-V
[15] A.M. Hobbs, A survey of thickness, in: Recent Progress in Combinatorics (Proc. 3rd Waterloo Conf. on Combinatorics, 1968), W.T. Tutte (Ed(s)), (New York, Academic Press, 1969) 255-264.
[16] M. Kleinert, Die Dicke des n-dimensionalen Würfel-Graphen, J. Combin. Theory $\mathbf{3}$ (1967) 10-15. doi:10.1016/S0021-9800(67)80010-3
[17] A. Mansfield, Determining the thickness of graphs is NP-hard, Math. Proc. Cambridge Philos. Soc. 93 (1983) 9-23. doi:10.1017/S030500410006028X
[18] E. Mäkinen and T. Poranen, An annotated bibliography on the thickness, outerthickness, and arboricity of a graph, Missouri J. Math. Sci. 24 (2012) 76-87.
[19] P. Mutzel, T. Odenthal and M. Scharbrodt, The thickness of graphs: a survey, Graphs Combin. 14 (1998) 59-73. doi:10.1007/PL00007219
[20] T. Poranen, A simulated annealing algorithm for determining the thickness of a graph, Inform. Sci. 172 (2005) 155-172. doi:10.1016/j.ins.2004.02.029
[21] W.T. Tutte, The thickness of a graph, Indag. Math. 25 (1963) 567-577. doi:10.1016/S1385-7258(63)50055-9
[22] J.M. Vasak, The thickness of the complete graph, Notices Amer. Math. Soc. 23 (1976) A-479.

